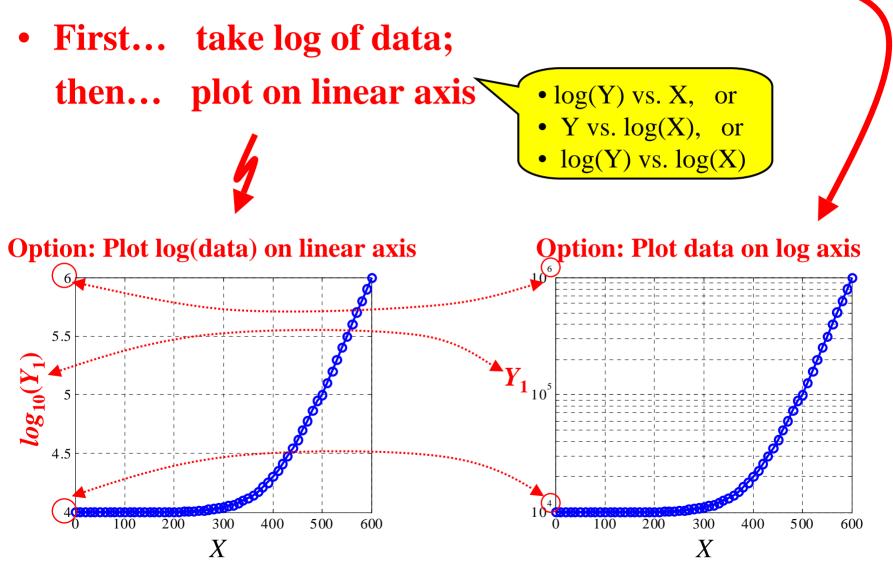
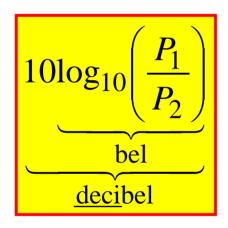

Ch. 6: Logarithmic Unit The Decibel

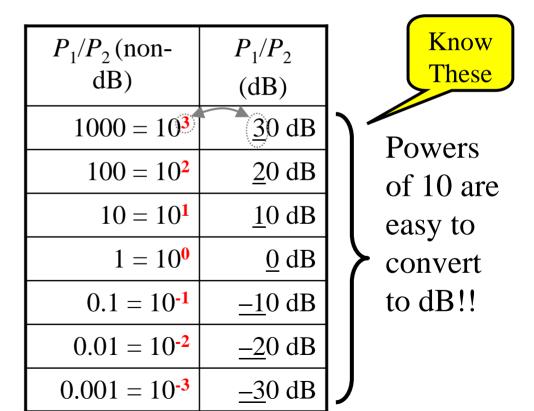
Notes from EECE 281... "Ch. 6" refers to the EECE 281 book called "Electrical Engineering Uncovered"


Logarithmic Scale

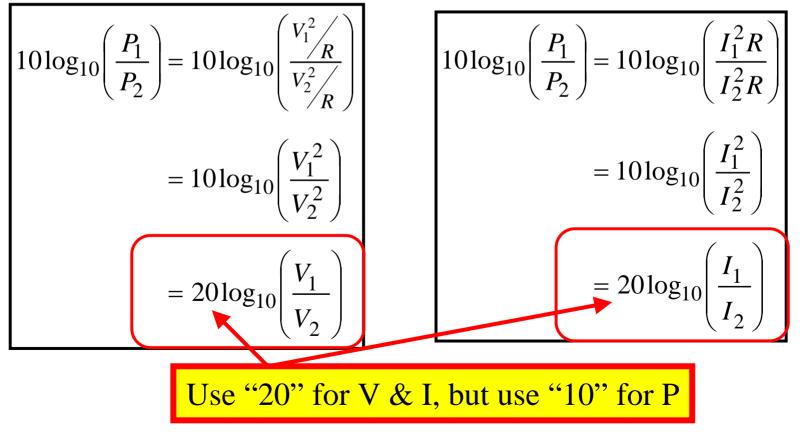
- Engineers deal with data that can take on values over a <u>HUGE</u> range!!! <u>i.e., Plotting Y vs. X</u>
 - Plotting this on a "linear" scale doesn't show the data well
 - so use "logarithmic" <u>scale(s)</u>
 - Y on log axis vs. X on linear axis, or
 - Y on linear axis vs. X on log axis, or
 - Y on **log** axis vs. X on **log** axis, ... depends on data
 - The following plots illustrate this!
 - Two sets of data that are very different, but you can't see it on the linear scale!!!


Logarithmic Scale

• Instead of using a logarithmic *axis*...


Defining the Decibel

- Building on this $log_{10}(data)$ idea...
- **Definition**: use "decibels" as a **logarithmic unit** of measure for a **ratio** between **two powers**



 $P_1/P_2 = 2 \rightarrow ~~ 3 \text{ dB}$

"Extending" the Decibel

- Even though dB is defined for power we can extend it for use with voltages and currents:
 - assume voltages to be compared are across same resistance

20/24

Using the Decibel

• Comparing two quantities in system(s) $P_2 = 1 \text{ mW}$ $P_{3} = 10 \text{ W}$ $P_1 = 2 \text{ mW}$ Cable → Amplifier $10\log_{10}\left(\frac{P_3}{P_2}\right) = 10\log_{10}\left(\frac{10}{10^{-3}}\right) = 40 \,\mathrm{dB}$ $10\log_{10}\left(\frac{P_2}{P_1}\right) = 10\log_{10}\left(\frac{1}{2}\right) = -3 \,\mathrm{dB}$ The Cable has a **Gain** of -3 dB The Amplifier has a Gain of 40 dB Negative dB gain = loss... "Cable has a 3 dB Loss" $10\log_{10}\left(\frac{P_3}{P_1}\right) = 10\log_{10}\left(\frac{10}{2 \times 10^{-3}}\right) = 37 \text{ dB}$ log(ab) = log(a) + log(b)The System has a Gain of 37 dB Gains in a "cascade" add in dB: -3 dB + 40 dB = 37 dB

Using the Decibel (2)

- Using decibels for amplifier gains
 - **<u>MUST</u>** disregard the "negative" for an inverting gain
 - Recall: Inverting Op Amp Gain = $-R_F/R_1$
 - In dB this is stated as: " $20\log_{10}(R_F/R_1)$ (inverting)"
- Comparing a quantity in a system to a reference
 - Sometimes common <u>arbitrary references</u> are used
 - 1 W \rightarrow 10log₁₀(P/1W) **dBW**
 - 1 mW \rightarrow 10 $log_{10}(P/0.001W)$ dBmW or just dBm
 - Sometimes a physically meaningful reference is used
 - See table for sound pressure level

	-			
Sounds	Sound Pressure Level		Sound Pressure Level	Not Power →20log ₁₀ (SPL/y)
	(µBar	;)	(dB)	
Jet Plane (@ 30 m)		2000	140	What should
Threshold of Pain			130	"y" be? A Reference
		200	120	Level!!
Chainsaw			110	
Rock Concert/Club		20	100	
			90	201az (20)
Busy Street	2		80	$20\log_{10}\left[\frac{20}{0.0002}\right]$
			70	
Normal Speech		0.2	60	For Non-Power
			50	Factor of 10
		0.02	40	→20 dB
Quiet Room	Reference		30	
Recording Studio		0.002	20	
	→ 0 dB		10	
Threshold of Hearing		0.0002	0	23/24