
1/23

EECE 301
Signals & Systems

Prof. Mark Fowler

Note Set #9
• Computing D-T Convolution
• Reading Assignment: Section 2.2 of Kamen and Heck

2/23

Ch. 1 Intro
C-T Signal Model

Functions on Real Line

D-T Signal Model
Functions on Integers

System Properties
LTI

Causal
Etc

Ch. 2 Diff Eqs
C-T System Model

Differential Equations
D-T Signal Model

Difference Equations

Zero-State Response

Zero-Input Response
Characteristic Eq.

Ch. 2 Convolution

C-T System Model
Convolution Integral

D-T System Model
Convolution Sum

Ch. 3: CT Fourier
Signal Models

Fourier Series
Periodic Signals

Fourier Transform (CTFT)
Non-Periodic Signals

New System Model

New Signal
Models

Ch. 5: CT Fourier
System Models

Frequency Response
Based on Fourier Transform

New System Model

Ch. 4: DT Fourier
Signal Models

DTFT
(for “Hand” Analysis)

DFT & FFT
(for Computer Analysis)

New Signal
Model

Powerful
Analysis Tool

Ch. 6 & 8: Laplace
Models for CT

Signals & Systems

Transfer Function

New System Model

Ch. 7: Z Trans.
Models for DT

Signals & Systems

Transfer Function

New System
Model

Ch. 5: DT Fourier
System Models

Freq. Response for DT
Based on DTFT

New System Model

Course Flow Diagram
The arrows here show conceptual flow between ideas. Note the parallel structure between

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).

3/23

2.2 “Computing” D-T convolution
-We know about the impulse response h[n]

-We found out that h[n] interacts with x[n] through convolution to give the

zero-state response: ∑
∞

−∞=

−=
i

inhixny][][][

How do we “work” this? This is needed for understanding how:

(1) To analyze systems

(2) To implement systems

Don’t forget…The
design process
includes analysis

Two cases, depending on form of x[n]:

1. x[n] is known analytically

2. x[n] is known numerically or graphically

Analytical Convolution (used for “by-hand” analysis):
Pretty straightforward conceptually:

- put functions into convolution summation

- exploit math properties to evaluate/simplify

4/23

Example:][][nuanx n=][][nubnh n= Recall this form from 1st - order
difference equation example

][nubn][nuan ?][=ny

∑
∞

−∞=

−=
i

inhixny][][][

∑
∞

−∞=

− −=
i

ini inubiua][][)(a function of n… i gets
“summed away”

⎩
⎨
⎧

<
≥

=
0,0
0,1

][
i
i

iu

∑
∞

=

− −=
0

)(][
i

ini inuba

Now use:

⎩
⎨
⎧

>
≤

=−
ni
ni

inu
,0
,1

][

∑∑
==

− ⎟
⎠
⎞

⎜
⎝
⎛==

n

i

i
n

n

i

ini

b
abba

00

)(

Now use:

You should be
able to go

here directly

5/23

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≠

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

⎟
⎠
⎞

⎜
⎝
⎛−

=+

=
+

ba

b
a

b
a

ban

ny
n

,
1

1

,1

][
1

“Geometric Sum”

∑
=

⎟
⎠
⎞

⎜
⎝
⎛=

n

i

i
n

b
abny

0

][

If a = b you are adding (n + 1) 1’s and that gives n + 1

So now we simplify this
summation…

If a ≠ b, then a standard math relationship gives:

1,
1

11

0

≠
−
−

=∑
−

=

r
r

rr
NN

i

i

Know This!!!

6/23

Aside: Commutativity Property of Convolution
A simple change of variables shows that

][*][][*][

][][][][][

nxnh

i

nhnx

i

inxihinhixny ∑∑
∞

−∞=

∞

−∞=

−=−=

So…we can use which ever of these is easier…

7/23

Step 1: Write both as functions of i: x[i] & h[i]

Step 2: Flip h[i] to get h[-i] (The book calls this “fold”)

Step 3: For each output index n value of interest, shift by n to get h[n - i]

(Note: positive n gives right shift!!!!)

Step 4: Form product x[i]h[n – i] and sum its elements to get the number y[n]

Repeat
for

each n

Graphical Convolution Steps
Can do convolution this way when signals are know numerically or by equation

- Convolution involves the sum of a product of two signals: x[i]h[n – i]
- At each output index n, the product changes “Commutativity” says we

can flip either x[i] or h[i]
and get the same answer

8/23

Example of Graphical Convolution

.

x[n]

n

.

h[n]

n

-2 -1 1 2 3 4 5

-2 -1 1 2 3 4 5 6 7

Solution

For this problem I choose to flip x[n]

My personal preference is to flip the shorter signal although I sometimes don’t
follow that “rule”… only through lots of practice can you learn how to best
choose which one to flip.

2

3

Find y[n]=x[n]*h[n]
for all

integer values of n

1

9/23

Step 1: Write both as functions of i: x[i] & h[i]

.

h[i]

i-2 -1 1 2 3 4 5 6 7

3

.

x[-i]

i-2 -1 1 2 3 4 5 6 7

2

“Commutativity” says we
can flip either x[i] or h[i]
and get the same answer…

Here I flipped x[i]

.

x[i]

i-2 -1 1 2 3 4 5

2
1

Step 2: Flip x[i] to get x[-i]

.

h[i]

i-2 -1 1 2 3 4 5 6 7

3

1

10/23

.

h[i]

i-2 -1 1 2 3 4 5 6 7

3

x[-i] = x[0 - i]

For n = 0 case there is no shift!
x[0 - i] = x[-i]

.

h[i]x[0 - i]

i-3 -2 -1 1 2 3 4 5 6 7

32×
Sum over i ⇒ y[0] = 6

. . .

i-2 -1 1 2 3 4 5 6 7

2
. . . 1

We want a solution for n = … -2, -1, 0, 1, 2, … so must do Steps 3&4 for all n.

But… let’s first do: Steps 3&4 for n = 0 and then proceed from there.

Step 3: For n = 0, shift by n to get x[n - i]

Step 4: For n = 0, Form the product x[i]h[n – i] and sum its elements to give y[n]

11/23

Steps 3&4 for all n < 0

.

h[i]

i-2 -1 1 2 3 4 5 6 7

3

x[-i] = x[-1 - i]

Negative n gives a left-shift

.

h[i]x[-1 - i] = 0

i-3 -2 -1 1 2 3 4 5 6 7

Sum over i ⇒

. . .

i-2 -1 1 2 3 4 5 6 7

2
. . . 1

Step 3: For n < 0, shift by n to get x[n - i]

Step 4: For n < 0, Form the product x[i]h[n – i] and sum its elements to give y[n]

Shown here for n = -1

00][<∀= nny

12/23

So… what we know so far is that:
⎩
⎨
⎧

=
<∀

=
0,6

0,0
][

n
n

ny

. . .

y[n]

n-2 -1 1 2 3 4 5 6 7

6

y[n] = ???

So now we have to do Steps 3&4 for n > 0…

13/23

. i
-2 -1 1 2 3 4 5 6 7

x[1 - i] h[i]
2×3

shifted to the
right by one

Steps 3&4 for n = 1

.

h[i]

i-2 -1 1 2 3 4 5 6 7

3

x[-i] = x[1 - i]

Positive n gives a Right-shift

i-2 -1 1 2 3 4 5 6 7

2
. 1

Step 3: For n = 1, shift by n to get x[n - i]

Step 4: For n = 1, Form the product x[i]h[n – i] and sum its elements to give y[n]

y[1] = 6 + 6 = 12Sum over i ⇒

14/23

. . .

i-2 -1 1 2 3 4 5 6 7

x[1 - i] h[i]
2×3

shifted to the
right by two

Steps 3&4 for n = 2

.

h[i]

i-2 -1 1 2 3 4 5 6 7

3

x[-i] = x[2 - i]

Positive n gives a Right-shift

i-2 -1 1 2 3 4 5 6 7

2
. 1

Step 3: For n = 2, shift by n to get x[n - i]

Step 4: For n = 2, Form the product x[i]h[n – i] and sum its elements to give y[n]

y[2] = 3 + 6 + 6 = 15Sum over i ⇒
. . . 1×3

15/23

i-2 -1 1 2 3 4 5 6 7

x[1 - i] h[i]
2×3

shifted to the
right by three

Steps 3&4 for n = 3

.

h[i]

i-2 -1 1 2 3 4 5 6 7

3

x[-i] = x[3 - i]

Positive n gives a Right-shift

i-2 -1 1 2 3 4 5 6 7

2
. 1

Step 3: For n = 3, shift by n to get x[n - i]

Step 4: For n = 3, Form the product x[i]h[n – i] and sum its elements to give y[n]

y[3] = 3 + 6 + 6 = 15Sum over i ⇒
. 1×3

16/23

i-2 -1 1 2 3 4 5 6 7

x[1 - i] h[i]
2×3

shifted to the
right by four

Steps 3&4 for n = 4

.

h[i]

i-2 -1 1 2 3 4 5 6 7

3

x[-i] = x[3 - i]

Positive n gives a Right-shift

i-2 -1 1 2 3 4 5 6 7

2
. 1

Step 3: For n = 4, shift by n to get x[n - i]

Step 4: For n = 4, Form the product x[i]h[n – i] and sum its elements to give y[n]

y[4] = 3 + 6 + 6 = 15Sum over i ⇒
.1×3

17/23

i-2 -1 1 2 3 4 5 6 7

x[1 - i] h[i]
2×3

shifted to the
right by five

Steps 3&4 for n = 5

.

h[i]

i-2 -1 1 2 3 4 5 6 7

3

x[-i] = x[3 - i]

Positive n gives a Right-shift

i

. . .

-2 -1 1 2 3 4 5 6 7

2
. . . 1

Step 3: For n = 5, shift by n to get x[n - i]

Step 4: For n = 5, Form the product x[i]h[n – i] and sum its elements to give y[n]

y[5] = 3 + 6 = 9Sum over i ⇒
. 1×3

18/23

i-2 -1 1 2 3 4 5 6 7

x[1 - i] h[i]
2×3

shifted to the
right by six

Steps 3&4 for n = 6

.

h[i]

i-2 -1 1 2 3 4 5 6 7

3

x[-i] = x[3 - i]

Positive n gives a Right-shift

i

. . .

-2 -1 1 2 3 4 5 6 7

2
. . . 1

Step 3: For n = 6, shift by n to get x[n - i]

Step 4: For n = 6, Form the product x[i]h[n – i] and sum its elements to give y[n]

y[6] = 3Sum over i ⇒
. 1×3

19/23

i-2 -1 1 2 3 4 5 6 7

x[1 - i] h[i] = 0
2×3

shifted to the
right by seven

Steps 3&4 for all n > 6

.

h[i]

i-2 -1 1 2 3 4 5 6 7

3

x[-i] = x[3 - i]

Positive n gives a Right-shift

i-2 -1 1 2 3 4 5 6 7

2
. . . 1 . . .

Step 3: For n > 6, shift by n to get x[n - i]

Step 4: For n > 6, Form the product x[i]h[n – i] and sum its elements to give y[n]

Sum over i ⇒
. 1×3

60][>∀= nny

20/23

So… now we know the values of y[n] for all values of n

We just need to put it all together as a function…

Here it is easiest to just plot it… you could also list it as a table.

. . .

n

y[n]
15
12

6

-2 -1 1 2 3 4 5 6 7

9

3

Note that convolving these kinds of signals gives a
“ramp-up” at the beginning and a “ramp-down” at
the end.

Various kinds of “transients” at the beginning and
end of a convolution are common.

Note that convolving these kinds of signals gives a
“ramp-up” at the beginning and a “ramp-down” at
the end.

Various kinds of “transients” at the beginning and
end of a convolution are common.

21/23

Link: Web Demos of Graphical D-T Convolution

This is a good site that provides insight into how to visualize D-T
convolution…

However, be sure you can do graphical convolution by hand without the
aid of this site!!

BIG PICTURE: So… what we have just done is found the zero-state
output of a system having an impulse response given by this h[n] when
the input is given by this x[n]:

][nx

.

x[n]

-2 -1 1 2 3 4

2
1

n

][nh

.

h[n]

n-2 -1 1 2 3 4 5 6

3
. . .

n

y[n]
15
12

6

-2 -1 1 2 3 4 5 6 7

9

3

][*][][nhnxny =

http://www.jhu.edu/signals/discreteconv/index.html

22/23

Implementation Issues
Consider a D-T system with impulse response h[n] that has finite duration…

Could Build a digital hardware system or a software program for D-T convolution
like this:

Note that the normal order of
sampled signals coming into the
shift registers follows the “flipped”
version of the signal.

Storage
Registers

⊗

x[1]

h[0]

⊗

x[0]

h[1]

⊗

0

h[2]

⊗

0

h[i-1]

. . .

. . .

. . .

∑

x(t)

clock

ADC

Clock Shift Registers or Memory Locations

y[1], y[0], etc.

23/23

Convolution Properties
These are things you can exploit to make it easier to solve problems

2. Associativity][])[][(])[][(][nwnvnxnwnvnx ∗∗=∗∗

4. Convolution with impulses][][][qnxqnnx −=−∗δ

3. Distributivity][][][][])[][(][2121 nhnxnhnxnhnhnx ∗+∗=+∗

This one is VERY easy to see using the graphical convolution steps.
TRY IT!!

⇒ may be easier to split complicated system h[n] into sum of simple ones

OR.. ⇒ we can split complicated input into sum of simple ones

(nothing more than “linearity”)

⇒ Can change order → sometimes one order is easier than another

][][][][nxnhnhnx ∗=∗1.Commutativity
⇒ You can choose which signal to “flip”

24/23

	EECE 301 �Signals & Systems� Prof. Mark Fowler

