State University of New York

## EECE 301 <br> Signals \& Systems Prof. Mark Fowler

Note Set \#33

- D-T Systems: Z-Transform ... "Power Tool" for system analysis
- Reading Assignment: Sections 7.1 - 7.3 of Kamen and Heck


## Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).


## Ch. 11 Z-Transform \& D-T Systems

Z-Transform does for DT systems what the Laplace Transform does for CT systems


We will:

- Define the ZT
- See its properties
- Use the ZT and its properties to analyze D-T systems


## Section 7.1 Z-transform definitions

Given a D-T signal $x[n]-\infty<n<\infty$ we've already seen how to use the DTFT:

$$
\operatorname{DTFT}: X(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}
$$

Periodic in $\Omega$ with period $2 \pi$

Recall: For C-T case, the FT doesn't converge for some signals... the LT mitigates this problem by including decay in the transform

$$
e^{-j \omega t} \text { VS. } e^{-(\sigma+j \omega) t} \equiv e^{-s t}
$$

So, for D-T signals we include decay into the transform; but in a slightly different way:

$$
e^{-j \Omega n} \text { vs. } \alpha^{-n} e^{-j \Omega n} \equiv\left(\alpha e^{j \Omega}\right)^{-n} \equiv z^{-n}
$$

So for the Laplace transform we looked at: $\quad s=\sigma+j \omega$ which is in rect. form But, for Z-transform we use: $z=\alpha e^{j \Omega} \quad$ which is in polar form

Q : Why the change?
A: Suffice to say...it has to do with the periodic nature of the DTFT.
Remember that the DTFT is a periodic function of $\Omega \ldots$ and by using $z=\alpha e^{j \Omega}$ we stick $\Omega$ in as an angle which forces the periodic dependence on $\Omega$.

Just like for Laplace... there are two forms of the Z-Transform:
Two sided Z-transform

$$
X_{2}(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \quad z \text { is complex }- \text { valued }
$$

One sided Z-transform
$X_{1}(z)=\sum_{n=0}^{\infty} x[n] z^{-n} \quad z$ is complex - valued
If $x[n]$ is a causal signal: $X_{1}(z)=X_{2}(z)$

Our Focus is Here

So... the Z-Transform gives a complex-valued function on the "z-plane"


Recall: for Laplace we had the s-plane... and we divided it into two parts:

- those values of $s$ to the left of the $j \omega$-axis (left-half plane)
- those values of $s$ to the right of the $j \omega$-axis (right-half plane)

For the Z-Transform we'll need to divide the plane into two parts:

- those values of $z$ inside the unit circle
- those values of $z$ outside the unit circle



## Region of Convergence (ROC)

Set of all $z$ values for which the sum in the ZT definition converges
Each signal has its own region of convergence.
(Same idea as for Laplace Transform)
Example of Finding the ZT: Unit Impulse Sequence

$$
\begin{array}{rlr}
\delta[n]= \begin{cases}1, & n=0 \\
0, & n \neq 0\end{cases} & Z\{\delta[n]\} & =\sum_{n=0}^{\infty} \delta[n] z^{-n} \\
& =1 \times z^{0}+0 \times z^{-1}+0 \times z^{-2}+\cdots \\
& =1 \\
\delta[n] \leftrightarrow 4 & \text { ROC }=\text { all complex \#'s }
\end{array}
$$

This result and many others are on Table of Z Transforms available on my website... please use it rather than the one in your book, which has some errors

Example of Finding the ZT: Unit Step $u[n]$

$$
\begin{aligned}
& U(z)=\sum_{n=0}^{\infty} u[n] z^{-n}=\sum_{n=0}^{\infty} z^{-n}=\frac{z}{z-1}=\frac{1}{1-z^{-1}} \quad \begin{array}{r}
\text { ROC }=\text { all } z \text { such } \\
\text { that }|z|>1
\end{array} \\
& \begin{array}{l}
\text { Using standard result } \\
\text { for "geometric sum" }
\end{array} \\
& u[n] \leftrightarrow \frac{z}{z-1}=\frac{1}{1-z^{-1}}
\end{aligned}
$$

Example of Finding the ZT: Causal Exponential

$$
x[n]=a^{n} u[n]
$$

Again using geometric sum: $\quad X(z)=\sum_{n=0}^{\infty} a^{n} z^{-n}=\sum_{n=0}^{\infty}\left(\frac{a}{z}\right)^{n}=\frac{z}{z-a}=\frac{1}{1-a z^{-1}}$

$$
\text { ROC }=\text { all } z \text { such that }|z|>|a|
$$

$$
a^{n} u[n] \quad \leftrightarrow \quad \frac{z}{z-a}=\frac{1}{1-a z^{-1}}
$$

## Relationship between ZT \& DTFT

Recall: for some signals the CTFT was embedded in the LT
(If the ROC includes the $j \omega$-axis)
We have a similar condition for the DTFT and the ZT...

If ROC includes the unit circle, then we can say that:

$$
X(\Omega)=\left.X(z)\right|_{z=e^{j, ~}}
$$

$X(\Omega)=$ "walk around the unit circle" and get $X(z)$ values
Explains why $X(\Omega)$ is periodic... $\Omega$ is an "angle around the unit circle"
$\Rightarrow$ Once we've walked around the unit circle... going farther just repeats the values $X(z)$ that we are grabbing
$\Rightarrow$ We only need to worry about $\Omega \in[-\pi$ to $\pi)$

### 7.3 Inverse Z-T

Same story as for LT: using the integral inversion formula is hard!

$$
\Rightarrow \text { Use partial fractions }
$$

The use of partial fractions here is almost exactly the same as for Laplace transforms...
... the only difference is that you first divide by $z$ before performing the partial fraction expansion... then after expanding you multiply by $z$ to get the final expansion.

## Example of Partial Fraction for Inverse ZT:

Suppose you want to find the inverse ZT of

$$
Y(z)=\frac{z+1}{z^{2}+\frac{3}{4} z+\frac{1}{8}}
$$

First divide $Y(z)$ by $z$ to get: $\frac{Y(z)}{z}=\frac{z+1}{z^{3}+\frac{3}{4} z^{2}+\frac{1}{8} z}$
Then use matlab's residue to do a partial fraction expansion on $Y(z) / z$

$$
\begin{aligned}
& \text { [r,p,k]=residue([1 1],[1 } 0.750 .1250]) \\
& \begin{array}{lll}
\mathrm{r}= & \mathrm{p}= & \\
4 & -0.5000 & \mathrm{k}=[] \\
-12 & -0.2500 & \\
8 & 0 &
\end{array}
\end{aligned}
$$

Then we have: $\frac{Y(z)}{z}=\frac{4}{z+\frac{1}{2}}-\frac{12}{z+\frac{1}{4}}+\frac{8}{z} \Rightarrow Y(z)=\frac{4 z}{z+\frac{1}{2}}-\frac{12 z}{z+\frac{1}{4}}+8$
$\uparrow$
Now... the point of dividing by $z$ becomes clear... you get terms like this (with z's in the numerator)... and they are on the ZT table!!!

$$
y[n]=4\left(-\frac{1}{2}\right)^{n} u[n]-12\left(-\frac{1}{4}\right)^{n} u[n]+8 \delta[n]
$$

### 11.2 Properties of ZT

Linearity: Same ideas as for CTFT, DTFT, and LT

## Right Shift for Causal Signal

Let $x[n]=0, n<0$
If $x[n] \leftrightarrow X(z), \quad$ then $\quad x[n-q] \leftrightarrow z^{-q} X(z)$
"Proof": $\quad X(z)=x[0] z^{0}+x[1] z^{-1}+x[2] z^{-2}+\ldots$
$Z\{x[n-q]\}=\underbrace{0 z^{0}+0 z^{-1}+\ldots+0 z^{-q+1}}+x[0] z^{-q}+x[1] z^{-q-1}+\ldots$ $=0$
$=x[0] z^{0} z^{-q}+x[1] z^{-1} z^{-q}+x[2] z^{-2} z^{-q}+\ldots$
$=z^{-q}\left[x[0] z^{0}+x[1] z^{-1}+\ldots.\right]$
$=X(z)$

## Example of Applying the Right-Shift Property for Causal Signals

Suppose we want to find the Z-T of the pulse signal:

$$
p[n]=\left\{\begin{array}{l}
1, n=0,1,2, \ldots, q-1 \\
0, \text { else }
\end{array}\right.
$$

Well.. We can write this pulse in terms of the unit step:

$$
p[n]=u[n]-u[n-q]
$$

Now, by linearity of the ZT we have: $\quad P(z)=Z\{u[n]\}-Z\{u[n-q]\}$
But we already know that $Z\{u[n]\}=\frac{Z}{Z-1}$
Using the Right-Shift Property gives $Z\{u[n-q]\}=z^{-q} \frac{Z}{z-1}$
So...

$$
P(z)=\left[\frac{z}{z-1}\right]-z^{-q}\left[\frac{z}{z-1}\right]=\frac{z\left(1-z^{-q}\right)}{z-1}
$$

## One-Sided ZT of the Right shift of Non-causal $x[n]$

Let $x[n]$ be a non-causal signal... $x[n] \neq 0$ for some $n<0$
Then the One-Sided ZT is: $x[n] \leftrightarrow X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}$

Because this is the One-Sided ZT... not all non-zero values of $x[n]$ are used here!!!

Note that right-shifting a non-causal signal brings new values into the onesided ZT summation!!!


What is $Z\{x[n-q]\}$ in terms of $X(z)$ ??

We'll write this property for the first 2 values of $q \ldots$

| $x[n-1]$ | $\leftrightarrow$ | $z^{-1} X(z)+x[-1]$ |
| :---: | :---: | :--- |
| $x[n-2]$ | $\leftrightarrow$ | $z^{-2} X(z)+x[-1] z^{-1}+x[-2]$ |
| $\vdots$ | $\vdots$ |  |

... and then write the general result:

$$
x[n-q] \quad \leftrightarrow \quad z^{-q} X(z)+x[-1] z^{-q+1}+x[-2] z^{-q+2}+\ldots+z^{-1} x[-q+1]+x[-q]
$$

"Proof" for $q=2$

$$
Z\{x[n-q]\}=x[-2] z^{0}+x[-1] z^{-1}+x[0] z^{-2}+x[1] z^{-3}+\ldots
$$

$$
=\underbrace{x[-2] z^{0}+x[-1] z^{-1}}_{\text {Parts that get "shifted into" the }}+z^{-2}(\underbrace{\left.x[0] z^{0}+x[1] z^{-1}+\ldots\right)}_{X(z)}
$$ one-sided ZT's "machinery"

## Convolution Property

For two causal signals $x[n] \& h[n]$ with one-sided ZTs $X(z) \& H(z)$
... we have:

$$
x[n] * h[n] \leftrightarrow X(z) H(z)
$$

Just like for CTFT, LT, \& DTFT...
...Convolution Transforms to Multiplication!!!

There are several other properties... they are listed on the Table of Z Transform Properties on my Webpage... please use that table rather than the one in the book, which has some errors.

