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Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between
the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).
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Systems

* Physically... a system 1s something that “takes in” one or more
input signals and “produces” one or more output signals...

— Maybe it is a circuit
— Maybe it is a mechanical thing
— Maybe it 1s... ??7?

Aircraft: -Input: position of control stick

-Output: position of aircraft

Stereo Amplifier: -Input: voltage from CD player
-Output: voltage to speakers “RF” means “RadiC]

Frequency”

Cell Phone: -Input: RF signalinto antenna

-Output: voltage to speaker

Guitar “Effects Box”: - Input: voltage from guitar pickup

- Output: voltage (send to amps or another effect) | ;¢




System Models

EEs usually think about systems through a variety of related
models

We can represent a physical circuit through a schematic diagram.

We can represent the schematic as block diagram with a
mathematical model...

— The math model gives a way to quantitatively relate a given mathematical
representation of an input signal into a mathematical representation of the
output signal
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Physical View

Get output signal here as a
voltage (or a current)

Image from llg.cubic.org/tools/sonyrm/

Apply input signal
here as a voltage
(or a current)

Schematic View

. - Output signal
Apply guitar | 1s the voltage
signal here as . > across here

a voltage
: s
From Pedal Power Column by Rgbert Ke;eiey, in Musician’s Hotline Magazine
System View
[Math Functio% n o Math Function
for Input X(t y(t for Output
p .| Math Model . P

of System
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Math Models for Systems

« Many physical systems are modeled w/ Differential Egs

— Because physics shows that electrical (& mechanical!) components often
have “V-I Rules” that depend on derivatives

a,

d?y(t)
dt’

+ 4,

dy(t)

+4, Y(t) - bl

X®) | b x(t)

Given: Input X(t)
Find: Ouput y(t)

|

[This IS what it means to “solve” a differential equation!! }

* However, engineers use Other Math Models to help solve and

analyze differential eqs

— The concept of “Frequency Response™ and the related concept of

“Transfer Function” are the most widely used such math models

> “Fourier Transform” is the math tool underlying Frequency Response

— Another helpful math model is called “Convolution”
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Relationships Between System Models

* These 4 models all are equivalent
 ....but one or another may be easier to apply to a given
problem

/ “Time-Domain™ \ ﬁ‘Frequency-Domain”\
Methods Methods

Differential Eq. Transfer Function
(Derivatives) (Laplace Transform)

Convolution Frequency Response
(Integral) (Integral Fourier Trans.)
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1.4 Examples of Systems

1.4.1 Example System: RC Circuit (C-T System)

A simple C-T
system

You’ve seen in Circuits Class that R, L, C circuits are modeled by
Differential Equations:

* From Physical Circuit... get schematic
* From Schematic write circuit equations... get Differential Equation

* Solve Differential Equation for specific input... get specific output
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“Schematic View’:

Input ! .. Output
X(t) = i(t)O " u(t) = y(t)

“System View’: ﬂ» system _y_(l)»

Circuits class showed how to model this physical system
mathematically:

rGiven input X(t), the output
dY(t) y(t) is the solution to the

dt y(t) T~ X(t) \ differential equation.

[ Recall “RC time constant” }
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- Consider that the input “starts at t = t,”:

(.e.Xx(t)=0 for t<ty)
- Let y(t,) be the output voltage when the mput 1s first applied (initial condition)

- Then, the solution of the differential equation gives the output as:

y(t) = y(to)e—(l/RC)(t—tO) N J‘tt ée(l/RC)(tl)X(Z)di

Y V

Part due to Initial Condition Part due to Input
(“Zero Input Response™) (“Zero State Response™)

Set input X(t) =0

Find characteristic polynomial (Here it is A + 1/RC)

Find all roots of characteristic polynomial: 4; (Here there is only one)
Form homogeneous solution from linear combmatlon of the exp{Ai(t-t,)}
\5 Find constants that satisfy the initial conditions (Here it 1s y(t,) ) //18

/
/Recall This part 1s the solution to the “Homogeneous Differential Equation” \
1.
2.
3.
4.




In this course we focus on finding the zero-state response (1.C.’s = 0)

Y,u(1) = L Lo x(h)d

|

YD) = [ h(t—2)x(2)d2

h'd

2h(t-1)

General form for so-

called “linear,
constant-coefficient

differential equations™

Ch. 3 will look at this general form...

It’s called “convolution”
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Big picture:

Nature is filled with “Derivative Rules”
« Capacitor and Inductor i-v Relationships
 Force, Mass and Acceleration Relationships
- Etc.

That leads to Differential Equations

—=There are a lot of practical C-T systems that can
be modeled by differential equations.

Other Examples of C-T Systems

-Car on level surface
-Mass-Spring-Damper System

-Simple Pendulum
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D-T System Example
Recall: We are mostly interested in D-T systems that arise in
computer processing of signals collected by sensors.

However, we illustrate with a common financial system that 1s D-T.
This provides a simple example from a familiar scenario.

Letx[n], n=1, 2, 3, ... be a sequence of monthly loan payments

‘ D-T signal because you are not continuously paying!

Let y[n] be the balance after the N month’s payment.

Initial condition: y[0] = amount of loan

Let | be the annual interest rate... so 1/12 = monthly rate
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Now, after 1 month the New Balance 1s:

y[1]=y[0] +—Y[0] X[1]= 1+— Y[O X[1]

Old
Balance

Reduction Du
to Payment

Increase Due
to Interest

In general: Y[N]= (1+—)Y[n 1]=x[n]

H_l
Balance after Balance after
n Months n-1 Months

Can Re-Write as: y[n]- (1+L)y[n—1] =—X[N]

12 P
~"
m “Difference Equation” g




Difference equations are easily computed recursively on a computer:

Ireve 1.1 LOAN BALANCE WITH $200 | 1] = 200 u[n]
Pg 35 from MONTHLY PAYMENTS -

. ol 0, c H ¥[n] n ¥[n] ,
TethOOk S 2 edltlon 1 $5859.09 19 £3086.47
2 57T18.59 20 291733

3 5575.78 21 2746.5]

4 3431.54 S22 257397

_ 5 5285.85 23 2399.71

% Loan Balance program 6 5138.71 24 2223.71
% Program computes loan balance yimn] 7 40001 25 2045.95
¥0 = input {'Amount of lsan '); 8 4840 26 1866.41
- Co. . . 9 4688.4 27 1685.07
Im ._npu_ [ Eea.._‘; Interest rate ‘) ; 0 451529 23 1501.92
© = input [‘Menthly lean payment '} 2 x[n]l = c g 438064 2G 1316.94
¥ = []; % defines ¥ as an empty vector 12 4224, 44 30 1130.11
, S 1 s FTAILYRun e 13 4066.69 il 941,41
Yil) = (1 + {2/12)7y0 - e; 14 3907.36 32 750.83
Lor n=2:360 15 3746.43 3 55833
¥in) = (1 + (L/12})*y{n-1} - c: 16 J583.59 34 363.02
if yim) < 0, break, end 17 3419.73 35 167.56

18 325393 36 =30.77

and

Figure 1.31 MATLAB program for computing loan balance,

TABLE 1.2 LOAN BALANCE WITH $300 x[n] = 300 u[n]

MONTHLY PAYMENTS

I ¥[n] " ¥in]
1 $5759.99 13 §2685.76
2 5517.59 14 2412.61
3 527271 15 2136.74
- 50253 18 1858.11
3 4773.75 17 1576.69
] 4523.51 18 129246
7 4268.75 19 1005.38
8 q011.43 20 71543
@ 3751.55 21 422,59

10 J4ED.06 2 126.81

11 3223.93 23 =171.92
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The book showg-%s-ee-Eq.—-l—.éH-) that the solution for the loan balance
has an explicit form (“closed form™):

y[n]= (1+—)y Z(l+—)”'x n=123,.

YT

H_J
[( Due to I.C. } J N Due to Input }

Zero-Input Response) | (Zero-State Response)

!

Can be found using h Y, [N Z h[n —i]x
“characteristic polynomial”

methods similar to those used

N for Differential Equations ) Compare to C-T:

Yo (1) = [ h(t—A)x(2)dA

“Input-
Output”
Relationships
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The textbook shows another example of a DT system (sect.
1.4.3) but doesn’t discuss it as a Difference Equation.

Instead it expresses the example system as: 2: Called a j
1)

‘Moving Average

y[n]=L(x[n]+x[n—1]+Xx[n -2

Notice that a Difference Eq gives an implicit relationship
between input and output (1.e., you need to “solve” it to find
the output)...

But this example shows an explicit relationship (writes the
output as a direct function of the input)

2
Note that we can write the example as  y[n]= > L x[n—i]
i=0

which looks a lot like what we saw for the Difference Eq example:

Yzs[n]= Zh[n —1]X[i]
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/BIG PICTURE \

- Physical (nature!) systems are modeled by differential equations
(C-T Systems)

- D-T systems are modeled by difference equations

- Both C-T & D-T systems (at least a large subset) are solved by:
- Characteristic polynomial methods for ZI Response &

K - Integral/Summation In-Out relationship for ZS Response /
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