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Note Set #7
• D-T Systems: Recursive Solution of Difference Equations
• Reading Assignment: Section 2.3 of Kamen and Heck
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D-T System Models
We saw that Differential Equations model C-T systems…

D-T systems are “modeled” by Difference Equations.
The quotes are used here because we aren’t really modeling some existing
system with difference equations but rather building a desired system with 
difference equations.  So in that sense, difference equations aren’t just models 
they are the system.
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A general Nth order Difference Equations looks like this:

Most “Advanced”
Output Sample

Least “Advanced”
Output Sample

The difference between these two index values is the “order” of the difference eq.
Here we have: n – (n – N) = N



Although Difference Equations are quite different from 
Differential Equations, the methods for solving them are 
remarkably similar.  We’ll study such analytic methods later.  

Here we’ll look at a numerical way to solve Difference 
Equations.  This method is called Recursion… and it is actually 
used to implement (or build) many D-T systems, which is the 
main advantage of the recursive method.

Solving Difference Equations

The disadvantage of the recursive method is that it doesn’t 
provide a so-called “closed-form” solution… in other words, you 
don’t get an equation that describes the output (you get a finite-
duration sequence of numbers that shows part of the output).

Later we’ll see how to get “closed-form” solutions… such 
solutions give engineers keen insight needed to perform design 
and analysis tasks.



Solution by Recursion
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But, for computer processing it is possible to recursively solve (i.e. compute) a 
numerical solution.  In fact, this is how D-T systems are implemented (i.e. built!) 

We can re-write any linear, constant-coefficient difference equation in “recursive 
form”.  Here is the form we’ve already seen for an Nth order difference: 
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Now… isolating the y[n] term gives the “Recursive Form”:
The key to Recursive 
Form is that you have 
the current output y[n] 
in terms of past
outputs y[n - i]



Note: sometimes it is necessary to re-index a difference 
equation using   n+k→n to get this form… as shown below.

][2][]1[5.1]2[ nxnynyny =++−+

Here is a slightly different form… but it is still a difference equation:

If you isolate y[n] here you will get the current output value in terms of 
future output values (Try It!)… We don’t want that!

So… in general we start with the “Most Advanced” output sample… here 
it is y[n+2]… and re-index it to get only n (of course we also have to re-
index everything else in the equation to maintain an equation):
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Now we can put this into recursive form as before.

So here we need to subtract 2 from each sample argument:



Ex: Solve this difference equation recursively
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Recursive Form: ]2[2]2[]1[5.1][ −+−−−= nxnynyny

n       x[n]=u[n]      y[n]

-2                           

-1                           

0             

1               

2                          

3             

Note: You need N
“past” values as IC’s to 

solve an Nth order 
Difference Equation 

5.002215.1 −=⋅+−⋅
3rd: Compute n=0 Output

y[0]=1.5y[-1] – y[-2] + 2x[-2]
75.1021)5.0(5.1 −=⋅+−−⋅

4th: Compute n=1 Output
y[1]=1.5y[0] – y[-1] + 2x[-1]

Etc.

-.0125

3.563

2nd: Put IC’s Here2
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1st: Fill in Input (Unit Step here)
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function y = recur_2(x,y_ics);

y(1) = y_ics(1);
y(2) = y_ics(2);

for k=3:(length(x)+2)
y(k)=1.5*y(k-1)-y(k-2)+2*x(k-2);

end
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We can write a simple matlab routine to implement this 
difference equation

x is a vector of input samples
(from our table-based solution we see 
that we need the vector x to start at n = -2)

y_ics is 1x2 vector holding the 2 ICs

y will be the returned vector holding the output 
samples

Write the ICs into the output 
vector’s first two positions Each time through the for-loop 

we compute the output value 
according to the recursive form 
of the difference equation

There is a more general version 
of this code on the Book’s web 
page.

stem(-2:(length(y)-3),y)

x = [0 0 ones(1,20)];



function y = recur_2(x,y_ics);

y(1) = y_ics(1);
y(2) = y_ics(2);

for k=3:(length(x)+2)
y(k)=1.5*y(k-1)-y(k-2)+2*x(k-2)

end

The trickiest part of getting this code right is getting the indexing right!!!  

Mathematical indexing used in difference equations is “zero-origin” and allows negative 
indices.

Matlab indexing is “one-origin” and does NOT allow negative indexing.

The “k” in the code is related to the math index n according to: k = n+3 

Thus, when we first enter the loop we are computing for k=3 or n = 0

Store y[-2] in k=1 position of vector
Store y[-1] in k=2 position of vector

We already have filled the first two 
elements of the output vector so we 
put y[0] into the 3rd position, etc.

We must continue the loop until the 
last input value is used… since we 
use x(k-2) in the recursion we need 
to stop our for-loop at length(x)+2.

We must continue the loop until the 
last input value is used… since we 
use x(k-2) in the recursion we need 
to stop our for-loop at length(x)+2.

That way… when we go through the last 
loop (i.e., k = length(x)+2) we’ll index x 
using k-2 = length(x)… which grabs the 
last element in the input vector x



Computer 
Running 
Recursion

code

x[n] y[n]

This is a S/W implementation of the D-T 
system…. It is also possible to build 

dedicated digital H/W to implement it. 

We could use these ideas to implement this D-T system on a 
computer… although for real-time operation we would not use 
matlab, we likely would write the code using C or assembly language.

Also… we probably wouldn’t implement this on a general 
microprocessor like those used in desktop or laptop computers.  We 
would implement it in a microcontroller for simple applications but 
for high-performance signal processing applications (like for radar 
and sonar, etc.) we would use a special DSP microprocessor.

Web Link to Extra Info on DSP Processors

Web Link to Example of Dedicated H/W 
D-T System

http://www.dspguide.com/ch28.htm
http://www.ti.com/graychip/GC2011/GC2011.html
http://www.ti.com/graychip/GC2011/GC2011.html
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