

State University of New York

EECE 301 Signals & Systems Prof. Mark Fowler

<u>Note Set #33</u>

- D-T Systems: Z-Transform ... "Power Tool" for system analysis
- Reading Assignment: Sections 7.1 7.3 of Kamen and Heck

Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).

Ch. 11 Z-Transform & D-T Systems

Z-Transform does for DT systems what the Laplace Transform does for CT systems

Z-T is used to

Solve zero-state systems using the transfer function

We will:

- Define the ZT
- See its properties
- Use the ZT and its properties to analyze D-T systems

Section 7.1 Z-transform definitions

Given a D-T signal $x[n] -\infty < n < \infty$ we've already seen how to use the DTFT:

$$DTFT: X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$

Periodic in Ω with period 2π

<u>Recall</u>: For C-T case, the FT doesn't converge for some signals... the LT mitigates this problem by including decay in the transform

$$e^{-j\omega t}$$
 vs. $e^{-(\sigma+j\omega)t} \equiv e^{-st}$
Controls decay of integrand

So, for D-T signals we include decay into the transform; but in a slightly different way:

$$e^{-j\Omega n}$$
 vs. $\alpha^{-n}e^{-j\Omega n} \equiv (\alpha e^{j\Omega})^{-n} \equiv z^{-n}$
Controls decay of summand

So for the Laplace transform we looked at: $s = \sigma + j\omega$ which is in <u>rect. form</u> But, for Z-transform we use: $z = \alpha e^{j\Omega}$ which is in <u>polar form</u>

- Q: Why the change?
- A: Suffice to say...it has to do with the periodic nature of the DTFT.

Remember that the DTFT is a periodic function of Ω ... and by using $z = \alpha e^{j\Omega}$ we stick Ω in as an angle which forces the periodic dependence on Ω .

Just like for Laplace... there are two forms of the Z-Transform:

So... the Z-Transform gives a complex-valued function on the "z-plane"

Recall: for Laplace we had the *s*-plane... and we divided it into two parts:

- those values of s to the left of the $j\omega$ -axis (left-half plane)
- those values of *s* to the right of the $j\omega$ -axis (right-half plane)

For the Z-Transform we'll need to divide the plane into two parts:

- those values of z inside the unit circle
- those values of z outside the unit circle

Region of Convergence (ROC)

Set of all z values for which the sum in the ZT definition converges

Each signal has its own region of convergence.

(Same idea as for Laplace Transform)

Example of Finding the ZT: Unit Impulse Sequence

This result and many others are on Table of Z Transforms available on my website... please use it rather than the one in your book, which has some errors **Example of Finding the ZT**: Unit Step *u*[*n*]

$$U(z) = \sum_{n=0}^{\infty} u[n] z^{-n} = \sum_{n=0}^{\infty} z^{-n} = \frac{z}{z-1} = \frac{1}{1-z^{-1}}$$

$$ROC = all z such$$

that $|z| > 1$

Using standard result for "geometric sum"

$$u[n] \leftrightarrow \frac{z}{z-1} = \frac{1}{1-z^{-1}}$$

Example of Finding the ZT: Causal Exponential

$$x[n] = a^n u[n]$$

Again using geometric sum: $X(z) = \sum_{n=0}^{\infty} a^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{a}{z}\right)^n = \frac{z}{z-a} = \frac{1}{1-az^{-1}}$ ROC = all z such that |z| > |a|

$$a^n u[n] \quad \leftrightarrow \quad \frac{z}{z-a} = \frac{1}{1-az^{-1}}$$

Relationship between ZT & DTFT

Recall: for some signals the CTFT was embedded in the LT (If the ROC includes the $j\omega$ -axis)

We have a similar condition for the DTFT and the ZT...

If ROC includes the unit circle, then we can say that:

$$X(\Omega) = X(z)\Big|_{z=e^{j\Omega}}$$

 $X(\Omega)$ = "walk around the unit circle" and get X(z) values

Explains why $X(\Omega)$ is periodic... Ω is an "angle around the unit circle"

 \Rightarrow Once we've walked around the unit circle... going farther just repeats the values X(z) that we are grabbing

 \Rightarrow We only need to worry about $\Omega \in [-\pi \text{ to } \pi)$

7.3 Inverse Z-T

Same story as for LT: using the integral inversion formula is hard!

 \Rightarrow Use partial fractions

The use of partial fractions here is <u>almost</u> exactly the same as for Laplace transforms...

... the only difference is that you first divide by $z \underline{before}$ performing the partial fraction expansion... then after expanding you multiply by z to get the final expansion.

Example of Partial Fraction for Inverse ZT:

Suppose you want to find the inverse ZT of

$$Y(z) = \frac{z+1}{z^2 + \frac{3}{4}z + \frac{1}{8}}$$

First divide Y(z) by z to get:

$$\frac{Y(z)}{z} = \frac{z+1}{z^3 + \frac{3}{4}z^2 + \frac{1}{8}z}$$

Then use matlab's residue to do a partial fraction expansion on Y(z)/z

[r,p,k]=residue([1 1],[1 0.75 0.125 0])			
r = 4 -12	p = -0.5000 -0.2500	k = []	
8	0		

Then we have:
$$\frac{Y(z)}{z} = \frac{4}{z + \frac{1}{2}} - \frac{12}{z + \frac{1}{4}} + \frac{8}{z} \implies Y(z) = \frac{4z}{z + \frac{1}{2}} - \frac{12z}{z + \frac{1}{4}} + 8$$
Now... the point of dividing by z becomes clear... you get terms like this (with

Now... the point of dividing by *z* becomes clear... you get terms like this (with *z*'s in the numerator)... and they are on the ZT table!!!

$$y[n] = 4(-\frac{1}{2})^n u[n] - 12(-\frac{1}{4})^n u[n] + 8\delta[n]$$

<u>11.2 Properties of ZT</u>

Linearity: Same ideas as for CTFT, DTFT, and LT

<u>Right Shift for Causal Signal</u>

Let x[n] = 0, n < 0If $x[n] \leftrightarrow X(z)$, then $x[n-q] \leftrightarrow z^{-q}X(z)$

"Proof":
$$X(z) = x[0]z^{0} + x[1]z^{-1} + x[2]z^{-2} + ...$$

$$Z\{x[n-q]\} = \underbrace{0z^{0} + 0z^{-1} + ... + 0z^{-q+1}}_{= 0} + x[0]z^{-q} + x[1]z^{-q-1} + ...$$

$$= 0$$

$$= x[0]z^{0}z^{-q} + x[1]z^{-1}z^{-q} + x[2]z^{-2}z^{-q} + ...$$
Pull out the z^{-q}

$$= z^{-q}[x[0]z^{0} + x[1]z^{-1} + ...]$$

$$= X(z)$$

Example of Applying the Right-Shift Property for Causal Signals

Suppose we want to find the Z-T of the pulse signal:

$$p[n] = \begin{cases} 1, n = 0, 1, 2, ..., q-1 \\ 0, else \end{cases}$$

Well.. We can write this pulse in terms of the unit step: p[n] = u[n] - u[n-q]

Now, by linearity of the ZT we have: $P(z) = Z\{u[n]\} - Z\{u[n-q]\}$

But we already know that $Z\{u[n]\} = \frac{z}{z-1}$

Using the Right-Shift Property gives $Z\{u[n-q]\} = z^{-q} \frac{z}{z-1}$

So... $P(z) = \left[\frac{z}{z-1}\right] - z^{-q} \left[\frac{z}{z-1}\right] = \frac{z(1-z^{-q})}{z-1}$

One-Sided ZT of the Right shift of <u>Non</u>-causal x[n]

Note that right-shifting a <u>non</u>-causal signal brings new values into the one-sided ZT summation!!!

We'll write this property for the first 2 values of q...

$$x[n-1] \leftrightarrow z^{-1}X(z) + x[-1]$$
$$x[n-2] \leftrightarrow z^{-2}X(z) + x[-1]z^{-1} + x[-2]$$
$$\vdots \qquad \vdots$$

... and then write the general result:

$$x[n-q] \leftrightarrow z^{-q}X(z) + x[-1]z^{-q+1} + x[-2]z^{-q+2} + \dots + z^{-1}x[-q+1] + x[-q]$$

$$\frac{\text{``Proof'' for } q = 2}{Z\{x[n-q]\}} = x[-2]z^{0} + x[-1]z^{-1} + x[0]z^{-2} + x[1]z^{-3} + \dots}$$
$$= x[-2]z^{0} + x[-1]z^{-1} + z^{-2}(x[0]z^{0} + x[1]z^{-1} + \dots)$$
Parts that get ``shifted into" the one-sided ZT's ``machinery''

Convolution Property

For two causal signals x[n] & h[n] with one-sided ZTs X(z) & H(z)

... we have:

$$x[n] * h[n] \leftrightarrow X(z)H(z)$$

Just like for CTFT, LT, & DTFT...

...Convolution Transforms to Multiplication!!!

There are several other properties... they are listed on the Table of Z Transform Properties on my Webpage... please use that table rather than the one in the book, which has some errors.