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EECE 301 
Signals & Systems

Prof. Mark Fowler

Note Set #8
• D-T Convolution: The Tool for Finding the 

Zero-State Response 
• Reading Assignment: Section 2.1-2.2 of Kamen and Heck
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Ch. 1 Intro
C-T Signal Model

Functions on Real Line

D-T Signal Model
Functions on Integers

System Properties
LTI

Causal
Etc

Ch. 2 Diff Eqs
C-T System Model

Differential Equations
D-T Signal Model

Difference Equations

Zero-State Response

Zero-Input Response
Characteristic Eq.

Ch. 2 Convolution

C-T System Model
Convolution Integral

D-T System Model
Convolution Sum

Ch. 3:  CT Fourier 
Signal Models

Fourier Series
Periodic Signals

Fourier Transform (CTFT)
Non-Periodic Signals

New System Model

New Signal
Models

Ch. 5:  CT Fourier 
System Models

Frequency Response
Based on Fourier Transform

New System Model

Ch. 4:  DT Fourier 
Signal Models

DTFT
(for “Hand” Analysis)

DFT & FFT
(for Computer Analysis)

New Signal
Model

Powerful 
Analysis Tool

Ch. 6 & 8:  Laplace 
Models for CT

Signals & Systems

Transfer Function

New System Model

Ch. 7:  Z Trans.
Models for DT

Signals & Systems

Transfer Function

New System
Model

Ch. 5:  DT Fourier 
System Models

Freq. Response for DT
Based on DTFT

New System Model

Course Flow Diagram
The arrows here show conceptual flow between ideas.  Note the parallel structure between 

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).



3/14

HOW??HOW??

Convolution

LTI System

Differential
Equation

Difference
Equation

“zero              “zero
input” state”
solution            solution+

“zero              “zero
input” state”
solution            solution+

(solve) (solve)

C-T D-T

Use char.
poly. roots

Use char.
poly. roots

Notice the parallel 
structure between C-T 
and D-T systems!  
We’ll see that they are 
solved using similar 
but slightly different 
tools!!!

Our focus in this chapter will be on finding the zero-state
solution… (we already know how to find the zero-input solution for C-T 
differential equations and later we’ll learn how to do that for D-T 
difference equations)

Our Interest: Finding the output of LTI systems (D-T & C-T cases)
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How do we find the Zero-State Response? 
(Remember… that is the response (i.e., output) of the system to a specific
input when the system has zero initial conditions)
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C-T “convolution”

Where does this come from?

How do we deal with it?

We’ll handle D-T systems first because they are easier to understand!

Recall that in the examples for difference equations we saw: 

∑
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D-T “convolution”

Where does this come from?

How do we deal with it?

Recall that in the examples for differential equations we always 
saw: 
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Convolution for LTI D-T systems
We are trying to find yZS(t)… so the ICs = 0

We’ll drop the “zs” subscript to make the notation easier!

LTI 
D-T system

ICs = 0

x[n] y[n]

i.e. no stored “energy”

Before we can find the Z-S outptut… we need something first:

Impulse Response (Warning: book calls it “unit-pulse response”)

The impulse response h[n] is what “comes out” when δ[n] “goes in” w/ ICs=0

LTI 
D-T system

ICs = 0

δ[n] h[n]

n
δ[n]

n
h[n]

Note: If system is causal, 
then h[n] = 0 for n < 0
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The impulse response h[n] uniquely describes the system… so we 
can identify the system by specifying its impulse response h[n].

LTI 
D-T system
with h[n] 

x[n] y[n]

Because impulse response is only defined for LTI systems, if 
you see a box with the symbol h[n] inside it you can assume that 
the system is an LTI system.

h[n] 
x[n] y[n]

Thus, we often show the system using a block diagram with the 
system’s impulse response h[n] inside the box representing the 
system:
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How do we know/get the impulse response h[n]?

There are many 
ways to do this, 
as we will see!

n][
2
1][ nunh

n

⎟
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⎞

⎜
⎝
⎛=

n   0      1      2      3     4    5
h[n]   0.5   1   2.1    1.3   .6    0   . . .

We assume that
h[n] = 0 for n < 0

In what form will we know h[n]?

1. h[n] known analytically as a function

Ex:

2. h[n] known numerically as a finite-duration sequence

Ex:

Many possible ways:

1. Given by the designer of D-T systems 

2. Measured experimentally

-Put in sequence . . . 0 0 1 0 0 0 . . . 

-See what comes out 

3. Mathematically analyze the D-T system

-Given difference equation

-Derive h[n]
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Example of analytically finding h[n]
Given a system described by a 1st order difference equation:

][]1[][ nbxnayny +−−=

n δ [n]                      h[n] 
-1             0                     
0             1
1             0
2             0
3             0

bba =×+×− 10
abbab −=×+− 0

baaba 2)()( −=−×−
babaa 32 )()( −=−×−

][)( nuab n−=

][)(][ nuabnh n−=

Recall that h[n] is what comes out when δ [n] goes in (with zero ICs).  
So we can re-write the above difference equation as follows:

Here we solve for h[n] recursively and then examine the results to deduce a 
closed-form solution (note: we can’t always use this “deductive” approach):

][]1[][ nbnahnh δ+−−=

(a and b are arbitrary numbers)

000 =×+×− ba By examining these 
results we see…

So… we now have the impulse 
response for this system!!!  Next 
we’ll learn how to use it to solve for 
the zero-state response!!!
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Q: How do we use h[n] to find the Zero-State Response?

h[n]
(w/ ICs = 0)

δ[n-i] h[n-i]

h[n]
(w/ ICs = 0)

x[i]δ[n-i] x[i]h[n-i]

Step 1: Using time-invariance we know:

Step 2: Use “homogeneity” part of linearity:

The input is a function of n
so we view x[i] as a fixed 

number for a given i So… we scale the output 
by the same fixed number

Shifted input gives 
shifted output

A: “Convolution” We’ll go through three analysis steps that will derive
“The General Answer” that convolution is what we need to do to find the zero-
state response

After that… we won’t need to re-do these steps… we’ll just “Do Convolution”
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Let’s see step 2…
for a specific input:

n
x[1]δ[n-1]2

h[n]
ICs = 0

2h[n-1]

n

x[2]δ[n-2]
1

h[n]
ICs = 0

1h[n-2]

n

x[3]δ[n-3]
2.5

h[n]
ICs = 0

2.5h[n-3]

x[i]

i

-1      1  2  3  4  5  6

1
2
3

nx[0]δ[n]1
h[n]

ICs = 0

1h[n]
This In This Outh[n]

(w/ ICs = 0)

x[i]δ[n-i] x[i]h[n-i]
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Step 3: Use “additivity” part of linearity

h[n]
ICs = 0

x[i]δ[n-i] x[i]h[n-i]

For each i, a different input        ⇒ For each i, a different response 

In Step 2 we looked at inputs like this:

Now we use the additivity part of linearity:

Put the Sum of Those Inputs In

∑
∞

−∞=

−
i

inix ][][ δInput:

But… what is this??
On the next slide we show that it is 

the desired input signal x[n]!

Output: ∑
∞

−∞=

−
i

inhix ][][

⇒ Get the Sum of Their Responses Out
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Let’s see step 3 for 
a specific input:

i

x[i]

-1      1  2  3  4  5  6

nx[0]δ[n]1
h[n]

ICs = 0

1h[n]

n
x[1]δ[n-1]2

h[n]
ICs = 0

2h[n-1]

n

x[2]δ[n-2]
1

h[n]
ICs = 0

1h[n-2]

n

x[3]δ[n-3]
2.5

h[n]
ICs = 0

2.5h[n-3]

Note: The 
Sum of these 
“x-weighted”

impulses 
gives x[n]!!

1
2
3

∑
∞

−∞=

−
i

inix ][][ δ
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Notation for Convolution
][][][ nhnxny ∗=

][nx=

h[n]
ICs = 0

x[n] ∑
∞

−∞=

−=
i

inhixny ][][][ CONVOLUTION!

Output:∑
∞

−∞=

−
i

inix ][][ δ ∑
∞

−∞=

−
i

inhix ][][Input:

So… what we’ve seen is this:

Or in other words… we’ve derived an expression that tells 
what comes out of a D-T LTI system with input x[n]:

So… now that we have derived this result we don’t have to do these 
three steps… we “just” use this equation to find the zero-state output:

∑
∞

−∞=

−=
i

inhixny ][][][ CONVOLUTION!
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Difference 
Equation

Convolution
& Impulse resp.

Equivalent Models (for zero state)

Big Picture
For a LTI D-T system in zero state we no longer need the 
difference equation model…

-Instead we need the impulse response h[n] & convolution

New alternative model!
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