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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #26
• D-T Systems: DTFT Analysis of DT Systems
• Reading Assignment: Sections 5.5 & 5.6 of Kamen and Heck
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Ch. 1 Intro
C-T Signal Model

Functions on Real Line

D-T Signal Model
Functions on Integers

System Properties
LTI

Causal
Etc

Ch. 2 Diff Eqs
C-T System Model

Differential Equations
D-T Signal Model

Difference Equations

Zero-State Response

Zero-Input Response
Characteristic Eq.

Ch. 2 Convolution

C-T System Model
Convolution Integral

D-T System Model
Convolution Sum

Ch. 3:  CT Fourier 
Signal Models

Fourier Series
Periodic Signals

Fourier Transform (CTFT)
Non-Periodic Signals

New System Model

New Signal
Models

Ch. 5:  CT Fourier 
System Models

Frequency Response
Based on Fourier Transform

New System Model

Ch. 4:  DT Fourier 
Signal Models

DTFT
(for “Hand” Analysis)

DFT & FFT
(for Computer Analysis)

New Signal 
Model

Powerful 
Analysis Tool

Ch. 6 & 8:  Laplace 
Models for CT

Signals & Systems

Transfer Function

New System Model

Ch. 7:  Z Trans.
Models for DT

Signals & Systems

Transfer Function

New System
Model

Ch. 5:  DT Fourier 
System Models

Freq. Response for DT
Based on DTFT

New System Model

Course Flow Diagram
The arrows here show conceptual flow between ideas.  Note the parallel structure between 

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).
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5.5:  System analysis via DTFT
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Recall that in Ch. 5 we saw how to use frequency domain methods to analyze 
the input-output relationship for the C-T case.  

We now do a similar thing for D-T 

Define the “Frequency Response” of the D-T system

We now return to Ch. 5 
for its DT coverage!

Back in Ch. 2, we saw that a D-T system in “zero state” has an output-input 
relation of:

∑
∞

−∞=

Ω−=Ω
n

njenhH ][)(

DTFT of h[n]

Perfectly parallel to the 
same idea for CT systems!!!
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From Table of DTFT properties: )()(][][ ΩΩ↔∗ HXnhnx
So we have:
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So…in general we see that the system frequency response re-shapes the input 
DTFT’s magnitude and phase. 

⇒ System can:

-emphasize some frequencies
-de-emphasize other frequencies

Perfectly parallel to the same 
ideas for CT systems!!!

The above shows how to use DTFT to do general DT system analyses …
virtually all of your insight from the CT case carries over!
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Now lets look at the special case:  Response to Sinusoidal Input
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From DTFT Table:
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So what does Y(Ω) look like?
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From DTFT Table we see this is the DTFT of a cosine signal with:
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So…

))(cos()(][ 000 Ω∠++ΩΩ= HnAHny θ

)(ΩH)cos( 0 θ+Ω nA ))(cos()( 000 Ω∠++ΩΩ HnAH θ

System changes amplitude and phase of 
sinusoidal input

Perfectly parallel to the same 
ideas for CT systems!!!
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Example 5.8 (error in book)

Suppose you have a system described by Ω−+=Ω jeH 1)(
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And you put the following signal into it

Cosine with Ω = 0

Find the output.
So we need to know the system’s frequency response at only 2 frequencies.
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Since the system is linear we can consider each of the input 
terms separately….

And then add them to get the complete response…
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Note: In the above example we used 

)(ΩH)sin( 0 θ+Ω nA ))(sin()( 000 Ω∠++ΩΩ HnAH θ

Q: Why does that follow?

A: It is a special case of the cosine result that is easy to see:

- convert sin(Ω0n + θ) into a cosine form

- apply the cosine result

- convert cosine output back into sine form

…which is the “sine” version of our result above for a cosine input
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Analysis of Ideal D-T lowpass Filter (LPF)
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Just as in the CT case… we can specify filters.  We looked at the ideal 
lowpass filter for the CT case… here we look at it for the DT case.

Cut-off frequency = B rad/sample
As always with DT… we only need to look here



12/20

D-T Ideal 
LPF DACADC @

Fs = 1/T

F~2Fs  @  sample
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This slide shows how a DT filter might be employed… but ideal filters can’t 
be built in practice.  We’ll see later a few practical DT filters.

x(t) x[n] y[n] y(t)
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Whole System (ADC – D-T filter – DAC) acts like an equivalent C-T system 
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We know the frequency response of the ideal LPF… so find its impulse response: 

From DTFT Table :
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Why can’t an ideal LPF exist in practice??

][nh
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Key Point: h[n] is non-zero here

⇒ starts before the impulse that “makes it” is even “applied”!

⇒ Can’t build an Ideal LPF

(Same thing is true in C-T)
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Causal Lowpass Filter (But not Ideal)
In practice, the best we can do is try to approximate the ideal LPF 

If you go on to study DSP you’ll learn how to design filters that do a good 
job at this approximation

Here we’ll look at two “seat of the pants” approaches to get a good LPF

Approach #1 Truncate & Shift Ideal h[n] 
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Some general insight: Longer lengths for the truncated impulse response
Gives better approximation to the ideal filter response!!

Let’s see how well these work…
Frequency Response  
of a filter truncated to 

21 samples

Frequency Response  
of a filter truncated to 

61 samples

Frequency Response  
of a filter truncated to 

121 samples
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Approach #2:  Moving Average Filters

Here is a very simple, low quality LPF:
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To see how well this works as a lowpass filter we find its frequency response:
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By definition of 
the DTFT

Only 2 non-zero 
terms in the sum
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Now, to see what this looks like we find its magnitude….

Euler!
It is now in rect. form…

Trig. ID

Now.. Plot this to see if it is a 
good LPF!
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We could try longer moving average filters:
⎪
⎩

⎪
⎨

⎧ −=
=

otherwise

Nn
Nnh
,0

1,,2,1,0,1
][

Here’s a plot of this filter’s freq. resp. magnitude:
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Well…this does attenuate high frequencies but doesn’t really “stop” them!

It is a low pass filter but not a very good one!

How do we make a better LPF???

“Low”
Frequencies

“High”
Frequencies

“High”
Frequencies



19/20

Plots of various Moving Average Filters…
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We see that increasing the length of the “all-ones” moving average 
filter causes the passband to get narrower… but the quality of the filter 
doesn’t get better… so we generally need other types of filters.
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The two approaches to DT filters we’ve seen here are simplistic approaches

There are now very powerful methods for designing REALLY good DT
filters… we’ll look at some of these later in this course. 

A complete study of such issues must be left to a senior-level course in DSP!!

Comments on these Filter Design Approaches
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