

State University of New York

EECE 301 Signals & Systems Prof. Mark Fowler

Note Set #4

- Systems and Some Examples
- Reading Assignment: Sections 1.3 & 1.4 of Kamen and Heck

Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).

Systems

- Physically... a system is something that "takes in" one or more input signals and "produces" one or more output signals...
 - Maybe it is a circuit
 - Maybe it is a mechanical thing
 - Maybe it is... ????

System Models

- EEs usually think about systems through a variety of related models
- We can represent a physical circuit through a schematic diagram.
- We can represent the schematic as block diagram with a mathematical model...
 - The math model gives a way to quantitatively relate a given mathematical representation of an input signal into a mathematical representation of the output signal

Math Models for Systems

- Many physical systems are modeled w/ <u>Differential Eqs</u>
 - Because physics shows that electrical (& mechanical!) components often have "V-I Rules" that depend on derivatives

$$a_2 \frac{d^2 y(t)}{dt^2} + a_1 \frac{dy(t)}{dt} + a_0 y(t) = b_1 \frac{dx(t)}{dt} + b_0 x(t)$$

Given: Input $x(t)$
Find: Ouput $y(t)$

This is what it means to "solve" a differential equation!!

- However, engineers use <u>Other Math Models</u> to help solve and analyze differential eqs
 - The concept of "<u>Frequency Response</u>" and the related concept of "<u>Transfer Function</u>" are the most widely used such math models
 - > "Fourier Transform" is the math tool underlying Frequency Response
 - Another helpful math model is called "<u>Convolution</u>"

Relationships Between System Models

- These 4 models all are equivalent
-but one or another may be easier to apply to a given problem

1.4 Examples of Systems

1.4.1 Example System: RC Circuit (C-T System)

You've seen in Circuits Class that *R*, *L*, *C* circuits are modeled by Differential Equations:

- From Physical Circuit... get schematic
- From Schematic write circuit equations... get Differential Equation
- Solve Differential Equation for specific input... get specific output

A simple C-T

system

"Schematic View":

"System View":
$$x(t)$$
 system $y(t)$

Circuits class showed how to <u>model</u> this <u>physical</u> system <u>mathematically</u>:

$$\frac{dy(t)}{dt} + \frac{1}{RC}y(t) = \frac{1}{C}x(t)$$
Given input $x(t)$, the output
 $y(t)$ is the solution to the
differential equation.

Recall "RC time constant"

- Consider that the input "starts at $t = t_0$ ":

(i.e. x(t) = 0 for $t < t_0$)

- Let $y(t_0)$ be the output voltage when the input is first applied (initial condition)

- Then, the solution of the differential equation gives the output as:

<u>Recall</u>: This part is the solution to the "Homogeneous Differential Equation"

- 1. Set input x(t) = 0
- 2. Find characteristic polynomial (Here it is $\lambda + 1/RC$)
- 3. Find all roots of characteristic polynomial: λ_i (Here there is only one)
- 4. Form homogeneous solution from linear combination of the exp{ $\lambda_i(t-t_o)$ }
- 5. Find constants that satisfy the initial conditions (Here it is $y(t_0)$)

In this course we focus on finding the <u>zero-state</u> response (I.C.'s = 0)

Ch. 3 will look at this general form... It's called "convolution"

Big picture:

Nature is filled with "Derivative Rules"

- Capacitor and Inductor i-v Relationships
- Force, Mass and Acceleration Relationships

• Etc.

That leads to **Differential Equations**

⇒There are a lot of practical C-T systems that can be <u>modeled</u> by differential equations.

Other Examples of C-T Systems

-Car on level surface

-Mass-Spring-Damper System

-Simple Pendulum

D-T System Example

<u>Recall:</u> We are mostly interested in D-T systems that arise in computer processing of signals collected by sensors.

However, we illustrate with a common financial system that is D-T. This provides a simple example from a familiar scenario.

Initial condition: y[0] = amount of loan

Let *I* be the annual interest rate... so I/12 = monthly rate

Now, after 1 month the New Balance is:

Difference equations are easily computed recursively on a computer:

Pg. 35 from	MON	ITHL
Textbook's 2 nd edition	n	
	1	\$
	2	
	3	
	4	
% Loan Balance program	5	
% Program computes loan balance wint	6	;
v0 = input (income of a	7	
yo = input ('Amount of loan ');	8	
I = input (`Yearly Interest rate `);	9	4
c = input ('Monthly loan payment '), & wint	10	4
$V = \{1\}$ β defines	11	4
f defines y as an empty vector	12	6
Y(1) = (1 + (1/12)) * y0 - c;	13	4
for n=2:360	14	3
V(n) = (1 + (7/12)) * (n-1)	15	3
1 (=) - (1 + (1/12)) - Y(II=1) = C;	16	3
If $y(n) < 0$, break, end	17	3
end	18	3

Figure 1.31 MATLAB program for computing loan balance.

n	y[n]	n	<i>y</i> [<i>n</i>]	
1	\$5859.99	19	\$3086.47	
2	5718.59	20	2917.33	
3	5575.78	21	2746.51	
4	5431.54	22	2573.97	
5	5285.85	23	2399.71	
6	5138.71	24	2223.71	
7	4990.1	25	2045.95	
8	4840	26	1866.41	
9	4688.4	27	1685.07	
10	4535.29	28	1501.92	
11	4380.64	29	1316.94	
12	4224.44	30	1130.11	
13	4066.69	31	941.41	
4	3907.36	32	750.83	
15	3746.43	33	558.33	
.б	3583.89	34	363,92	
7	3419.73	35	167.56	
8	3253.93	36	-30.77	

4011.43

3751.55

3489.06

3223.95

2956.19

9

10

11

12

TABI MON	[n] = 300 u[n]			
n	y[n]	п	y[n]	
1	\$5759.99	13	\$2685.76	
2	5517.59	14	2412.61	
3	5272.77	15	2136.74	
4	5025.5	16	1858.11	
5	4775.75	17	1576.69	
6	4523.51	18	1292.46	
.7	4268.75	19	1005.38	
8	4011.43	20	715 42	

715.43

422.59

126.81

-171.92

20

21

22

23

The book shows (see Eq. 1.43) that the solution for the loan balance has an explicit form ("closed form"):

The textbook shows another example of a DT system (sect. 1.4.3) but doesn't discuss it as a Difference Equation.

Instead it expresses the example system as:

 $y[n] = \frac{1}{3} (x[n] + x[n-1] + x[n-2])$

Called a "Moving Average"

Notice that a Difference Eq gives an implicit relationship between input and output (i.e., you need to "solve" it to find the output)...

But <u>this</u> example shows an explicit relationship (writes the output as a direct function of the input)

Note that we can write the example as $y[n] = \sum_{i=0}^{2} \frac{1}{3} x[n-i]$

which looks a lot like what we saw for the Difference Eq example:

$$y_{ZS}[n] = \sum_{i=0}^{n} h[n-i]x[i]$$

BIG PICTURE

 Physical (nature!) systems are modeled by <u>differential equations</u> (C-T Systems)

- D-T systems are modeled by <u>difference equations</u>
- Both C-T & D-T systems (at least a large subset) are solved by:
 Characteristic polynomial methods for ZI Response &
 - Integral/Summation In-Out relationship for ZS Response