State University of New York

EECE 301
 Signals \& Systems Prof. Mark Fowler

Note Set \#7

- D-T Systems: Recursive Solution of Difference Equations
- Reading Assignment: Section 2.3 of Kamen and Heck

Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).

D-T System Models

We saw that Differential Equations model C-T systems...
D-T systems are "modeled" by Difference Equations.
The quotes are used here because we aren't really modeling some existing system with difference equations but rather building a desired system with difference equations. So in that sense, difference equations aren't just models they are the system.

A general $N^{\text {th }}$ order Difference Equations looks like this:

$$
y[n]+a_{1} y[n-1]+\ldots+a_{N} y[n-N]=b_{0} x[n]+b_{1} x[n-1]+\ldots+b_{M} x[n-M]
$$

The difference between these two index values is the "order" of the difference eq. Here we have: $n-(n-N)=N$

Solving Difference Equations

Although Difference Equations are quite different from Differential Equations, the methods for solving them are remarkably similar. We'll study such analytic methods later.

Here we'll look at a numerical way to solve Difference Equations. This method is called Recursion... and it is actually used to implement (or build) many D-T systems, which is the main advantage of the recursive method.

The disadvantage of the recursive method is that it doesn't provide a so-called "closed-form" solution... in other words, you don't get an equation that describes the output (you get a finiteduration sequence of numbers that shows part of the output).

Later we'll see how to get "closed-form" solutions... such solutions give engineers keen insight needed to perform design and analysis tasks.

Solution by Recursion

But, for computer processing it is possible to recursively solve (i.e. compute) a numerical solution. In fact, this is how D-T systems are implemented (i.e. built!)

We can re-write any linear, constant-coefficient difference equation in "recursive form". Here is the form we've already seen for an N^{th} order difference:
$y[n]+a_{1} y[n-1]+\ldots+a_{N} y[n-N]=b_{0} x[n]+b_{1} x[n-1]+\ldots+b_{M} x[n-M]$

Now... isolating the $y[n]$ term gives the "Recursive Form":

Note: sometimes it is necessary to re-index a difference equation using $n+k \rightarrow n$ to get this form... as shown below.

Here is a slightly different form... but it is still a difference equation:

$$
y[n+2]-1.5 y[n+1]+y[n]=2 x[n]
$$

If you isolate $y[n]$ here you will get the current output value in terms of future output values (Try It!)... We don't want that!

So... in general we start with the "Most Advanced" output sample... here it is $y[n+2] \ldots$ and re-index it to get only n (of course we also have to reindex everything else in the equation to maintain an equation):

So here we need to subtract 2 from each sample argument:

$$
y[n]-1.5 y[n-1]+y[n-2]=2 x[n-2]
$$

Now we can put this into recursive form as before.

Ex: Solve this difference equation recursively

$$
y[n]-1.5 y[n-1]+y[n-2]=2 x[n-2]
$$

For $x[n]=u[n]$ unit step
And ICs of: $\left\{\begin{array}{l}y[-2]=2 \\ y[-1]=1\end{array}\right.$

Note: You need N "past" values as IC's to solve an N^{th} order
Difference Equation

Recursive Form: $y[n]=1.5 y[n-1]-y[n-2]+2 x[n-2]$

We can write a simple matlab routine to implement this difference equation $\quad y[n]=1.5 y[n-1]-y[n-2]+2 x[n-2]$

There is a more general version of this code on the Book's web page.

$\mathrm{x}=[00$ ones(1,20)];
stem(-2:(length(y)-3),y)

The trickiest part of getting this code right is getting the indexing right!!!
Mathematical indexing used in difference equations is "zero-origin" and allows negative indices.

Matlab indexing is "one-origin" and does NOT allow negative indexing.
The " k " in the code is related to the math index n according to: $k=n+3$
Thus, when we first enter the loop we are computing for $\mathrm{k}=3$ or $n=0$
function $\mathrm{y}=$ recur_2(x,y_ics);
$\mathrm{y}(1)=\mathrm{y}$ _ics(1);
$\mathrm{y}(2)=\mathrm{y}_{-} \mathrm{ics}(2)$;
for $\mathrm{k}=3:($ length $(\mathrm{x})+2)$
Store $y[-2]$ in $\mathrm{k}=1$ position of vector
We in $\mathrm{k}=2$ position of vector

We could use these ideas to implement this D-T system on a computer... although for real-time operation we would not use matlab, we likely would write the code using C or assembly language.

Also... we probably wouldn't implement this on a general microprocessor like those used in desktop or laptop computers. We would implement it in a microcontroller for simple applications but for high-performance signal processing applications (like for radar and sonar, etc.) we would use a special DSP microprocessor.

This is a S/W implementation of the D-T system.... It is also possible to build dedicated digital H/W to implement it.

Web Link to Example of Dedicated H/W D-T System

