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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #32
• C-T Systems: Transfer Function … and Frequency Response
• Reading Assignment: Section 8.5 of Kamen and Heck
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Ch. 1 Intro
C-T Signal Model

Functions on Real Line

D-T Signal Model
Functions on Integers

System Properties
LTI

Causal
Etc

Ch. 2 Diff Eqs
C-T System Model

Differential Equations
D-T Signal Model

Difference Equations

Zero-State Response

Zero-Input Response
Characteristic Eq.

Ch. 2 Convolution

C-T System Model
Convolution Integral

D-T System Model
Convolution Sum

Ch. 3:  CT Fourier 
Signal Models

Fourier Series
Periodic Signals

Fourier Transform (CTFT)
Non-Periodic Signals

New System Model

New Signal
Models

Ch. 5:  CT Fourier 
System Models

Frequency Response
Based on Fourier Transform

New System Model

Ch. 4:  DT Fourier 
Signal Models

DTFT
(for “Hand” Analysis)

DFT & FFT
(for Computer Analysis)

New Signal 
Model

Powerful 
Analysis Tool

Ch. 6 & 8:  Laplace 
Models for CT

Signals & Systems

Transfer Function

New System Model

Ch. 7:  Z Trans.
Models for DT

Signals & Systems

Transfer Function

New System
Model

Ch. 5:  DT Fourier 
System Models

Freq. Response for DT
Based on DTFT

New System Model

Course Flow Diagram
The arrows here show conceptual flow between ideas.  Note the parallel structure between 

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).
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8.5 Frequency Response Function
We have seen that there are two similar tools that relate the output signal to the input 
signal:

Transfer Function: H(s) 

Frequency Response: H(ω) 

⎩
⎨
⎧

∠ ωω
ωω

.)(
.)(

vsH
vsH We could just plot over ω> 0, 

because we know about symmetries

In analysis/design of systems and circuits it helps to look at plots of:

If the system is stable we know that we can use H(ω) as a tool…

…and we can easily get H(ω) from H(s) by replacing s → jω

It is, of course, easy to use computers to compute the data and plot it…
Anyone can be trained to do that… good engineers are valuable because 
they understand what the plots show!!!! Next
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Recall: )/1()/(
/1)( 2 LCsLRs
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=

Example of Computing the Frequency Response
Recall the series RLC circuit…

Given specific component values: R = 20Ω L = 1mH C = 1μF

942

9

10)102(
10)(

+×+
=

ss
sH

The transfer function then becomes:

Or… Use Matlab’s “freqs” routine

Now it is possible to replace s → jω and then use general numerical S/W to 
compute the frequency response….

Next
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FREQS Laplace-transform (s-domain) frequency response.
H = freqs(B,A,w) returns the complex frequency response vector H 
of the filter B/A:

)(...)2()1(
)(...)2()1(
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)()( 21
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naasasa
nbbsbsb

sA
sBsH nana

nbnb

+++
+++

== −−

−−

given the numerator and denominator coefficients in vectors B and A. 
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>> w=0:100:20e4;
>> H=freqs(1e9,[1 2e4 1e9],w);
>> subplot(2,1,1)

>> plot((w/(2*pi))/1e3,abs(H))    
>>%%% Plots are vs. f in kHz
>> subplot(2,1,2)
>> plot((w/(2*pi))/1e3,angle(H))

Create w in units of 
rad/sec – convert to kHz
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Next



6/37

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

f  (kHz)

|H
(f)

|

Although the previous plots are correct, there are two problems…

Suppose we are interested in using this filter in an audio application:

1. We may be just as interested in 0 – 5 kHz as we are in 5 – 30 kHz
─ But this plot has the 0 – 5 kHz region all “scrunched up”

2. Values of |H| of, say,  0.1 and 0.01 affect the signal by significantly 
different amounts 
─ But they show up looking virtually the same on the plot above

Next
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The fixes to these problems are:
1. Plot on a logarithmic frequency axis…
2. Plot the magnitude in dB…

Our Original Plots Bode Plots

Decibels

Such plots are “Bode Plots”… named after the engineer who introduced them

0.1

0.01

Next
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To convert |H(ω)| into dB we use 20 log10(|H(ω)|)…

…we’ll see more about this in just a bit

f=logspace(-1,5,2000);   % create log-spaced frequencies in Hz
w=2*pi*f;   % convert into rad/sec for use in freqs
H=freqs(1e9,[1 2e4 1e9],w);   % compute H as before
semilogx(f,20*log10(abs(H)))  % plot with log x-axis w/ 20 log10( ) for dB
subplot(2,1,2)
semilogx(f,angle(H))

Here are the matlab commands to make these plots…
2000 points from 
10-1 Hz to 105 Hz, 
equally spaced on 
a log axis 

Use 20 because |H| is 
not a power gain

(See next few pages)

“semilogx” makes a plot 
with a log x-axis and 

linear (ordinary) y-axis

“semilogx” – gives log x-axis, linear y-axis
“semilogy” – gives linear x-axis, log y-axis
“loglog” – gives log x-axis, log y-axis Next
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A Semi-Log Axis
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• Definition: use “decibels” as a logarithmic unit
of measure for a ratio between two powers

Defining the Decibel

decibel
bel

2

1
10log10 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
P
P

Next
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P1/P2 

(non-dB)
P1/P2

(dB)
1000 = 103 30 dB

100 = 102 20 dB

10 = 101 10 dB

1 = 100 0 dB

0.1 = 10-1 –10 dB
0.01 = 10-2 –20 dB

0.001 = 10-3 –30 dB

Know 
These!!

Powers of 10 are easy to convert to dB!!

Decibel Power Rules

0 dB is “unity power gain”

10 dB is “changes power by 10x”
20 dB is “changes power by 100x”

30 dB is “changes power by 1000x”

-10 dB is “changes power by 0.1x”
-20 dB is “changes power by 0.01x”

-30 dB is “changes power by 0.001x”

P1/P2 = 2 ~ 3 dB
Another “Rule” to Know!!

P1/P2 = 1/2 ~ -3 dB Next
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• Even though dB is defined for power we can extend it for use with 
voltages and currents:
– We “imagine” voltages to be compared are across the same resistance

“Extending” the Decibel
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Use “20” for V & I, but use “10” for P

To apply dB to a “power quantity”:  use  10 log10(  )

To apply dB to a “non-power quantity”:  use  20 log10(  ) Next
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V1/V2 

(non-dB)
V1/V2

(dB)
1000 = 103 60 dB

100 = 102 40 dB
10 = 101 20 dB

1 = 100 0 dB
0.1 = 10-1 –20 dB

0.01 = 10-2 –40 dB
0.001 = 10-3 –60 dB

Know 
These!!

Decibel Non-Power Rules

V1/V2 = 2 ~ 6 dB
Another “Rule” to Know!!

V1/V2 = 1/2 ~ -6 dB

 dB 3~2/ 21 ⇒=VV   dB 3~2/1/ 21 −⇒=VV

Note: A 10x voltage change is a  
102 = 100x power change (20 dB)

Next
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Sounds Sound Pressure 
Level
(μBar)

Jet Plane (@ 30 m) 2000
Threshold of Pain

200
Chainsaw
Rock Concert/Club 20

Busy Street 2

Normal Speech 0.2

0.02
Quiet Room
Recording Studio 0.002

Threshold of  Hearing 0.0002

Sound Pressure 
Level
(dB)

140
130
120
110
100
90
80
70
60
50
40
30
20
10
0

“Reference Level” = 0 dB

⎟
⎠
⎞

⎜
⎝
⎛

0002.0
20log20 10

What should “y” be?

A Reference Level!!

Not Power
20log10(SPL/y)

Next
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When applying dB to frequency response magnitude use: 20 log10(|H(ω)|)

Why?   Because |H(ω)| relates Voltages (or current)!!!

h(t)
H(ω)

)cos( 0 θω +tA ))(cos()( 000 ωθωω HtHA ∠++

Input voltage amplitude = A

Output voltage amplitude = A|H(ω0)| Amplitude VoltageInput 
Amplitude VoltageOutput |)(| 0 =ωH

Frequency Response 
Magnitude is Voltage Ratio 20 log10(|H(ω)|)

Next
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It is easy to use computers to make Bode plots… we already saw how to do 
that!

Methods for Making Bode Plots

But good engineers need insight to:

- understand the results of an analysis

- make decisions for design

We’ll focus on insight into the magnitude |H(ω)|…

(insight into the phase of H(ω) can be also be gained through similar steps)

We’ll explore several examples of creating Bode Plots…

…we’ll fuse it all together into a general method 
in “Discussion Section Notes”

Later in these notes we’ll show how the insight gained 
from this can be used in a Design Example Next
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as
asH
+

=)(

Example 1: Bode Plot of a Single Pole (RC Circuit):
Let a = 1/RC… then the transfer function of the simple RC circuit is:

aj
H

/1
1)(
ω

ω
+

=

Manipulate like this for 
“convenience”… we’ll 

find the (1+j-term) 
makes things easy when 
finding approximations.

We can write this as:

Single Pole 
(a is real)

For a > 0 the pole is in 
the “left-half plane”

and  we can switch to 
Frequency Response

aj
aH
+

=
ω

ω)(

Now look at the magnitude: 
aj

H
/1

1)(
ω

ω
+

=

Next
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1.0,1

)(
ω

ω

ω

ωSo we now know:

Approximate behavior when ω << a:     ω/a << 1

( ) 1
01

1
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1)( =
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≈
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jsmallj

H ω

What qualifies?
ω ≤ 0.1a

Approximate behavior when ω >> a: 1 << ω/a

ωωωω
ω a

j
a

ajajsmall
H ==≈

+
=

/
1

/)(
1)(

What qualifies?
ω ≥ 10a

Now focus on approximating |H(ω)| for ω > 0 Recall… |H(ω)| has 
even symmetry 
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Next
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(A – 20x) vs. x

For ω >> a:  A – 20[log10ω] vs. [log10ω] 

Now convert this approximation into dB form:

{ }
⎭
⎬
⎫

⎩
⎨
⎧

+
=

aj
H

/1
1log20)(log20 1010 ω

ω { }
⎭
⎬
⎫

⎩
⎨
⎧ +−= a

jω1log201log20  1010

0=

So our Bode plot (dB vs. log10ω) is: ωω
1010 log      vs.1log20 

⎭
⎬
⎫

⎩
⎨
⎧ +− a

j

From our approximations above this is yields:

Constant ⇒ flat line @ 0 dBFor ω << a:  1 vs. log10ω

Line of slope -20

Drops 20dB for every unit change in log10ω

Drops 20dB for every 10x change in ω

Line with slope of “-20dB per decade”

Note: 
-20dB/decade 
= -6dB/octave Next
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Approximations vs. True Plot
a = 1/RC = 3000 rad/sec
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We can extend the 
approximations to get a 
ROUGH approximation

Blue: True Plot
Red: Approximations

Approximation 
for ω << a

Approximation 
for ω >>a

Next
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Quick steps for making a Bode Plot for a “Single Pole Term”

as
asH
+

=)(

Now that we’ve done all this work once we can now just quickly 
make the Bode plot for this type of H(s):

The steps are illustrated on the next slide….

1. Find ω = a   on the ω-axis
2. Draw a horizontal line at 0 dB from left-edge up to ω = a

3. Go “over 1 decade” and “down 20 dB” … draw a point
4. Draw a sloped line from the end of the first line through this point

Next
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10a

1 decade over

Approximate Bode Plot for Single Real Pole 
a = 1/RC = 3000 rad/sec
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20 dB 
down

1. Find ω = a   on the ω-axis
2. Draw a horizontal line at 0 dB from left-edge up to ω = a

3. Go “over 1 decade”
4. Draw a sloped line from the end of the first line through this point

and “down 20 dB” … draw a point

Next
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Now… if instead we had:

Example 2: Bode Plot of a Single Zero:

a
assH +

=)(
a

ajH +
=

ωω)( ajH /1)( ωω +=

Using the same kind of steps…

Our Bode plot (dB vs. log10ω) is: ωω
1010 log      vs.1log20 

⎭
⎬
⎫

⎩
⎨
⎧ ++ a

j

Note: we have “+” here now
Similarly we arrive at our approximations:

Constant ⇒ flat line @ 0 dBFor ω << a:  1 vs. log10ω

Line of slope +20

Line with slope of “+20dB per decade”

For ω >> a: A+20[log10ω] vs. [log10ω] 

Note: we have “+” here now
Next
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Approximate Bode Plot for Single Real Zero 
a = 3000 rad/sec
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Next



25/37

)(
)()(

asb
bsasH

+
+

=

Example 3: Bode Plot of a Single Zero & Single Pole:
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Following the same steps, our Bode plot is:

ωωω
101010 log        vs.1log201log20 ⎥
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⎠
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⎬
⎫

⎩
⎨
⎧ +−+

⎭
⎬
⎫

⎩
⎨
⎧ ++ a

j
b

j

Just… add the two 
types of Bode plots 
we’ve already seen!

Recall:   log(AB) = log(A) + log(B) 

log(A/B) = log(A) - log(B)

Note:  (line #1) + (line #2) = line with slope of (sum of slopes)
“Slopes add”

( ) ( ) ( ) ( )

( ) ( )2121

21212211

bbxmm

bbxmxmbxmbxm

+++=

+++=+++

Next
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Shows the 2 Parts that Add
a = 300 rad/sec      b = 10000 rad/sec
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Next
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Approx. Bode Plot for One Real Zero & One Real Pole
a = 300 rad/sec      b = 10000 rad/sec
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Shows the 2 parts 
and Their Sum

0 slope + 0 slope = 
0 slope

+20 slope + -20 slope 
= 0 slope

0 slope + -20 slope 
= -20 slope

Next
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Same Structure but “zero first, then pole”
a = 10000 rad/sec      b = 3000 rad/sec

10 102 103 104 105 106

0

–10

–20

–30

–40

–50

10

20

30

40

ω (rad/sec)

|H
(ω

)| 
  (

dB
)

)(
)()(

asb
bsasH

+
+

=

Next
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Now, given any H(s) with only real zeros and poles we can easily extend these ideas:

))((
))(()(

21

21

psps
zszsKsH

++
++

=
)/1)(/1(
)/1)(/1(

21

21

21

21

psps
zszs

pp
zKz

++
++

=

Each term is 0dB at 
“small enough” ω

Summary of Bode Plot Examples so Far (only real poles & zeros)
1. We can use simple approximations and graphing tricks to create a rough 

approximation to the magnitude of the Frequency Response

2. A first-order pole (not a complex-pair) will cause the Bode plot to

a. “Break” at “the pole frequency”

b. Decrease at -20 dB/decade above “the pole frequency”

3. A first-order zero (not a complex-pair) will cause the Bode plot to 

a. “Break” at “the zero frequency”

b. Increase at +20 dB/decade above “the zero frequency”

Just moves the whole plot 
up/down by 20log10(Kz1z2/p1p2) Next
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Design Example using Bode Plot Insight
Suppose you want to build a “treble booster” for an electric guitar.

You decide that something like this might work:

100 1000

0dB

20dB
)( fH

(Hz) f

100Hz ⇒ 628 rad/s = ω

1000Hz ⇒ 6283 rad/s = ω

Notice that we are doing our rough 
“design thinking” in terms of Bode 

Plot approximations!!!

The A string on a guitar has a fundamental frequency of 110 Hz
The A note on 17th fret of the high-E string has a fundamental frequency 
of 880 Hz

)/1(
)/1()(

)/1(
)/1()(

2

1

2

1

ωω
ωωω

ω
ω

j
jH

s
ssH

+
+

=⇒
+
+

=

From our Bode Plot Insight… we know we can get this from a single real pole, 
single real zero system… with the “zero first, then the pole”:

with: ω1 = 628 rad/s
ω2 = 6280 rad/sNext
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A series combination 

…has impedance   Z(s) = R + 1/Cs

Note: we could get R + sL with 
an inductor but inductors are 

generally avoided when possible

So what do we get if we could some how form a ratio of such impedances?

( )
( )1

1
/1
/1

)(
)(

22

11
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22

11

2
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+
+

=
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CsR
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C
C

sCR
sCR

sZ
sZ

222

111

/1

/1  :  Let

CR

CR

=

=⇒

ω

ω

Aha!!! What we want!

Now, how do we get a circuit to do this?   Let’s explore!
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Next
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Okay…how do we build a circuit that has a transfer function 
that is a ratio of impedances?!

)(tvin )(tvo
i

f

R
R

Gain −= Ratio of 
resistances

Extending the analysis to include impedances we can show that:

)(tvin )(tvo

)(sZi

)(sZ f

)(
)(

)(
sZ
sZ

sH
i

f−=

Won’t affect our 
magnitude: |H(ω)|

⇒

Recall the op-amp inverting amplifier!

Next
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)(tvin
)(tvo

But wait!!  You then remember that op amps must always have negative 
feedback at DC so putting Cf here is not a good idea…

So we have to continue…

We also might not like this circuit because it might not give us a very 
large input impedance… and that might excessively “load” the circuit 
that you plug into this  (e.g., the guitar)

Back to the drawing board!!!

Now, you can choose the R’s & C’s 
to give the desired frequency points

p. 98, The Art of Electronics, 
Horowitz & Hill, Cambridge 

Press, 1980 

Next
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Okay, then you remember there is also Non-Inverting Op-Amp circuit…

)(tvin
)(tvo

Infinite input impedance

i

f

R
R

Gain +=1

We still have the “no DC feedback”
issue… but let’s charge on and see 

what might happen!!

( )
sCR

sCsCRR
sCR
sCR

sH
ii

iffi

ii

ff

/1
/1/1)(

/1
/1

1)(
+

+++
=

+
+

+=
Oh Cool!!  We 
don’t need both 
of these caps!

Let Cf = 0 (replace with “wire”)
This fixes our “feedback at DC” issue

Applying this gain formula with the series impedance we get:

Next
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So now we have a circuit like this:

)(tvin
)(tvo

Has DC feedback!!

Has infinite input impedance!!

And has the desired 
frequency response form:

1
1)(

)(
+

++
=

sCR
sCRR

sH
ii

iif

( )

rad/s62831

rad/s6281

2

1

==

=
+

=

ii

ifi

CR

CRR

ω

ωSet: Choose:

F1.0

5.115

μ=

Ω=Ω=

i

if

C

kRkR

Using standard values Next
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Computed Frequency Response using Matlab

f (Hz)

|H
( f

 )|
  (

dB
)

Discrepancy 
due to use of 

standard 
values

Next
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1. Through insight gained from knowing how to do Bode plots by 
hand… we recognized the kind of transfer function we needed

2. Through insight gained in circuits class about impedances we 
recognized a key building block needed: Series R-C

3. Through insight gained in electronics class about op-amps we found 
a possible solution… the inverting op-amp approach

4. We then scrutinized our design for any overlooked issues
a. We discovered two problems that we needed to fix

5. We used further insight into op-amps to realize that we could fix the 
input impedance issue using a non-inverting form of the op-amp 
circuit

6. We didn’t give up at first sign that we might still have the “no DC 
feedback” problem…
a. Through mathematical analysis we showed that we could 

remove the feedback capacitor without changing the circuit’s 
function!!!!!!

Summary of Bode-Plot-Driven Design Example
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