State University of New York

EECE 301
 Signals \& Systems Prof. Mark Fowler

Note Set \#28

- C-T Systems: Laplace Transform... Solving Differential Equations
- Reading Assignment: Section 6.4 of Kamen and Heck

Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).

6.4 Using LT to solve Differential Equations

In Ch. 2 we saw that the solution to a linear differential equation has two parts:

Here we'll see how to get $y_{\text {total }}(t)$ using LT... ... get both parts with one tool!!!!

First-order case: Let's see this for a $\underline{1}^{\text {stt}}$-order Diff. Eq. with a causal input and a non-zero initial condition just before the causal input is applied.

The $\mathbf{1}^{\text {st }}$-order Diff. Eq. describes: a simple RC or RL circuit.
The causal input means: we switch on some input at time $t=0$.
The initial condition means: just before we switch on the input the capacitor has a specified voltage on it (i.e., it holds some charge).

This circuit is then described by this Diff. Eq.:

$$
\frac{d y(t)}{d t}+\frac{1}{R C} y(t)=\frac{1}{R C} x(t)
$$

Cap voltage... just before $x(t)$ "turns on"

With IC $y\left(0^{-}\right)=V_{\text {IC }}$
$x(t)=0, t<0$

For this ex. we'll solve the general $1^{\text {st-order Diff. Eq.: }}$

$$
\frac{d y(t)}{d t}+a y(t)=b x(t)
$$

Now the key steps in using the LT are:

- take the LT of both sides of the Differential Equation...
- use the LT properties where appropriate...
- solve the resulting Algebraic Equation for $Y(s)$
- find the inverse LT of the resulting $Y(s)$

Laplace Transform:
Differential Equation... turns into an...
Algebraic Equation

We now apply these steps to the $1^{\text {st-order Diff. Eq.: }}$

Example: RC Circuit

Now we apply these general ideas to solving for the output of the previous RC circuit with a unit step input.... $x(t)=u(t)$

$$
\frac{d y(t)}{d t}+\frac{1}{R C} y(t)=\frac{1}{R C} x(t)
$$

$$
Y(s)=\frac{y\left(0^{-}\right)}{s+1 / R C}+\left[\frac{1 / R C}{s+1 / R C}\right] X(s)
$$

Now... we need the LT of the input...
From the LT table we have:

$$
x(t)=u(t) \quad \leftrightarrow \quad X(s)=\frac{1}{s}
$$

$$
Y(s)=\frac{y\left(0^{-}\right)}{s+1 / R C}+\left[\frac{1 / R C}{(s+1 / R C)}\right] \frac{1}{s}
$$

Now we have "just a function of s" to which we apply the ILT...

So now applying the ILT we have:

$$
\begin{aligned}
& \mathcal{L}^{1}\{Y(s)\}=\mathcal{L}^{-1}\left\{\frac{y\left(0^{-}\right)}{s+1 / R C}+\left[\frac{1 / R C}{(s+1 / R C) s}\right]\right\} \\
& y(t)=\mathcal{L}^{1}\left\{\frac{y\left(0^{-}\right)}{s+1 / R C}\right\}+\mathcal{L}^{1}\left\{\left[\frac{1 / R C}{(s+1 / R C) s}\right]\right\}
\end{aligned}
$$

Apply LT to both sides

Linearity of LT

This part (zero-input sol'n) is easy... Just look it up on the LT Table!!

This part (zero-state sol'n) is harder...
It is NOT on the LT Table!!

So... the part of the sol'n due to the IC (zeroinput sol'n) decays down from the IC voltage

Now let's find the other part of the solution... the zero-state sol'n... the part that is driven by the input:

$$
y(t)=\mathcal{L}^{-1}\left\{\frac{y\left(0^{-}\right)}{s+1 / R C}\right\}+\mathcal{L}^{-1}\left\{\left[\frac{1 / R C}{(s+1 / R C) s}\right]\right)
$$

We can factor this function of s as follows:

$$
\mathcal{L}^{-1}\left\{\left[\frac{1 / R C}{(s+1 / R C) s}\right]\right\}=\mathcal{L}^{-1}\left\{\left[\frac{1}{s}-\frac{1}{s+1 / R C}\right]\right\}
$$

Can do this with
"Partial Fraction Expansion", which is just a "fool-proof" way to factor

Now... each of these terms is on the LT table:

$$
=\underbrace{=\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s+1 / R C}\right\}}_{=u(t)} \underbrace{\left.\mathcal{L}^{2}\right\}(t)}_{=e^{-(t / R C)}} \text { (}
$$

$$
=\left[1-e^{-(t / R C)}\right] u(t)
$$

So the zero-state response of this system is: $\left[1-e^{-(t / R C)}\right] \mu(t)$

Now putting this zero-state response together with the zero-input response we found gives:

$$
y(t)=\underbrace{y\left(0^{-}\right) e^{-(t / R C)} u(t)}_{\text {IC Part }}+\underbrace{\left[1-e^{-(t / R C)}\right] u(t)}_{\text {Input Part }}
$$

Notice that:

The IC Part "Decays Away"
but...
The Input Part "Persists"

Here is an example for $\boldsymbol{R C}=\mathbf{0 . 5}$ sec and the initial $V_{\text {IC }}=\mathbf{5}$ volts:

Second-order case

Circuits with two energy-storing devices ($\mathrm{C} \& \mathrm{~L}$, or 2 Cs or 2 Ls) are described by a second-order Differential Equation...

$$
\begin{aligned}
& \begin{array}{l}
\frac{d^{2} y(t)}{d t^{2}}+a_{1} \frac{d y(t)}{d t}+a_{0} y(t)=b_{1} \frac{d x(t)}{d t}+b_{0} x(t) \\
\text { Assume Causal Input } \\
\text { w/ ICs } \dot{y}\left(0^{-}\right) \& y\left(0^{-}\right) \\
\begin{array}{|cc}
x(t)=0 & t<0 \\
\downarrow \\
x\left(0^{-}\right)=0
\end{array}
\end{array}
\end{aligned}
$$

We solve the $2^{\text {nd }}$-order case using the same steps:
Take LT of Diff. Equation:

$$
\left[s^{2} Y(s)-y\left(0^{-}\right) s-\dot{y}\left(0^{-}\right)\right]+a_{1}\left[s Y(s)-y\left(0^{-}\right)\right]+a_{0} Y(s)=b_{1} s X(s)+b_{0} X(s)
$$

From $2^{\text {nd }}$ derivative property, accounting for ICs

From $1^{\text {st }}$ derivative property, accounting for ICs

From $1^{\text {st }}$ derivative property, causal signal

Solve for $Y(s)$:

Note: The role the Characteristic Equation plays here!
It just pops up in the LT method!
The same happened for a $1^{\text {st }}$-order Diff. Eq...
...and it happens for all orders

Like before...
to get the solution in the time domain find the Inverse LT of Y(s)

To get a feel for this let's look at the zero-input solution for a 2nd-order system:

$$
Y_{z i}(s)=\frac{y\left(0^{-}\right) s+\dot{y}\left(0^{-}\right)+a_{1} y\left(0^{-}\right)}{s^{2}+a_{1} s+a_{0}}=\frac{y\left(0^{-}\right) s+\left[\dot{y}\left(0^{-}\right)+a_{1} y\left(0^{-}\right)\right]}{s^{2}+a_{1} s+a_{0}}
$$

which has... either a $1^{\text {st }}$-order or $0^{\text {th }}$-order polynomial in the numerator and...
... a $2^{\text {nd }}-$ order polynomial in the denominator
For such scenarios there are Two LT Pairs that are Helpful:

$$
\begin{aligned}
& \text { For... } \\
& 0<|\zeta|<1
\end{aligned}
$$

$$
\begin{array}{|c|}
A e^{-\zeta \sigma_{n} t} \sin \left[\left(\omega_{n} \sqrt{1-\zeta^{2}}\right) t\right] u(t) \\
\text { where : } \quad A=\frac{\alpha}{\omega_{n} \sqrt{1-\zeta^{2}}}
\end{array} \longleftrightarrow \frac{\alpha}{s^{2}+2 \zeta \omega_{n} S+\omega_{n}^{2}}
$$

These are not in your book's table... but

$$
A e^{-\zeta \sigma_{n},} \sin \left[\left(\omega_{n} \sqrt{1-\zeta^{2}}\right) t+\phi\right] u(t)
$$ they are on the table on my

$$
\text { where: } \begin{aligned}
A & =\beta \sqrt{\frac{\left(\alpha-\zeta \omega_{n}\right)^{2}}{\omega_{n}^{2}\left(1-\zeta^{2}\right)}+1} \\
\phi & =\tan ^{-1}\left(\frac{\omega_{n} \sqrt{1-\zeta^{2}}}{\alpha-\zeta \omega_{n}}\right)
\end{aligned}
$$ website!

Otherwise... Factor into two terms

Note the effect of the ICs:

$$
Y_{z i}(s)=\frac{y\left(0^{-}\right) s+\dot{y}\left(0^{-}\right)+a_{1} y\left(0^{-}\right)}{s^{2}+a_{1} s+a_{0}}=\frac{y\left(0^{-}\right) s+\left[\dot{y}\left(0^{-}\right)+a_{1} y\left(0^{-}\right)\right]}{s^{2}+a_{1} s+a_{0}}
$$

$$
\begin{aligned}
& A e^{-\zeta \omega_{n} t} \sin \left[\left(\omega_{n} \sqrt{1-\zeta^{2}}\right) t\right] u(t) \longleftrightarrow \frac{\alpha}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \\
& \begin{array}{c}
\text { This form gives } \\
y_{z i}(0)=0 \text { as set by the IC }
\end{array}
\end{aligned}
$$

$$
A e^{-\zeta \omega_{n} t} \sin \left[\left(\omega_{n} \sqrt{1-\zeta^{2}}\right) t+\phi\right] u(t) \longleftrightarrow \frac{s+\alpha}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

Example of using this type of LT pair: Let $y\left(0^{-}\right)=2 \quad \dot{y}\left(0^{-}\right)=4$

Then

$$
Y_{z i}(s)=\frac{2 s+\left(4+a_{1} 2\right)}{s^{2}+a_{1} s+a_{0}}=2\left[\frac{s+\left(2+a_{1}\right)}{s^{2}+a_{1} s+a_{0}}\right]
$$

Pulled a 2 out from each term in Num. to get form just like in LT Pair.

Now assume that for our system we have: $a_{0}=100$ \& $a_{1}=4$

Then

$$
Y_{z i}(s)=2\left[\frac{s+6}{s^{2}+4 s+100}\right]
$$

Compare to LT:

$$
\beta \frac{s+\alpha}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

$$
\begin{array}{|ll|}
\alpha=6 \quad \beta=2 & \\
\omega_{n}^{2}=100 & \Rightarrow \\
2 \zeta \omega_{n}=10 \\
2 \zeta \omega_{n}=4 & \Rightarrow \\
& \zeta=4 / 2 \omega_{n}=4 / 20=0.2
\end{array}
$$

So now we use these parameters in the time-domain side of the LT pair:

$$
\begin{aligned}
& \alpha=6 \quad \beta=2 \\
& \omega_{n}=10 \\
& \zeta=0.2
\end{aligned}
$$

$A e^{-\zeta \omega_{n} t} \sin \left[\left(\omega_{n} \sqrt{1-\zeta^{2}}\right) t+\phi\right] u(t)$
where: $\quad A=\beta \sqrt{\frac{\left(\alpha-\zeta \omega_{n}\right)^{2}}{\omega_{n}^{2(}\left(1-\zeta^{2}\right)}+1}$

$$
\phi=\tan ^{-1}\left(\frac{\omega_{n} \sqrt{1-\zeta^{2}}}{\alpha-\zeta \omega_{n}}\right)
$$

Assuming output is a voltage!

$$
y_{z i}(t)=2.16 e^{-2 t} \sin [9.80 t+1.18] u(t)
$$

Notice that the zero-input solution for this $2^{\text {nd }}$-order system oscillates... $1^{\text {st}}$-order systems can't oscillate...
$2^{\text {nd }}$ - and higher-order systems can oscillate but might not!!

Here is what this zero-input solution looks like:

\mathbf{N}^{th}-Order Case

Diff. eq
of the

$$
\frac{d^{N} y(t)}{d t^{N}}+a_{N-1} \frac{d^{N-1} y(t)}{d t^{N-1}}+\ldots+a_{1} \frac{d y(t)}{d t}+a_{0} y(t)=b_{M} \frac{d x^{M}(t)}{d t^{M}}+b_{1} \frac{d x(t)}{d t}+b_{0} x(t)
$$

$$
\text { For } M \leq N \text { and }\left.\frac{d^{i} x(t)}{d t^{i}}\right|_{t=0^{-}}=0 \quad i=0,1,2, \ldots, M-1
$$

Taking LT and re-arranging gives:

$$
Y(s)=\frac{I C(s)}{A(s)}+\frac{B(s)}{A(s)} X(s)
$$

LT of the solution (i.e. the LT of the system output)

$$
\text { where } \begin{cases}A(s)=s^{N}+a_{N-1} s^{N-1}+\ldots+a_{1} s+a_{0} & \text { "output-side" polynomial } \\ B(s)=b_{M} s^{M}+\ldots+b_{1} s+b_{0} & \text { "input-side" polynomial } \\ I C(s)=\text { polynomial in } s \text { that depends on the ICs }\end{cases}
$$

Recall: For $2^{\text {nd }}$ order case: $I C(s)=y\left(0^{-}\right) s+\left[\dot{y}\left(0^{-}\right)+a_{1} y\left(0^{-}\right)\right]$

Consider the case where the LT of $x(t)$ is rational: $X(s)=\frac{N_{X}(s)}{D_{X}(s)}$
Then... $\quad Y(s)=\frac{I C(s)}{A(s)}+\frac{B(s)}{A(s)} X(s)=\frac{I C(s)}{A(s)}+\frac{B(s)}{A(s)} \frac{N_{X}(s)}{D_{X}(s)}$
This can be expanded like this: $Y(s)=\frac{I C(s)}{A(s)}+\frac{E(s)}{A(s)}+\frac{F(s)}{D_{X}(s)}$
for some resulting polynomials $E(s)$ and $F(s)$
So... for a system with $\quad H(s)=\frac{B(s)}{A(s)} \quad$ and input with $X(s)=\frac{N_{X}(s)}{D_{X}(s)}$ and initial conditions you get:

Decays in time domain if roots of system char. poly. $A(s)$ have negative real parts

Zero-Input
Response

Zero-State Response

$$
Y(s)=\underbrace{\frac{I C(s)}{A(s)}}+\underbrace{\frac{E(s)}{A(s)}}+\underbrace{\frac{F(s)}{D_{X}(s)}}
$$

Transient Steady-State Response Response

If all IC's are zero (zero state) $C(s)=0$

Then:	$Y(s)=\underbrace{\left[\frac{B(s)}{A(s)}\right]}_{\equiv} X(s)$
Connection To sect. 6.5	Called "Transfer Function" of the system... see Sect. 6.5

$$
Y(s)=\underbrace{\begin{array}{c}
\text { Zero-State } \\
\frac{E(s)}{A(s)}
\end{array}+\underbrace{\frac{F(s)}{D_{X}(s)}}_{\begin{array}{c}
\text { Responsene } \\
D_{X}(s) \\
\text { Response }
\end{array}}}_{\substack{\text { Transient } \\
\text { Response }}}
$$

Summary Comments:

1. From the differential equation one can easily write the $H(s)$ by inspection!
2. The denominator of $H(s)$ is the characteristic equation of the differential equation.
3.The roots of the denominator of $H(s)$ determine the form of the solution...
...recall partial fraction expansions

BIG PICTURE: The roots of the characteristic equation drive the nature of the system response... we can now see that via the LT.

We now see that there are three contributions to a system's response:

1. The part driven by the ICs
a. This will decay away if the Ch. Eq. roots have negative real parts
2. A part driven by the input that will decay away if the Ch. Eq. roots have negative real parts ... "Transient Response"
3. A part driven by the input that will persist while the input persists... "Steady State Response"
