
EECE 301
Signals & Systems

Prof. Mark Fowler

Note Set #7
• D-T Systems: Recursive Solution of Difference Equations
• Reading Assignment: Section 2.3 of Kamen and Heck

Ch. 1 Intro
C-T Signal Model

Functions on Real Line

D-T Signal Model
Functions on Integers

System Properties
LTI

Causal
Etc

Ch. 2 Diff Eqs
C-T System Model

Differential Equations
D-T Signal Model

Difference Equations

Zero-State Response

Zero-Input Response
Characteristic Eq.

Ch. 2 Convolution

C-T System Model
Convolution Integral

D-T System Model
Convolution Sum

Ch. 3: CT Fourier
Signal Models

Fourier Series
Periodic Signals

Fourier Transform (CTFT)
Non-Periodic Signals

New System Model

New Signal
Models

Ch. 5: CT Fourier
System Models

Frequency Response
Based on Fourier Transform

New System Model

Ch. 4: DT Fourier
Signal Models

DTFT
(for “Hand” Analysis)

DFT & FFT
(for Computer Analysis)

New Signal
Model

Powerful
Analysis Tool

Ch. 6 & 8: Laplace
Models for CT

Signals & Systems

Transfer Function

New System Model

Ch. 7: Z Trans.
Models for DT

Signals & Systems

Transfer Function

New System
Model

Ch. 5: DT Fourier
System Models

Freq. Response for DT
Based on DTFT

New System Model

Course Flow Diagram
The arrows here show conceptual flow between ideas. Note the parallel structure between

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).

D-T System Models
We saw that Differential Equations model C-T systems…

D-T systems are “modeled” by Difference Equations.
The quotes are used here because we aren’t really modeling some existing
system with difference equations but rather building a desired system with
difference equations. So in that sense, difference equations aren’t just models
they are the system.

][...]1[][][...]1[][101 MnxbnxbnxbNnyanyany MN −++−+=−++−+

A general Nth order Difference Equations looks like this:

Most “Advanced”
Output Sample

Least “Advanced”
Output Sample

The difference between these two index values is the “order” of the difference eq.
Here we have: n – (n – N) = N

Although Difference Equations are quite different from
Differential Equations, the methods for solving them are
remarkably similar. We’ll study such analytic methods later.

Here we’ll look at a numerical way to solve Difference
Equations. This method is called Recursion… and it is actually
used to implement (or build) many D-T systems, which is the
main advantage of the recursive method.

Solving Difference Equations

The disadvantage of the recursive method is that it doesn’t
provide a so-called “closed-form” solution… in other words, you
don’t get an equation that describes the output (you get a finite-
duration sequence of numbers that shows part of the output).

Later we’ll see how to get “closed-form” solutions… such
solutions give engineers keen insight needed to perform design
and analysis tasks.

Solution by Recursion

∑∑
==

−+−−=
M

i
i

N

i
i inxbinyany

01
][][][

Some “past”
output values,
with values
already known

current & past
input values
already “received”

“current”
output value to
be computed

But, for computer processing it is possible to recursively solve (i.e. compute) a
numerical solution. In fact, this is how D-T systems are implemented (i.e. built!)

We can re-write any linear, constant-coefficient difference equation in “recursive
form”. Here is the form we’ve already seen for an Nth order difference:

][...]1[][][...]1[][101 MnxbnxbnxbNnyanyany MN −++−+=−++−+

∑∑
==

−=−+
M

i
i

N

i
i inxbinyany

01

][][][Re-Write As:

Now… isolating the y[n] term gives the “Recursive Form”:
The key to Recursive
Form is that you have
the current output y[n]
in terms of past
outputs y[n - i]

Note: sometimes it is necessary to re-index a difference
equation using n+k→n to get this form… as shown below.

][2][]1[5.1]2[nxnynyny =++−+

Here is a slightly different form… but it is still a difference equation:

If you isolate y[n] here you will get the current output value in terms of
future output values (Try It!)… We don’t want that!

So… in general we start with the “Most Advanced” output sample… here
it is y[n+2]… and re-index it to get only n (of course we also have to re-
index everything else in the equation to maintain an equation):

]2[2]2[]1[5.1][−=−+−− nxnynyny

Now we can put this into recursive form as before.

So here we need to subtract 2 from each sample argument:

Ex: Solve this difference equation recursively

]2[2]2[]1[5.1][−=−+−− nxnynyny

For unit step

And ICs of:

][][nunx =

⎩
⎨
⎧

=−
=−

1]1[
2]2[

y
y

Recursive Form:]2[2]2[]1[5.1][−+−−−= nxnynyny

n x[n]=u[n] y[n]

-2

-1

0

1

2

3

Note: You need N
“past” values as IC’s to

solve an Nth order
Difference Equation

5.002215.1 −=⋅+−⋅
3rd: Compute n=0 Output

y[0]=1.5y[-1] – y[-2] + 2x[-2]
75.1021)5.0(5.1 −=⋅+−−⋅

4th: Compute n=1 Output
y[1]=1.5y[0] – y[-1] + 2x[-1]

Etc.

-.0125

3.563

2nd: Put IC’s Here2

1

1st: Fill in Input (Unit Step here)

0

0

1

1

1

1

function y = recur_2(x,y_ics);

y(1) = y_ics(1);
y(2) = y_ics(2);

for k=3:(length(x)+2)
y(k)=1.5*y(k-1)-y(k-2)+2*x(k-2);

end

]2[2]2[]1[5.1][−+−−−= nxnynyny
We can write a simple matlab routine to implement this
difference equation

x is a vector of input samples
(from our table-based solution we see
that we need the vector x to start at n = -2)

y_ics is 1x2 vector holding the 2 ICs

y will be the returned vector holding the output
samples

Write the ICs into the output
vector’s first two positions Each time through the for-loop

we compute the output value
according to the recursive form
of the difference equation

There is a more general version
of this code on the Book’s web
page.

stem(-2:(length(y)-3),y)

x = [0 0 ones(1,20)];

function y = recur_2(x,y_ics);

y(1) = y_ics(1);
y(2) = y_ics(2);

for k=3:(length(x)+2)
y(k)=1.5*y(k-1)-y(k-2)+2*x(k-2)

end

The trickiest part of getting this code right is getting the indexing right!!!

Mathematical indexing used in difference equations is “zero-origin” and allows negative
indices.

Matlab indexing is “one-origin” and does NOT allow negative indexing.

The “k” in the code is related to the math index n according to: k = n+3

Thus, when we first enter the loop we are computing for k=3 or n = 0

Store y[-2] in k=1 position of vector
Store y[-1] in k=2 position of vector

We already have filled the first two
elements of the output vector so we
put y[0] into the 3rd position, etc.

We must continue the loop until the
last input value is used… since we
use x(k-2) in the recursion we need
to stop our for-loop at length(x)+2.

We must continue the loop until the
last input value is used… since we
use x(k-2) in the recursion we need
to stop our for-loop at length(x)+2.

That way… when we go through the last
loop (i.e., k = length(x)+2) we’ll index x
using k-2 = length(x)… which grabs the
last element in the input vector x

Computer
Running
Recursion

code

x[n] y[n]

This is a S/W implementation of the D-T
system…. It is also possible to build

dedicated digital H/W to implement it.

We could use these ideas to implement this D-T system on a
computer… although for real-time operation we would not use
matlab, we likely would write the code using C or assembly language.

Also… we probably wouldn’t implement this on a general
microprocessor like those used in desktop or laptop computers. We
would implement it in a microcontroller for simple applications but
for high-performance signal processing applications (like for radar
and sonar, etc.) we would use a special DSP microprocessor.

Web Link to Extra Info on DSP Processors

Web Link to Example of Dedicated H/W
D-T System

http://www.dspguide.com/ch28.htm
http://www.ti.com/graychip/GC2011/GC2011.html
http://www.ti.com/graychip/GC2011/GC2011.html

	EECE 301 �Signals & Systems� Prof. Mark Fowler

