$$
\begin{aligned}
& \text { Examples of Finding } \\
& \text { Differential Equations } \\
& \text { for Electrical Systems }
\end{aligned}
$$

For these simple circuits the trick is to first write a KVL or a KCL for the circuit.
Once you have this written identify the parts of it (i.e. voltage and current variables) that **aren't** the input and output signals. You need to find a way to replace these with the input and output signals...

You do this by using:

- "device rules" (like ohms law and the I-V rules for caps and inductors)
- other rules (e.g., if you wrote a KVL first, try writing a KCL and vice versa).

Then simplify it to put it in the standard form

Example: Determine the sift. Eg.

Write KVL around loop:

Example \#1
Determine the differential equation for this circuit...

(a)... when $v_{L}(t)$ is tater as the output
(b) ... when $v_{c}(t)$ is titan as the cutpurt
(a), From $k V L: v_{R}(t)+v_{2}(t)=x(t)$
$\left.\begin{array}{rlrl}\text { or } & v_{R}(t) & =x(t)-v_{L}(t) \\ \text { or } & i_{R}(t) & =\frac{x(t)-v_{L}(t)}{R} \\ \text { or } & v_{c}(t) & =x(t)-v_{c}(t)\end{array}\right]_{\text {here }}$
From KCL:
Could really start here w/ KCL:

$$
\square \quad i_{c}(t)=i_{R}(t)+i_{c}(t)
$$

Now we have something that is almost completely in terms of in's \& out's so we are almost there!!!
We need one more device rule...

$$
i_{L}(t)=\frac{x(t)-v_{i}(t)}{R}+c \frac{d x(t)}{d t}-c \frac{d v_{i}(t)}{d t} \quad(A)
$$

in tams of in's \& cut's
Must volute
to x_{n} '/outs's

Re arrange to get:

$$
\frac{d^{2} v_{L}(t)}{d t^{2}}+\frac{1}{R C} \frac{d v_{L}(t)}{d t}+\frac{1}{L C} v_{L}(t)=\frac{d^{2} X(t)}{d t^{2}}+\frac{1}{R C} \frac{d x(t)}{d t}
$$

(b) From KVL: $v_{c}(t)+v_{L}(t)=x(t) \Rightarrow v_{L}(t)=x(t)-v_{c}(t)$ From device Rule for L :

$$
\begin{aligned}
& \begin{aligned}
v_{L}(t) & =L \frac{d i_{L}(t)}{d t} \\
& =L\left[\frac{d i_{a_{A}}(t)}{d t}+\frac{d i_{i}(t)}{d t}\right]
\end{aligned} \\
& \Rightarrow x(t)-v_{c}(t)=L \frac{d i_{c}(t)}{d t}+L \frac{d i_{c}(t)}{d t} \\
& \overbrace{i_{R}(t)=\frac{v_{R}(t)}{R}}^{\overbrace{i_{c}(t)}=\frac{c d v_{c}(t)}{d t}} \\
& =\frac{v_{c}(t)}{R} \\
& 4 \\
& x(t)-v_{c}(t)=\frac{L}{R} \frac{d v_{c}(t)}{d t}+L C \frac{d^{2} v_{c}(t)}{d t^{2}}
\end{aligned}
$$

Re-Avrange:

$$
\frac{d^{2} v_{c}(t)}{d t^{2}}+\frac{1}{R c} \frac{d v_{c}(t)}{d t}+\frac{1}{c c} v_{c}(t)=\frac{1}{c c} x(t)
$$

Example \#2
Write the Diff. Eg. for the following "2-vtage" RC circuit:

Node Eg. at N_{1} : (Node Equations ave a form

$$
\begin{align*}
& \underbrace{i_{R_{1}}(t)}_{\downarrow}=\underbrace{i_{c_{1}}(t)}+i_{c_{2}}(t) \\
& \frac{x(t)-v_{c_{1}}(t)}{R_{1}}=c_{1}^{c_{1} \frac{d v_{c_{1}}(t)}{d t}+c_{2} \frac{d y(t)}{d t}}
\end{align*}
$$

Almost have what we want... need to get $v_{c_{1}}(t)$ out of the equation!
KVL around $2^{\text {nd }}$ Mesh

$$
\begin{aligned}
v_{c_{1}}(t) & =\underbrace{v_{2}}_{R_{R_{2}}(t)+y(t)}+\frac{i_{c_{2}}(t)}{}=R_{2}\left[c_{2} \frac{d y(t)}{d t}\right] \\
& =\}
\end{aligned}
$$

($\$ 1.1$)
use all this to eliminate $v_{v_{1}}(t)$

Put (林) into (H) to get:
First re-write (ϕ):

$$
c_{2} \frac{d y(t)}{d t}+c_{1} \frac{d v_{c_{1}}(t)}{d t}+\frac{1}{R_{1}} v_{c_{1}}(t)=\frac{1}{R_{1}} x(t)
$$

From (\$th) we get:

$$
\left.v_{n}(t)=R_{2} C_{2} \frac{d y(6)}{d t}+y(t)\right)
$$

and

$$
\frac{d v_{r}(t)}{d t}=R_{2} c_{2} \frac{d^{2} y(t)}{d t^{2}}+\frac{d y(t)}{d t}
$$

We get:

$$
C_{1} R_{2} C_{2} \frac{d^{2} y(t)}{d t^{2}}+\left(C_{1}+\frac{R_{2} C_{2}}{R_{1}}+C_{2}\right) \frac{d y(t)}{d t}+\frac{1}{R_{1}} y(t)=\frac{1}{R_{1}} x(t)
$$

which could then be normalized by multiplying by $1 / C_{1} R_{2} C_{2}$

DC Motor Example ("Armature Con tool")
Assume fixeel magnetic.

Applied
Voltage

- DC Motor consists of lots of wive wound on an "armature"
\Rightarrow motor has
"parasitic"
- As motor armature turns, the coils $R \& L$ cut magnetic flux lines \Longrightarrow induces voltage

$$
v_{a}(t)=K_{e} \omega(t)
$$ pros ontional to speed

Now write KUL covound the armature circuit:

$$
x(t)=R i(t)+L \frac{d i(t)}{d t}+K_{e} \omega(t)
$$

- The courewt $i(t)$ in the windings interacts w/ the magnetic field to create l a force which arovicks the motor torque $T(t)$

$$
T(t)=K_{t} i(t)
$$

Finally, rotational mech conics provides

$$
T(t)=\underbrace{I \frac{d \omega(t)}{d t}}_{\substack{\text { Torque } \\ \text { due to } \\ \text { mass } I}}+\underbrace{b \omega(t)}_{\substack{\text { Torgire } \\ \text { due to } \\ \text { friction }}} \quad(\$ \notin D)
$$

Putting (d\&A) into (At) and dividing by K_{t} gives:

$$
i(t)=\frac{I}{k_{t}} \frac{d \omega(t)}{d t}+\frac{y_{1}}{k_{t}} \omega(t)
$$

Now put this in (A) to get:

$$
\frac{L I}{K_{t}} \frac{d^{2} \omega(t)}{d t}+\left(\frac{R I+L b}{K_{t}}\right) \frac{d \omega(t)}{d t}+\left(K_{e}+\frac{R b}{K_{t}}\right) \omega(t)=x(t)
$$

\Rightarrow Second-Order Jiff. Es.
\Rightarrow Could be Oscillatory!

