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Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between
the pink blocks (C-T Freqg. Analysis) and the blue blocks (D-T Freq. Analysis).
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8.4: Response to Sinusoids and Arbitrary Signals

Sinusoidal input: Before, we used FT methods to answer this question...but
there we assumed the sinusoid extended infinitely in both directions:

X(t) = Acos(w,t+60) —co<t<oo

For our studies of LT we have considered causal signals which are more practical!

(1) = {Acos(a)ot +0), t=0

0,

t<0

X(t) = Acos(aw,t + )u(t) 1o y(t)="7 ‘

Ll

H(s)

For x(t) = Acos(aw,t)u(t) we have (Table 8.2)

X(s) =

AS

AS

s° + w,

2

T (5+ jap)(5— jay)

For ease, we’ll let 8= 0, but we can handle the case of & =0 using:
Acos(amyt + 0) = [Acos(8)]cos(amt) — [Asin(8) [sin(a,t)

and linearity
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Let H(s) = ? (for the finite - dimensional system case)
S

Assume system has no initial stored energy (i.e., no ICs) then we have:
As B(s)

A(S)(s + Jay)(s — Ja) Use Partial
> Fraction
Y ()= 2©) {(A/ 2H(j@)  (A/H (jwo)} Expansion

% A(S) S— J, S+ J,
[ Some j ILT ILT
Polynomial

Y(s)=H(s)X(s)=

y(t) =y, () + AH (jay)| cos(at + ZH (joo,)) >0

Looks like what we got before using “double-sided”

sinusoid.  BUT here it starts at timet =0...

... and we have this term... what does it look like?
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S
Note that Y,(s) = % ...and we know that the den. A(s) sets the behavior!

Note that A(s) is the system characteristic poly.... it sets the system poles.
= System poles determine the behavior of y,(t)

If system is stable = the poles are in the LH plane

= Y,(t) consists of decaying terms (might also oscillate if poles are complex)

S0... | y(t) is “the transient response”

And...
- How fast it dies out depends on the real parts of the poles

- The pole closest to jw axis will “dominate” (it takes the longest to die out)

- After enough time, all that is effectively left is:

"The steady - state response™

Vss (t) = AH (jay)|cos(at + £ZH (jay)), 120
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Plots for Example 8.16: RC circuit with causal sinusoid applied

RC =1 second

Note that the transie%
has completely died
out by “5 time
constants” (actually,

even before that) -
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Arbitrary Inputs

ok

B(s)C(s)

Y= 29D

B(s)
A(s)

1 H(s)=

"If common poles, then
. e Y(s) has repeated poles
E(S) |: (3) and you know how to
modify for that case )

Y (S)=- .
/Ao b, <>K¥
‘ System Den. Y ‘('S) Yss (S) Signal Den.

E(s) & F(s) are “some polynomials”... they come from the math while
factoring

If there are no common poles between X(s) & H(s):

So... if the system has poles in the “left-half plane” then the time-domain
terms that arise from A(s) will decay:

y(t) = Y, (1) + Y (1)

Will die out if systﬁ Will persist if input persists
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