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Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between
the pink blocks (C-T Freqg. Analysis) and the blue blocks (D-T Freq. Analysis).
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Convolution
Our Interest: Finding the output of LTI systems (D-T & C-T cases)

Notice the parallel
C-T D-T structure between C-T
and D-T systems!
: : : We’ll see that they are
lefere_ntlal lefergnce solved using similar
Equation Equation but slightly different
_— (solve) | (solve) N [1o0
“zero “zero “zero “zero
input” state” input” state”
solution solution solution solution

) )
Use char. HOW?? Use char. HOW??
oly. roots ) oly. roots )
Our focus in this chapter will be on finding the zero-state
solution... (we already know how to find the zero-input solution for C-T

differential equations and later we’ll learn how to do that for D-T
difference equations) 3/14




How do we find the Zero-State Response?

(Remember... that is the response (i.e., output) of the system to a specific
Input when the system has zero initial conditions)

Recall that in the examples for differential equations we always
saw:

Yo (1) = J:) h(t—A)x(A)dA | Where does this come from?

How do we deal with it?

( [C—T “convolution”]

Recall that in the examples for difference equations we saw:

n
Yzs [n] — Z h[n - l]X[I] Where does this come from?
i=1

How do we deal with it?

( [D-T “convolution"}

[ We’ll handle D-T systems first because they are easier to understand! ]
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Convolution for LTI D-T systems
We are trying to find y,¢(t)... so the ICs =0 [ i.e. no stored “energy” ]

-

[We’ll drop the “zs” subscript to make the notation easier! ]

X[n] y[n]

g D-T system

Before we can find the Z-S outptut... we need something first:

Impulse Response (Warning: book calls it “unit-pulse response”)

The impulse response h[n] is what “comes out” when d[n] “goes in” w/ 1Cs=0

o] h[”]
—l—‘n

IITQH R

5[”] LTI h[n]
— D-T system —— Note: If system is causal,
ICs=0 then h[n] = Oforn<oj4




The impulse response h[n] uniquely describes the system... so we
can identify the system by specifying its impulse response h[n].

Thus, we often show the system using a block diagram with the
system’s impulse response h[n] inside the box representing the
system:

x[n] LTl y[n]
— D-T system ———
with h[n]

Because impulse response is only defined for LTI systems, if
you see a box with the symbol h[n] inside it you can assume that
the system is an LTI system.

X[n] y[n]

—— h[n] ——
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How do we know/get the impulse response h[n]?

Many possible ways:
1. Given by the designer of D-T systems
2. Measured experimentally
-Put insequence...001000...
-See what comes out

3. Mathematically analyze the D-T system

-Given difference equation (There SIS LEL
ways to do this,

-Derive h[n] \as we will see!

In what form will we know h[n]?

1. h[n] known analytically as a function
n

EX: 1 ‘
= h[n]:(gj U[n] - <—o—o—olIIT'o—o n:
2. h[n] known numerically as a finite-duration sequence

EX: n|0 1 2 3 4 5§ [Weassumethat}

h[n]=0forn<0
h[n][05 1 21 13 6 0O ... 14




Example of analytically finding h[n]
Given a system described by a 1% order difference equation:
y[n]=—ay[n—1]+bx|[n] (a and b are arbitrary numbers)

Recall that h[n] is what comes out when & [n] goes in (with zero ICs).
So we can re-write the above difference equation as follows:

h[n]=—-ah[n-1]+bo[n]
Here we solve for h[n] recursively and then examine the results to deduce a
closed-form solution (note: we can’t always use this “deductive” approach):
n o[n] h[n]

-1 0 —ax0+bx0=0 . By examining these

0 —ax0+bx1=b results we see...

—ab+bx0=-ab -
_ax(-ab)=(-a)?b [ =b(=a)"u[n]
—ax(-a)’b=(-a)’b

(CORN R
o O o

So... we now have the impulse

> h[n] = b(_a)” u[n] response for this system!!! Next
we’ll learn how to use it to solve for

the zero-state response!!! 1




Q: How do we use h[n] to find the Zero-State Response?

A: “Convolution” We’ll go through three analysis steps that will derive
“The General Answer” that convolution is what we need to do to find the zero-
state response

After that... we won’t need to re-do these steps... we’ll just “Do Convolution”

h[n-i]

—

Step 1: Using time-invariance we know: % h[n]
(w/ 1Cs = 0)
Shifted input gives
shifted output

Step 2: Use “homogeneity” part of linearity: x[i]d[n-i] h[n] X[1]h[n-i]

(w/ 1Cs =0)

The input is a function of n
so we view Xx]i] as a fixed
number for a given i

So... we scale the output
by the same fixed number
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for a speciﬁc input: 0 PO ] ...............

Let’s see step 2... X@]l ................................
'

iloln] | oo | Xlilhin-]

- - \his In This Out
wes=o [ Lpoa } Lhin
) bl ||
ICs=0
~
2 X[1]dn-1]
2h[n-1
——l—]—n‘ > h[n] _>[ ]
y, 11Cs=0
4 x[21o[n-2] )
1 1h[n-2
——l———]—n > h[n] _>[ ]
S y 11Cs=0
(Lt x@dnd
' 2.5h[n-3
———l———]——n‘ > h[n] — [ ]
N ) lcs=0
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Step 3: Use “additivity” part of linearity

In Step 2 we looked at inputs like this:

x[iJo[n-i] | hpap [ X[OI0[N-1]

— ' ICs=0 ",

For each 1, a different input = For each i, a different response

Now we use the additivity part of linearity:

Put the Sum of Those Inputs In — Get the Sum of Their Responses Out

0 0]

Input: ix[i]é[n —i]] =  Output:| > x[i]h[n—i]

i=—o0

But... what is this??
On the next slide we show that it is

the desired input signal x[n]!
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Let’s see step 3 for
a specific input:

Note: The

Sum of these
“X-weighted”

\

Impulses

lHNw
L S
—

gives x[n]!!

/

-1 v123456
1 1x[0]5[n] N } 1h[n]
) hinp | |
ICs=0
2 1] 2h[n-1]
——l—]—n‘ e h[n] —
ICs=0
X[2]dn-2]
1h[n-2]
__l__]_ ) hinp | |
ICs=0
X[3]d[Nn-3]
2.5h[n-3]
.__l___]— ) hinp ||
ICs=0
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So... what we’ve seen is this:

0 0]

input{ Y x[il6[n—i] =P Output:| > x[ilh[n-i]

|=—00

- _/
YT

= X[n]

Or in other words... we’ve derived an expression that tells
what comes out of a D-T LTI system with input x[n]:

T y[n]=§x[i]h[n—i] CONVOLUTION!
11Cs=0 ]
y[n]= x[n]*h[n]

Notation for Convolution }

So... now that we have derived this result we don’t have to do these
three steps... we “just” use this equation to find the zero-state output:

y[n] = i X[i]n[n —i]| convoLuTiON!

|=—00 13/14




Big Picture

For a LTI D-T system in zero state we no longer need the
difference equation model...

-Instead we need the impulse response h[n] & convolution
— _/

~
[New alternative model! }

-

~

Difference
Equation

Equivalent Models (for zero state)

Convolution
& Impulse resp.
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