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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #30
• C-T Systems: Laplace Transform… and System Stability
• Reading Assignment: Section 8.1 of Kamen and Heck
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Etc
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C-T System Model

Differential Equations
D-T Signal Model

Difference Equations

Zero-State Response

Zero-Input Response
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Ch. 2 Convolution

C-T System Model
Convolution Integral

D-T System Model
Convolution Sum

Ch. 3:  CT Fourier 
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Fourier Series
Periodic Signals

Fourier Transform (CTFT)
Non-Periodic Signals

New System Model
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Ch. 5:  CT Fourier 
System Models

Frequency Response
Based on Fourier Transform
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Ch. 4:  DT Fourier 
Signal Models

DTFT
(for “Hand” Analysis)

DFT & FFT
(for Computer Analysis)
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Model

Powerful 
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Ch. 6 & 8:  Laplace 
Models for CT

Signals & Systems

Transfer Function

New System Model

Ch. 7:  Z Trans.
Models for DT

Signals & Systems

Transfer Function

New System
Model

Ch. 5:  DT Fourier 
System Models

Freq. Response for DT
Based on DTFT

New System Model

Course Flow Diagram
The arrows here show conceptual flow between ideas.  Note the parallel structure between 

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).
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Ch. 8: System analysis and design using the transfer function
We have seen that the system transfer function H(s) plays an important role in 
the analysis of a system’s output for a given input. 

e.g. for the zero-state case:

{ })()()()()()( 1 sHsXtysHsXsY -L=→=

Much insight can be gained by looking at H(s) and 
understanding how its structure will affect the form of y(t). 

Section 8.1: First we’ll look at how H(s) can tell us about a system’s “stability”

Section 8.4: Then we’ll see how the form of H(s) can tell us about how the system 
output should behave

Section 8.5: Then we’ll see how to design an H(s) to give the desired frequency 
response. 
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Roughly speaking: A “stable” system is one whose output does not keep getting 
bigger and bigger in response to an input that does not keep getting bigger. 

We can state this mathematically and then use our math models (e.g. h(t) or H(s)) to 
determine if a system will be stable. 

Mathematical checks for stability:
The following are given without proof.  They are all equivalent checks so you only need 
to test for one of them.

1.

2. All poles are in the “open left-half of the s-plane”

3. Routh-Hurwitz test (section 8.2, we’ll skip it)

"Integrable Absolutely"    )(
0∫
∞

∞<dtth

Section 8.1 System Stability

Math definition of stability
“Bounded-Input, Bounded-Output” (BIBO) stability:
A system is said to be BIBO stable if 

for any bounded input:       |x(t)| ≤ C1 < ∞ ∀ t ≥ 0  (x(t)=0, t<0)
the output remains bounded: |y(t)| ≤ C2 < ∞ For SOME C1 & C2
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can only happen if |h(t)| decays fast enough.  
This is hard to check!!! 

∫
∞

∞<
0

)( dtth
Discussion of Stability Checks

So the system having this impulse response is not BIBO stable… it is unstable…
that means that there is a bounded input that will (eventually) drive the system’s 
output to infinity.

Note: Real H/W will “encounter problems” long before the output “goes to infinity”!!! 

)()sin()( 0 tutth ω=Consider a system with

This is not absolutely integrable… as you integrate its absolute value from 0 to ∞
the value of the integral keeps growing without bound…

For this system, if you put in )()sin()( 0 tuttx ω=

the system output is driven to infinity…
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We can verify this claim using convolution:

…h(τ)

τ

x(t – τ)

τ

t

x(t – τ) h(τ)

τ

…

To get y(t)… Integrate… gives area of the humps… as t grows you 
get more and more humps… output grows without bound!!!

Just look at t
values where these 

line up like this

Thus, the upper “envelope” of the output grows by the area of one of those 
humps each time we increase t by one-half the period of the sinusoid…

So… the upper envelope grows linearly with time… it grows without bound!!!

)()()()sin()( 0 thtxuh == ττωτ
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Computing the complete convolution gives something like this:

We just analyzed what 
happens to these points
We just analyzed what 
happens to these points
We just analyzed what 
happens to these points
We just analyzed what 
happens to these points
We just analyzed what 
happens to these points

Upper Envelope

Doing numerical calculations like this are helpful… but they don’t PROVE that 
something happens… the plot by itself does not show what happens after 0.5 
seconds!!  As far as we know… anything could happen out there!!

That is the value of mathematical analysis (based on sound models, of course!)
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So… we can use the absolute integrability check … but it is not that easy to do 
in general.  It also doesn’t tell us much about why a system is stable.

Well… if the impulse response can be used to check for stability… it should be 
no surprise that the transfer function can also be used!!!

A term for each real pole
A term for each complex pole pair

)(...)()( 1 ththth p++=

After the Inverse LT we get:

)(...)(
...

...)( 1
01

1
1

01
1

1 sHsH
asasas

bsbsbsbsH pN
N

N

M
M

M
M ++=

++++
++++

= −
−

−
−Consider:

After Partial 
Fraction Expansion

From our understanding of partial fraction expansion we know what each of 
these terms can look like:

poles repeated-    )()(

poledistinct     )()(

ktuetcth

tuecth

tpk
ii

tp
ii

i

i

=

=

poles repeated-    )()tcos()(

poledistinct       )()cos()(

ii ktuetcth
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ii
t
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i

i

θω

θωσ

+=

+=
For Real Pole For Complex Pole Pair
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So what do these look like?
For the distinct pole cases:

)()cos()()( tuθtωecthecth ii
tσ

ii
tp

ii
ii +==

This decays if pi < 0 This decays if σi < 0

We can capture the condition for decay with: 

“the real-part of the pole is negative”

Although we won’t prove it here… it can be shown that this decay is fast 
enough to ensure “absolute integrability”… and thus stability.

 )()tcos()()()( ii tuetcthtuetcth tpk
ii

tpk
ii

ii θω +==

For the repeated pole cases:

We’ve got a race!!!  The tk terms are “going up” and the exponentials are 
“going down” for poles whose real parts are negative… WHO WINS???
We’ve got a race!!!  The tk terms are “going up” and the exponentials are 
“going down” for poles whose real parts are negative… WHO WINS???

The decaying exponential wins!!!
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So we have argued that… a system is stable if all its poles have negative 
real parts

{ } ipi ∀< ,0Re
Stability condition (not proved here!)

An Nth order system (with N poles pi = 1, 2, …, N) is stable if and only if

{ } Nipi  ..., 2, ,1 allfor   0Re =<

x

x

ωj

σ

s-plane

All poles must be in the “open”
left-hand side of the s-plane

Can’t be on
the jω axis
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Comment: Just because the model satisfies BIBO stability, this does not mean 
the physical system will have no problems:

2)( Cty < C2 might exceed physical limits ⇒ system breaks

A system is said to be “marginally stable” if it has at least one 
distinct pole on the jω axis but no repeated poles on jω

Marginally stable systems are not a good idea in most applications 
because they will still tend to get large outputs under certain conditions…

Summary

• In most applications we desire a stable system

• We can easily check for stability by looking to see where the system’s poles are

Also… We won’t show it here, but every stable system has an H(s) whose ROC 
includes the jω axis… therefore, the FT-based frequency response H(ω) exists.
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Example: RLC circuit

)(tx )(ty

+

−

Recall: )/1()/(
/1)( 2 LCsLRs
LCsH
++

=

Use the Quadratic Formula on the denominator of H(s):

LCL
R

L
Rp 1

22

2

2,1 −⎟
⎠
⎞

⎜
⎝
⎛±−=

Assess this circuit for stability

So all we need to do is find where its poles are!!!!

From this result we can find out how the component values impact the 
stability of this system.

So we’ll now systematically analyze this… we’ll look at four cases.
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Note: If R = 0 
LC

j
LC

p 11
2,1 ±=−±=⇒

LCL
R

L
Rp 1

22

2

2,1 −⎟
⎠
⎞

⎜
⎝
⎛±−=

Causes 
Imaginary Part

But we can’t really build an oscillator this way 
because all real L & C have “parasitic” resistance 
(need to use special electronic circuits to get an osc.) 

All real passive circuits are stable

( )[ ]tLC
LC

th /1sin1)( =

)/1(
/1)( 2 LCs
LCsH

+
=For this case we then have:

From the LT table we get:

)(th
t

Looks like an oscillator!!

Case 1:

ωj

σ

s-plane
LC/1

Marginally Stable

So for this case… the poles are purely imaginary.

They lie on the jω axis…
LC/1−
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0   is     term~~       the1
2L
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<<⎟
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⎞

⎜
⎝
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Case 2:

{ } stablepi ⇒< 0Re
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L
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−
=⇒
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⎟
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L
R

LC

2

2
1

⎟
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L
R

LC

LR 2/−

For this case the inverse LT gives the following form:

)cos()( 0
)2/( θω += − tAeth tLR

)(th

t
LC
LR 20 <<

Stable with decaying oscillatory h(t)
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 0    &distinct   real,  are ,1
2L
R    If   :Note 2,1

2

<>⎟
⎠
⎞

⎜
⎝
⎛ p

LC

LCL
R

L
Rp 1

22

2
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⎠
⎞

⎜
⎝
⎛±−=

Case 3:

LC
LR 2

>

ωj

σ
tt ececth 21

21)( σσ +=

)(th

t

Stable with decaying non-oscillatory h(t)



16/30

 0 &  poles  repeated  ,2    If   :Note 21 <== pp
LC
LR

LCL
R

L
Rp 1

22

2

2,1 −⎟
⎠
⎞

⎜
⎝
⎛±−=

Case 4:

ωj

σ

(2 poles)

)(th

t



17/30

Note: For fixed L, C values we can drastically change the circuit’s behavior by 
adjusting R

See the plot on the next page for pole positions as R is varied

Note: A larger R value will more highly “damp” the oscillations

Marginally 
stable

stable

0
LC
L2 R values

h(t) 
persistently 
oscillates 

h(t) 
decaying 
oscillation

h(t) goes up 
then decays, 
non-oscillating

h(t) non-oscillating 
decay
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σ

jω
R = 0

R = 0

LC
LR 2

=

Pole Positions as R is Varied

Repeated 
Roots

LC
LR 20 <<

LC
LR 20 <<

LC
LR 2

>

LC
LR 2

>
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RLC Circuit: A 2nd Order Circuit
R

+

–

x(t) y(t)C

+

–

L

( ) LCL
R

LC

ss
sH

12

1
)(

++
=

If 
LC
LR 2

< we get complex roots: oo jp ωσ ±=2,1

Now we’ll explore the effect of changing the component values to 
change the location of the poles for the complex poles case…

You’ve already seen the next 3 slides… they are repeated here as a reminder!!!
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From the Pole-Zero Plots we can Visualize the TF function on the s-plane:

The circuit we’re 
looking at doesn’t have 
the zero at the origin!!
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From our Visualization of the TF function on the s-plane we can see the 
Freq. Resp.:
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As the pole moves closer to the jω
axis it has a stronger effect on the 
frequency response H(ω).  Poles 
close to the jω axis will yield 
sharper and taller bumps in the 
frequency response. 

By being able to visualize what |H(s)| 
will look like based on where the poles 
and zeros are, an engineer gains the 
ability to know what kind of transfer 
function is needed to achieve a desired 
frequency response… then through 
accumulated knowledge of electronic 
circuits (requires experience 
accumulated AFTER graduation) the 
engineer can devise a circuit  that will 
achieve the desired effect.

Can also look at a pole-zero plot and see the effects on Freq. Resp.
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Effect of Changing σo
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Effect of Changing ωo
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