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EECE 301 
Signals & Systems

Prof. Mark Fowler

Note Set #9a
• Example: Using D-T Convolution in an Application of   

Measuring the Speed of a Motor
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The m-file motor_speed.m is available for download from the 
course website.

To run it all you need to do is: 
1. Download it to a folder on your computer

a. Make sure Matlab’s current directory is the folder 
where you have put the m-file (change it if needed)

2. At the Matlab command line type:  motor_speed
3. The m-file will run and create several figures

Example: D-T Processing for Motor Speed
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Suppose you have a motor whose shaft is connected to a sensor that 
can measure the angular position of the shaft… its values will 
range between -π and π.

Motor

Assume that the 
sensor generates 

1 volt/radian

Output of Sensor when Motor spins 
at constant angular rate of 5π rad/sec

Q: How do we measure the speed of the motor?

Physical Set-Up of Motor and Sensor



5/13

First we could sample the sensor’s signal at a fast enough rate to get a D-T 
signal that accurately conveys the C-T signal coming from the sensor:

Motor Analog-to-Digital
Converter (ADC)

Computer-Based 
D-T System

The resulting samples could be put into a computer (as binary numbers) and 
processed using D-T convolution.

D-T Signal Representing 
Angular Position

C-T Signal Representing 
Angular Position

θm(t) θm[n]

We can use matlab to explore how to do this.

Motor and D-T System for Processing

Computer

h2[n]Some 
Tricks

θm[n] rm[n]
h1[n]

Now… the trick is to determine how to design the D-T system (i.e., choose the 
system’s impulse response h[n]) to get a measure of the angular rate rm[n] !!!
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% Create time samples spaced 1 ms apart
del_t=0.001;
t=0:del_t:3;

theta=5*pi*t; %%  simulates angular position of motor shaft spinning at a constant rate

%% use some matlab "tricks" to simulate the fact that  measured angle lies in –pi to pi 
theta_m=angle(exp(j*theta));

Figure 1 from 
motor_speed.m

Simulate the Angular Position’s D-T Signal in Matlab

θm[n] rm[n]
ADCMotor h2[n]Some 

Tricksh1[n]

Note: Discontinuities
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%  specify impulse response of D-T system that computes 
%%  the time derivative of the input
h_1=[-3 16 -36 48 -25]/(12*del_t);

%%% Compute D-T system's output using convolution
x=theta_m;   % just rename position measurements to "typical" input symbol
y=conv(x, h_1);  % Matlab has a command for convolving two signals

1st D-T Convolution Approximates Computing a Derivative

Comes from Branch of Math 
known as “Numerical Methods”

θm[n] rm[n]
ADCMotor h2[n]Some 

Tricksh1[n]

Figure 2 from 
motor_speed.m ≈ Correct Values

For Rate

Large Spurious 
Values due to 

Discontinuities
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%% we can do some computer-based "exception processing" to get rid of those 
%%  by throwing away output values whose absolute value is bigger than we would expect
%% the rotational rate to be

I=find(abs(y)>500);  % find the indices of such large values
y(I)=0;    % replace the values with zeros at those locations 

D-T Tricks to Fix the Effects of the Discontinuities

θm[n] rm[n]
ADCMotor h2[n]Some 

Tricksh1[n]

≈ Correct Values
For Rate

Figure 3 from 
motor_speed.m

Zeros Inserted to 
Replace Spurious 

Values from 
Discontinuities

“Ramp-Up values 
due to convolution
“Transient” values 
due to convolution
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In the previous stage we inserted zeros at the discontinuity points… so what we 
end up with (ignoring the transient) is many correct values with a few zero 
values included.  

So… imagine taking a small block of N such data points and taking the data 
average (add them up and divide by N)… the small number of zero values will 
have a small effect and we should end up with the average being close to the true 
value.

If we imagine “sliding the block” used for averaging ahead by one sample each 
time… then we would get an average for each block that should be a good 
estimate of the angular rate

D-T Convolution to Further Fix the Discontinuities

Figure 3 from 
motor_speed.m

Etc. These indicate the 
sliding blocks
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With a little thought we can convince ourselves that this sliding average is nothing 
more that convolving the “zero-corrected” signal with a D-T signal that has N ones 
and zeros elsewhere and then dividing by N:
y2a=conv(y,ones(1,100)) /100;   % do sliding average of 100 pts to reduce effect of inserted zeros

y2b=conv(y,ones(1,1000))/1000;   % do sliding average of 1000 pts to explore effect of N value

Small N Large N

Pro Rapid 
Response 
Time

Small 
Fluctuation in 
Values

Con Large 
Fluctuation 
in Values

Slow 
Response 
Time

Blue: N = 100

Red: N = 1000

Figure 4 from 
motor_speed.m

This indicates the following trade-off 
for the size of the averaging block: 

θm[n] rm[n]
ADCMotor h2[n]Some 

Tricksh1[n]



11/13

Admission: The way we did it (replace anomalies with zeros, smooth with 
convolution) is probably not the best way to do this:

A better “Trick” would be to replace each anomaly with the non-anomaly 
value that precedes it.  This would reduce the jumps due to the inserted 
zeros and reduce the need for the second convolution.



12/13

Exploring Impact of Abrupt Rate Change

θm[n] rm[n]
ADCMotor h2[n]Some 

Tricksh1[n]

Blue: N = 100
Red: N = 1000

Figures 5&6 from motor_speed.m

Rate Change Bigger N gives:
• More accurate measure…
• But… slower response to changes
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• Using Matlab to simulate D-T signals that will be obtained from 
an ADC

• Use D-T convolution to approximately compute the derivative 
of a signal
– The D-T signal represents samples of some “underlying” C-T signal

• Use tricks to correct anomalies and spurious results
– In practice this kind of thing is pretty common

• Use D-T convolution to “smooth out” jumps
– Here the jumps were due to physical characteristics of angle 

measurement

• We have seen a fundamental trade-off that often arises in linear 
systems:
– A system that provides more “smoothing” capability typically responds 

slowly to signal changes
– So… if we have a noisy signal, we can remove a lot of the noise but only 

at the expense of smoothing out some of the signal’s rapid changes

Things We’ve Seen Here
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