
Embedded Zerotree Wavelet (EZW)
Image Compression

These Notes are Based on (or use material from): 
1. J. M. Shapiro, “Embedded Image Coding Using Zerotrees of Wavelet 

Coefficients,” IEEE Trans. on Signal Processing, Vol. 41, No. 12, pp. 3445 
– 3462, Dec. 1993.

2. J. S. Walker and T. Q. Nguyen, “Wavelet-Based Image Compression,” Ch. 6 
in The Transform and Data Compression Handbook, edited by K. R. Rao
and P. C. Yip, CRC Press, 2001.

3. C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 Still Image 
Coding System: An Overview,” IEEE Trans. Cons. Elect., Vol. 46., No. 4, 
pp. 1103 – 1127, Nov. 2000.

4. B. E. Usevitch, A Tutorial on Modern Lossy Wavelet Image Compression: 
Foundations of JPEG 2000, IEEE Signal Processing Magazine, pp. 22 – 35, 
Sept. 2001.

The Original Paper that 
introduced the EZW Innovation



The embedded zerotree wavelet algorithm (EZW) is a simple, yet 
remarkably effective, image compression algorithm, having the property 
that the bits in the bit stream are generated in order of importance, 
yielding a fully embedded code.  The embedded code represents a sequence 
of binary decisions that distinguish an image from the “null” image.  Using 
an embedded coding algorithm, an encoder can terminate the encoding 
at any point thereby allowing a target rate or target distortion metric to be 
met exactly.  Also, given a bit stream, the decoder can cease decoding at 
any point in the bit stream and still produce exactly the same image that
would have been encoded at the bit rate corresponding to the truncated bit 
stream.  In addition to producing a fully embedded bit stream, EZW 
consistently produces compression results that are competitive with 
virtually all known compression algorithms on standard test images.  Yet 
this performance is achieved with a technique that requires absolutely no 
training, no pre-stored tables or codebooks, and requires no prior 
knowledge of the image source…

Part of Abstract from Shapiro’s Original Paper [1]



The EZW algorithm is based on four key concepts [1]:

1. Discrete wavelet transform  (hierarchical subband decomp.) 

2. Prediction of the absence of significant information across 
scales by exploiting the self-similarity inherent in images

3. Entropy-coded successive-approximation quantization

4. “Universal” lossless data compression which is achieved via 
adaptive arithmetic coding.



• Traditional DCT & subband coding: trends “obscure” anomalies that carry 
info

– E.g., edges get spread, yielding many non-zero coefficients to be coded

• Wavelets are better at localizing edges and other anomalies

– Yields a few non-zero coefficients & many zero coefficients

– Difficulty: telling the decoder “where” the few non-zero’s are!!!
• Natural images in general have a low pass spectrum. 

– the wavelet coefficients will, on average, be smaller in the higher subbands than in 
the lower subbands. 

• Large wavelet coefficients are more important than smaller wavelet 
coefficients.

• Significance map (SM): binary array indicating location of zero/non-zero 
coefficients

– Typically requires a large fraction of bit budget to specify the SM

– Wavelets provide a structure (zerotrees) to the SM that yields efficient coding

Why Wavelets? [1]



Motivation for EZW [1]
• Transform Coding Needs “Significance Map” to be sent:

– At low bit rates a large # of  the transform coefficients are 
quantized to zero Insignificant Coefficients

– We’d like to not have to actually send any bits to code these 
• That is… allocate zero bits to the insignificant coefficients

– But… you need to somehow inform the decoder about which 
coefficients are insignificant

• JPEG does this using run-length coding: (Run Length, Next Nonzero)
– In general… Send a significance map

64 56 48 32 24 16 0 0
56 48 40 24 16 23 0 0
40 40 30 24 16 8 0 8
32 32 32 24 24 16 0 0
24 24 16 8 0 0 8 0
16 16 8 0 0 8 0 0
0 0 0 8 0 0 0 0
0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 1
1 1 1 1 1 1 0 0
1 1 1 1 0 0 1 0
1 1 1 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0

Quantized Coefficients Significance Map



(Figure from [3])

Motivation for EZW (cont.)
Here is a two-stage wavelet decomposition of an image.  
Notice the large number of zeros (black) but that run-length 
coding is not likely to be the best approach:



Motivation for EZW (cont.)
But… Couldn’t we use entropy coding to make this more 
efficient?  Yes… in fact, that is what JPEG does.  But it is easy 
to see that even with entropy coding the significance map (SM) 
idea get “expensive” as we go to low bit rates [1].

Total Bit Cost = Bit Cost of SM  +  Bit Cost of Nonzero Values

Under some simplifying conditions (see [1]) Shapiro argued 
using entropy calculations that the percentage of total cost 
taken up by SM coding increases as the bit rate decreases!!!

SM approach gets increasingly inefficient as we try to 
compress more!!!!!  The cost of specifying where the few 
significant coefficients are gets large at low rates

Example (see [1]): at 0.5 bit/pixel must use 54% of bits for SM



Shapiro’s Wavelet Idea for Solving SM Problem 
Quad Trees: 

> Same Spatial Region
> Different Resolution Levels (sub-bands)

Idea: An insignificant coefficient is VERY likely to have all of 
its “descendents” on its quad tree also be insignificant

> Such a coefficient is called a “Zerotree Root”

HH1

HL1

LH1

HH2

HL2

LH2

HH3

HL3

LH3

LL3
For final, LL subband: 
one covers the same 
area as one pixel in the 
“detail” space above



• Every wavelet coefficient at a given scale can be related to a set of coefficients at the 
next finer scale of similar orientation

• Zerotree root (ZTR) is a low scale “zero-valued” coefficient for which all the related 
higher-scale coefficients are also “zero-valued”

• Specifying a ZTR allows the decoder to “track down” and zero out all the related 
higher-scale coefficients

Zerotree Coding

From: B. E. Usevitch, A Tutorial on Modern Lossy Wavelet Image Compression: Foundations of JPEG 2000, IEEE SP Mag, Sept. 2001



Illustration of Zerotree Occurance

Original ImageCoefficients are 
“thresholded at 16”
in this example

Image and its WT 
are from [2]

HH1LH1

HH2LH2

HH3LH3

LL3 HL3 HL2
HL1



How Do Zerotrees Help?

The previous chart showed the prevalence of zerotrees.  
Now… how do they help with the SM problem?

You only have to tell the decoder where a zero root lies… it 
can figure out where all the descendent zeros on the tree lie 
by using the rule for generating quadtrees.

So… there is an agreed upon a rule and it so happens that 
zerotree roots happen alot when trying to code at low bit 
rates…

At low bit rates, zerotree roots occur frequently even at the 
coarse subband levels and that leads to long trees… and that 
very efficiently conveys the SM info

Note: we don’t really rely on a true SM, but we convey it 
using a model



What Causes Zerotrees?
Use 1-D example to illustrate:

t

x(t)

t

t

t

t

t

Wavelets
at various
resolution
levels

Increasing
Resolution

These wavelets have insignificant
inner product with signal at this location

Note: the wavelets 
themselves integrate 
to zero…



Successive Approximation: The Other Part of EZW
While zerotrees are a major part of EZW they are not the 
only significant part…

The other part has to do with embedded coding.

The goal of embedded coding is to create a bit stream that 
can be truncated at any point by the decoder….. AND you 
get a reconstructed signal that is R-D optimal for the number 
of bits so far received!

There are many ways to do this.  EZW uses a successive 
approximation view of quantization…
… and it links this idea to zerotree coding in a way that 
allows zerotrees to be highly exploited.



0

0

0

Coarse

Finer

Even 
Finer

Δ2Δ

2Δ4Δ

4Δ8Δ

T0

T1

T2

11 01

111 110 010 011001

0001
0010

0011
0100

0101
0110

01111001
1010

1011
1100

1101
1110

1111

101

Successive Approximation Quantizer
Start with coarsest and successively refine to the finest…
…. equivalent to starting with most significant magnitude bit

(sign bit is handled separately)
and successively including the least significant bits
…..Driven by descending threshold: Tj+1 = Tj/2

–T2

–T1

–T0

Sign Bit



Successive Approximation Quantizer (cont.)

Applying the SA quantizer with in EZW:

• Compute the wavelet transform of the image

• Set a threshold T0 near the middle of the range of WT coefficient 
magnitudes

• This gives a large “dead zone” that creates of lots of “insignificant 
values”

These give rise to lots of zerotrees

Zerotrees efficiently handle significance map problem

Send MSB’s of significant coefficients

• Then reduce threshold: Tj+1 = Tj/2

This causes some former insig coeff to become significant

only have to tell where new significance has occurred

For previously significant: refine by sending next finer bit



EZW Algorithm
Sequence of Decreasing Thresholds: To, T1, . . . , TN-1

with Ti  = Ti-1/2 and |coefficients| < 2 To

Maintain Two Separate Lists:
• Dominant List: coordinates of coeffs not yet found significant
• Subordinate List: magnitudes of coefficients already found to be significant

For each threshold, perform two passes: Dominant Pass then Subordinate Pass
Dominant Pass (Significance Map Pass)
• Coeff’s on Dominant List (i.e. currently insig.) are compared to Ti

– asking: has this coeff become significant at the new threshold?
• The resulting significance map is zero-tree coded and sent:

– Code significance using four symbols:
• Zerotree Root (ZTR) • Positive Significant (POS)
• Isolated Zero (IZ) • Negative Significant (NEG)

– For each coeff that has now become significant (POS or NEG)
• put its magnitude on the Subordinate List (making it eligible for future refinement)
• remove it from the Dominant List (because it has now been found significant)

Entropy Code 
using an 

Adaptive AC 



EZW Algorithm (cont.)
Subordinate Pass (Significance Coefficient Refinement Pass)
• Provide next lower signif. bit on the magnitude of each coeff on Subord List

– Halve the quantizer cells to get the next finer quantizer
– If magnitude of coeff is in upper half of old cell, provide “1”
– If magnitude of coeff is in lower half of old cell, provide “0”

• Entropy code sequence of refinement bits using an adaptive AC

Now repeat with next lower threshold

• Stop when total bit budget is exhausted

• Encoded stream is an embedded stream
– At first you get an “optimal” low rate version
– As more bits come you get a successively better distortion
– Can terminate at any time prior to reaching the “full-rate” version



EZW Example (from [1])



Example of 3-level WT 
of an 8x8 image

Largest coefficient magn = 63 T0 = 32
… So after thresholding we have:

63 -34

-31 23

49 10

14 -13

15 14

-9 -7

3 -12

14 8

7 13

3 4

-12 7

6 -1

5 -7

4 -2

3 9

3 2

4 6

3 -2

-2 2

0 4

3 6

0 3

3 6

-4 4

-5 9

3 0

-1 47

-3 2

2 -3

5 11

6 -4

5 6

63 -34

0 0

49 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 47

0 0

0 0

0 0

0 0

0 0

First Thresholding



63 -34

-31 23

49 10

14 -13

15 14

-9 -7

3 -12

14 8

7 13

3 4

-12 7

6 -1

5 -7

4 -2

3 9

3 2

4 6

3 -2

-2 2

0 4

3 6

0 3

3 6

-4 4

-5 9

3 0

-1 47

-3 2

2 -3

5 11

6 -4

5 6

63 -34

0 0

49 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 47

0 0

0 0

0 0

0 0

0 0

First Dominant Pass

Sequence of Symbols sent… but via Arith. Coding



• Dominant List: coordinates of coeffs not yet found significant
• Subordinate List: magnitudes of coefficients already found to be significant

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

Dominant List Contains 
Pointers to all these zeros

Subordinate List
63
34 
49
47 First Subordinate Pass

Now refines magnitude of each 
element on Subordinate List… Right 
now we know that each element’s 
magnitude lies in (32,64]

32 6448

Send “1”Send “0”

Stream due to 1st Sub. Pass: 1 0 1 0



63 -34

-31 23

49 10

14 -13

15 14

-9 -7

3 -12

14 8

7 13

3 4

-12 7

6 -1

5 -7

4 -2

3 9

3 2

4 6

3 -2

-2 2

0 4

3 6

0 3

3 6

-4 4

-5 9

3 0

-1 47

-3 2

2 -3

5 11

6 -4

5 6

63 -34

-31 23

49 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 47

0 0

0 0

0 0

0 0

0 0

2nd Dominant Pass
New Thresh: T1 = T0/2 = 16

Only need to re-visit those 
on the Sub-Ord List… (not 
those on the Dom List…
which are blacked on WT to 
the left)   But previously 
Significant values can be 
part of a zerotree!!!

There is some ambiguity 
as to if the can be ZT Roots 
(Shapiro did NOT… some 
later papers DID)… We 
allow it here.

-24Neg-31

24Pos23

ZTR8

ZTR14

ZTR-12

ZTR3

ZTR-7

ZTR-9

ZTR14

ZTR15

ZTRxxx

IZxxx

Recon 
Value

SymbolCoeff
Value



• Dominant List: coordinates of coeffs not yet found significant
• Subordinate List: magnitudes of coefficients already found to be significant

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

Dominant List Contains 
Pointers to all these zeros

Subordinate List
63
34 
49
47
-31
23

2nd Subordinate Pass
Now refines magnitude of each 
element on Subordinate List…

32 6448

Send “1”Send “0”

Stream due to 2nd Sub. Pass: 1 0 0  1 1 0

16 24 40 56

Send “1”Send “0”Send “1”Send “0”



The algorithm continues like this until the threshold falls below 
a user specified minimum threshold

It is important to remember that the sequence of symbols 
(alphabet size of 4) output during each dominant pass is 
arithmetic coded.


