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ABSTRACT

We study the problem of batch steganography when the senders use
feedback from a steganography detector. This brings an additional
level of complexity to the table due to the highly non-linear and
non-Gaussian response of modern steganalysis detectors as well
as the necessity to study the impact of the inevitable mismatch
between senders’ and Warden’s detectors. Two payload spreaders
are considered based on the oracle generating possible cover images.
Three different pooling strategies are devised and studied for a more
comprehensive assessment of security. Substantial security gains
are observed with respect to previous art — the detector-agnostic
image-merging sender. Close attention is paid to the impact of the
information available to the Warden on security.
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1 INTRODUCTION

Steganography is the art of hiding information in innocuously look-
ing objects called covers while steganalysis aims to detect evidence
that steganography took place. The main bulk of work in this field
concerns digital images and focuses on designing embedding al-
gorithms and detectors that perform the best in a single image
for a fixed relative payload. In practice, however, the sender can
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adopt a smarter strategy and distribute the communicated message
across multiple covers to decrease the chances of being detected.
On the other hand, the Warden is also free to combine evidence
from multiple images to decide whether steganography is taking
place.

Batch steganography and pooled steganalysis have been origi-
nally introduced in [12] together with the so-called shift hypothesis,
which claims that the embedding rigidly shifts detector outputs by
an amount that depends on the embedded payload size. The first
batch strategies [13, 14, 17], which focused on non-adaptive hiding
schemes and quantitative detectors, concluded that the payload
should either be concentrated in as few covers as possible or spread
evenly.

In [14], the author studied pooled steganalysis under the as-
sumption that the Warden knows the chunk sizes but not their
assignment to individual images. In a different setup [16], a local
outlier factor was used to identify the steganographer from among
a large set of users. Steganographer detection using graph convolu-
tional networks was proposed in [26]. The topic of learning optimal
pooling functions appeared in [19]. Batch steganography with mod-
ern content-adaptive embedding algorithms and three ad hoc batch
algorithms was studied in [20]. Adversarial embedding [24] was
extended to batches of cover images in [18] but performed poorly
against an adversarial-aware Warden. In [10], the authors consid-
ered batch steganography in JPEG images of different qualities. The
optimal size of the bag for Gaussian batch embedding was studied
in [22] without considering pooled steganalysis.

The next section explains the reasoning for the setup of batch
steganography and pooled steganalysis studied in this paper. To fur-
ther motivate our work, in Section 3 we demonstrate that the often
adopted shift hypothesis is no longer valid for content-adaptive em-
bedding, a fact that holds for the previous generation of detectors
built around rich models and linear classifiers as well as modern
detectors built as Convolutional Neural Networks (CNNs). In the
same section, we show that detectors exhibit highly non-Gaussian
distribution on covers. Section 4 contains a formal mathematical
description of three pooled detectors considered in this paper. Two
novel detector-informed batch steganographic techniques are de-
scribed and theoretically analyzed in Section 5. The setup of our
experiments, including implementation details, is explained in Sec-
tion 6. The results of all experiments together with their interpreta-
tion and discussion appear in Section 7. The paper is concluded in
Section 8.
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2 BASIC SETUP

In batch steganography, two actors, Alice and Bob, exchange mes-
sages hidden in digital images. To avoid being detected by an ad-
versary (the Warden), they use modern content-adaptive spatial-
domain steganography and adjust the payload size embedded in
each image to decrease the risk of being detected. The Warden com-
bines the outputs of a single-image detector applied to all images
exchanged by Alice and Bob in an effort to discover the use of a
steganographic channel and not necessarily identify which images
are cover and stego.

This problem of batch steganography and pooled steganalysis
may accept many different forms depending on what information
about the cover source, the steganographic method, the payload
spreading strategy, and possibly Warden’s detector is available to all
actors. Following Kerckhoffs’s principle, we are mainly interested
in the situation when the Warden has full knowledge of algorithms
used by Alice and Bob but not any shared secret or specific data used
by the senders. In particular, we assume that the steganographers
and the Warden have access to the same source of covers, which
they can use in any way to design a payload spreading strategy
as well as build detectors. We will also assume that the Warden
knows the steganographic method that might be in use and the
payload-spreading strategy. For example, if the steganographers use
feedback from a detector to determine the size of payload chunks
embedded in each image, the Warden can train the same detector
architecture on her end but it will ultimately be a slightly different
detector because of different training data. Moreover, the payload
chunk sizes will also generally depend on the cover images to which
the Warden does not have access.

Having said this, we will at times consider a payload-aware
Warden that has access to the exact payload chunk sizes that Alice
sends as a form of a worst case scenario and to evaluate the impact
of the lack of such precise knowledge.

While the steganographers may opt for a spreading strategy that
is free of any assumptions about Warden’s detector, such as the
Image Merging Sender (IMS) and Detectability / Distortion Limited
Senders (DeLS / DiLS) considered in [20], they are free to guess and
make use of a detector that is likely to be used by the Warden or
any other detector. The specific assumptions made in this paper
will be clarified later based on discussions and other important
experimental facts concerning content-adaptive embedding and
modern steganalysis detectors.

3 NEW CONTEXT

The problem of batch steganography and pooled steganalysis has
been revisited many times throughout the history of this field. In
this section, we challenge some of the assumptions made in prior
art to motivate our approach.

In [20], an argument based on the Central Limit Theorem (CLT)
was made that, on cover images, the outputs of a single-image de-
tector that uses high-dimensional rich models and a linear classifier
is zero-mean Gaussian. Leveraging the shift hypothesis, the authors
further assumed that the embedding merely shifts this distribution
by an amount that depends on the embedded payload. The Gaus-
sianity and the shift hypothesis allowed the authors to derive an
optimal pooled detector in the form of a matched filter, which in
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Figure 1: Histogram of the soft detector output for SRNet,
EfN B4, Xu2, and SRM with LCLC trained on covers vs. uni-
form payload mixture of HILL.

practice correlates detector outputs with shifts estimated from near
embedding invariants and the payload itself. Within this context,
they studied the IMS and DeLS (DiLS), the last two spreading so
that the same level of detectability (distortion) is induced in every
image.

Below, we demonstrate that modern detectors not only exhibit
highly non-Gaussian behavior but also clearly fail to satisfy the
shift hypothesis. This is true for both non-adaptive and content-
adaptive steganography and detectors based on rich models as well
as CNNs. For better readability, the description of datasets and
detectors, including their training for all experiments commented
upon in this section is postponed to Section 6.

3.1 Non-Gaussian distribution on covers

Figure 1 shows the histogram of soft outputs of four detectors on
256 X 256 grayscale cover images from ALASKA II when training
them as binary detectors on cover versus stego images embedded
with a uniform mixture of payloads from {0.05, 0.1, 0.2, ..., 1.4,
1.5} bpp. The soft output for the Spatial Rich Model (SRM) [8]
implemented with the Low Complexity Linear Classifier (LCLC) [4]
is the projection of the rich feature on the weight vector. For the
three CNNs, SRNet [2], Efficient Net B4, and SE-ResNet18 (Xu2
net), the output is the logit. The cover distribution for all detectors
is highly asymmetric and spiky. The distribution on covers is also
clearly non-Gaussian and bimodal for the networks with the left
“hump” corresponding to “easy covers.”

While the fact that CNNs produce highly non-Gaussian outputs
on both cover and stego images is less surprising due to their inher-
ent non-linearity, rich model features are also non-linear functions
of the image since they are higher-order statistics (histograms) of
quantized and truncated noise residuals.

3.2 Failure of the shift hypothesis

Figure 2 shows the histogram of two of the above four detectors
on stego images embedded with a range of fixed relative payloads.
With increased payload size, the distribution gradually “morphs”
to the right, affecting mostly the distribution tails, while the peak
at zero stays nearly stationary. In fact, in order to obtain a rigidly
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Figure 2: Histogram of detectors’ soft output on cover and
stego images embedded with HILL for a fixed relative pay-
load. Top: LCLC with SRM, bottom: SRNet. Note that the dis-
tributions morph in a far more complex manner than a sim-
ple shift.

shifted distribution, one would need to adopt a non-trivial spread-
ing strategy (see Section 5). The shift hypothesis, as originally
conceived in [12], is likely limited to quantitative detectors since
their expected test statistic is the change rate (payload).

3.3 Complex response curves

Undoubtedly, the key element in considering the problem of spread-
ing payload across images is the response of the Warden’s detector
as a function of the payload size — the detector’s response curve —
which depends on the cover image and the steganographic method.
A cover image with a completely flat response curve would be ideal
for embedding a large payload as the embedding is “invisible” to
the detector. And this is true regardless of whether it is detected
as cover or stego. On the other hand, an image exhibiting a steep
response curve should hold a comparatively smaller payload.
Since embedding a secret message is a stochastic process, the
detector response naturally exhibits a statistical spread, which in-
creases with increased payload (see Figure 3). To eliminate this
source of randomness, we define the response curve (RC) for a
given cover image and detector as the expected value of the re-
sponse over embeddings with different stego keys (seeds for an
embedding simulator). In Figure 3, the RCs are rendered with thick
blue lines obtained by averaging over 100 embeddings for each pay-
load with the light blue shade used to depict the standard deviation.
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Figure 3: SRNet’s response curves (the logit as a function of
embedded payload size) for six selected images. The solid
line is the expectation over 100 embeddings with different
stego keys with the light blue shade used to depict the stan-
dard deviation. Detector: SRNet trained on uniform payload
mixture for HILL.

The diversity of these responses is responsible for the failure of the
shift hypothesis.

Note that RCs are mostly non-decreasing with the exception
of a few images for which the response decreases for very large
payloads (e.g., image 10518). Despite the slight drop, the final class
label is unlikely to flip because the logit values are still very large.
While we are not certain why this is happening, it might be due to
the fact that the content-dependent stego noise for large payloads
might start resembling sensor noise in some images. To simplify
our reasoning, we adopt the feasible assumption that all RCs are
non-decreasing for the entire payload range.

The RCs tell the tale of what is happening at detection. For image
14407, the RC is initially flat and then steeply bends upwards. This
is likely because the image contains some complex content where
the detection is difficult, and once the embedding “spills over” to
other parts of the image due to increased payload, it quickly starts
contributing to detectability. The flat curves of images 18259 and
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Figure 4: Response curves for the same six selected images
as in Figure 3 and four different detectors.

12250 mean that they can hold a very large payload without chang-
ing the detector’s output. Lastly, we point out the steep response
curves for images 10518, 77793, and 08150 with smooth content
where embedding quickly becomes very detectable. Note that for
image 08150, the maximal embeddable payload is only about 1.2
bpp because the image contains wet pixels [7].

Figure 4 shows the RCs for the same six images for four different
detectors. Note that while the network detectors are very different
deep architectures, the response curves exhibit qualitative similari-
ties. This justifies our choice to use detector output as feedback for
batch steganography.

Finally, we remark that the steganographers must select their
images randomly from their cover source as any cover selection
or rejection would skew the statistics of the cover source, a fact
that would be detected by the Warden who is testing whether her
detector’s outputs are consistent with the detector distribution
on covers. Thus, the best the sender can do is to minimize the
disturbance to the distribution of Warden’s test statistic. We come
back to this problem in the next section when we lay out a more
detailed formulation of our setup.

4 POOLED STEGANALYSIS

In this section, we describe three pooling strategies for the Warden
that will be used to assess security of batch steganography in this
paper.

We will assume that the steganographers maintain an average
payload per pixel r € [0,1log, 3], the communication rate. By the
square root law [15], this means that, asymptotically, they will be
caught with near certainty. Our goal is not perfect or bounded
security, which would require the communication rate to taper off
to zero, but to minimize the detectability in each bag of images.
For simplicity, in the rest of this paper we assume that the Warden
knows r and that the embedding method is fixed and known to all
actors.

Let X denote the set of all possible cover images of some fixed

size. A cover bag of size B, X = (Xél), . ,XéB)), is formed by

selecting B cover images Xél), . ,X(EB) € X according to some
probability distribution over X. A spreading strategy S induces
a unique mapping a5 : X2 — [0,log, 318 that determines the
relative payloads (in bpp) embedded in the B images using a ternary
steganographic scheme. When r and S are clear from context, we
simply write o; € [0, log, 3] to denote the ith component of ;. s (X),
i.e, the relative payload embedded in the ith image. The map a;, 5
must satisfy the payload constraint

B
Zai =rB. (0
i=1

A payload tag for rate r is the relative payload 7, g (Xél)) that
the ith image receives for an infinitely large bag.

A single-image detector is a mapping d : X — R that assigns to
each image a soft output from the detector. The soft outputs can be
thresholded for a hard cover / stego decision based on application-
dependent requirements, such as controlling the false alarm rate.
The response curve for image Xél) and detector d is the function
0i:[0,log, 3] = R

oi(a) = B[d(X{)] )

obtained as the expected value of d on stego images Xél) when
embedding cover Xo(l) with payload a with random messages and
stego keys. To distinguish the mathematical objects used by the
Warden from those used by the steganographers, we will use the
superscript "W’ for the Warden and ’S’ for the steganographers.
Pooled detectors will be denoted with the Greek letter 7.

Let foW denote the Warden’s detector distribution on covers (c.f.,
Figure 1). Given B images Y(i), i=1,...,B, communicated by the
sender and under inspection by the Warden, Y = (Y(l), el y(B) ),
the Warden computes dW (Y for all images and infers whether
the sender uses steganography. In the absence of any other knowl-
edge about the spreading strategy or the communication rate, the
Warden would face a composite hypothesis test, namely testing for
a known distribution:

Ho: dV YDy~ YV foralli

. ®3)
Hy: dV(YD) x fOW for some i.



4.1 Correlator pooling

Since we assume that the Warden knows the spreading strategy and
the communication rate r, she can test for an increase in the detector
response s; = Q}N(ai) - Q}N(O). However, since she does not have
access to cover images, she needs to estimate the response on the
cover, QlW(O), or simply add it to the modeling error. Moreover, a
realistic Warden will also need to estimate the payloads «; from the
images at hand. In particular, she can obtain the estimated payload
a; possibly embedded in y(® by computing the ith component of
ar s(Y). The statistical hypothesis testing problem thus becomes

Hy : dW(Y(i)) =¢ for all i

A (4)
Hy: dVYD)y=g+& foralli,

where §; = @yv(dl-) - éyV(O) is the estimated expected increase of
the detector output using a RC élw(a) computed from the image
at hand Y, QIW((X) = E[dW(YU(,l))], where Yo([l) is image Y
embedded with relative message @, and ¢; is the modeling error.
In the simplest case of independent Gaussian noise samples & ~
N(o, al.z), the optimal detector would be the generalized matched
filter (correlator) [11]. In our work, we experimented with several
different forms of the estimators, including the estimator used
in [20] that used near embedding invariants. In the end, the best
overall performance was achieved with a pooled detector in the
form of a correlator
B
meor(Y) = Y d¥ (Y )y(an), 5)

i=1
where @V (Y() are detector outputs on the analyzed images and
y(a) is a logistic fit to embedding shifts @lw(a) - @lw(O) across a
dataset of cover images i.

4.2 LRT pooling

Another possibility for the Warden is to test whether the detector
output for the ith image is consistent with the distribution of her
detector f;?/ on stego images all embedded with the same relative
payload &;:

Ho: dV YDy~ WV foralli

. (6)
Hi: VYD)~ £V foralli
with the optimal pooled detector being the log-likelihood ratio
B W (aw) (v (@)
mirr(Y) = ) log — ( ) Y]

fOW (d(w)(y(i))) ’

i=1

4.3 Tag based pooling

We also consider the pooling strategy where the Warden makes use
of the tags 7; = 7, 5 (Xo(l)) and trains her single-image detector as a
binary classifier between covers and stego images embedded with
tags. For large enough bags, this is the correct stego source from
which the sender draws their images. Note that the stego source
only depends on the spreading strategy S and rate r. We make an
argument that, for large bags and for images in the bags selected
randomly, the optimal pooling strategy is averaging the detector
logits. This is because all three deep learning architectures used in

this paper apply average pooling' in the last convolutional layer
before the fully connected layer. If averaging the detector outputs
across all images in the bag was not the best strategy, one could
obtain a better single-image detector by splitting each image into
smaller tiles, applying the network to the tiles and learning a more
sophisticated strategy for combining the outputs. In summary, for
a tag-based single-image detector tW, our pooling strategy is

B
rrac(Y) = 3 >V (r), ®)
i=1

4.4 Average pooling

As the last option considered in this paper, we added a fourth
baseline pooling strategy in the form of a simple average of detector
outputs on analyzed images Y@,

B
v () = > dV (7). ©)
i=1

We also experimented with the max pooling strategy myiax (Y) =
max; dV (Y()) but do not report on it because it performed very
poorly w.r.t. the other strategies.

Note that in this paper, we will consider both a payload-aware
Warden that knows the senders’ payloads a; as well as a realistic
Warden that needs to estimate both from the image at hand.’

5 BATCH STEGANOGRAPHY

In this section, we describe two types of detector-informed spread-
ing strategies depending on the adopted statistical model for the
cover source. We also provide theoretical analysis of both senders
under certain simplifying assumptions. This analysis will be used
to better understand and interpret the experimental results in Sec-
tion 7. The sender’s single-image detector will be denoted dS.

5.1 Shift limited sender

The Shift Limited Sender (SLS) enforces the shift hypothesis by
considering the impact of the embedding on the statistical distribu-
tion of detector outputs across cover images. To embed an average
communication rate r in B cover images Xél), the SLS sender finds
the smallest § > 0 that leads to the same expected detector output
shift when embedding payload «; in Xél) , satisfying Z?:l a; =rB,
and

5 =0 (ai) - 0 (0) (10)
foralliforwhichgiS (“max(Xéi)))—QiS(O) > 5, where O(max(XO(i)) <

log, 3 is the maximal embeddable payload in Xél) equal to the
relative number of non-wet pixels. For images that do not sat-
isfy this condition (images with flat response curves), we set a; =
Omax (Xé l))~

As explained in Section 6 in more detail, the SLS was imple-
mented numerically using unidirectional search for § with the
image response curves.

! The word ’pooling’ not to be confused with pooling as used in pooled steganalysis.
2More on this appears in Section 7.2.



To obtain better insight, below we derive a closed form for the
payload by adopting a linear model for response curves:

03 (ai) - 0 (0) = bias;, (11)

with b; > 0. This means that we essentially assume that the RCs
are not completely flat, and we ignore the upper bound on ¢; <
Omax (Xo( 9 )-

Since the SLS requires b;a; = ¢ for all images X (@ in the bag, the
payload constraint (1) implies that § = rB/ Z?:l 1/b;, which gives
us the following expression for a;

rB

- (12)
bi Yk=1 ﬁ

o

5.2 Minimum deflection sender

The Minimum Deflection Sender (MDS) considers a statistical model
for each scene rather than across images. The specific cover used
by the sender is a sample from an acquisition oracle taking images
of the same scene with the same acquisition device. Sensor noise
and possibly small spatial shifts and rotations due to camera shake
would contribute to the randomness.

The main advantage of this approach is that the detector output
on such cover images is well modeled by a Gaussian distribution due
to the fact that the detector can be linearized on the neighborhood of
the noise-free cover image. We assume that the embedding changes
the expectation of the detector output based on the response curve
but does not change the variance. Hence, the sender determines
the payloads to minimize the power of the most powerful detector
for the following hypothesis testing problem:

Ho: dS(YD) ~ N(uj,02) foralli

A (13)
Hy: dBSYD)~ Ny +si,ai2) for all i,

where y; is the expected value of d on cover images generated
by the acquisition oracle for the ith image and s; is the expected
increase of detector response due to embedding payload «;. Note
that in (13) we assume that the acquisition variance dominates the
variance due to embedding a random message, hence the variances
are equal under both hypotheses. For a clairvoyant Warden who
uses the same detector dV = d5 and knows u; and O'iz, with cover
images drawn independently from the cover source, the most pow-
erful detector is the likelihood ratio test, which assumes the form
of a mean-shifted Gauss-Gauss problem. Thus, its performance is
determined by the deflection coefficient Z?: 1 sl.2 / al.z.

For practical implementation, we will assume that d° (Xél)) =
QiS(O) ~ yi; is approximately equal to the expected detector out-
put across all acquisitions. Hence, the MDS selects the «; to be

embedded in Xo(i) that minimizes the deflection’

B (oS(a;) - 03 ’
- S 0) »

i=1 g;

While our assumptions about Warden’s access to d and y; and

2 are too idealistic, we can claim that the MDS considers the worst

9

3 As explained in Section 6, for the MDS we use a logistic fit to the RCs instead of the
RCs to allow for a more efficient gradient descent based search algorithm.

case scenario. Since estimating the variances O'l-z experimentally

using the acquisition oracle would be far too elaborate and even
infeasible in many cases, we further simplify the MDS by assuming
that the variances 01.2 are all approximately the same. Experiments
on Monobase [1] with simulated acquisition at higher ISO (as in
Natural Steganography [1]) confirmed that the detector variance is
indeed rather stable across different scenes.

To obtain insight into how the MDS assigns payloads, we again
derive a closed form expression for «; using the linear model (11)
for the response curves g?(ai) - QI.S(O) = b;a;. To minimize the de-
flection A?(X) with equal variances crl.z = o? subject to the payload

constraint (1), we find the stationary point of the Lagrangian

l n 5 5 n
gzgkz_llbkak—)l(];ak—rB , (15)

which yields the closed form for MDS payloads
rB

T 2vB 1
bizkzlb'i

(16)

[¢4]

6 IMPLEMENTATION

In this section, we list the details regarding our implementation of
the batch steganography algorithms as well as the detectors.

6.1 Datasets

The dataset is the ALASKA 1I split into three parts (Split 1, 2, and
3), each containing 25,000 images further split into 22k, 1k, and 2k
images for training, validation, and testing. The splits are used to
study the impact of a mismatched training set for training Warden’s
detector. The images were developed as in [5] without the final
JPEG compression step. Alice uses the test set of Split 1 to send her
secret messages in bags of size B by sampling B images without
replacement. For each bag size, we use 200 test bags for evaluation.

Because of the sheer amount of possible combinations of the
steganographer’s detector, the Warden’s detector, stego schemes,
communication rates r, bag sizes, and spreading / pooling strategies,
we limit our exposition to the steganographic scheme HILL* and
mainly the rate r = 0.3 bpp. Instead of reporting the complete set
of results for all possible setups, we highlight the most interesting
and relevant findings.

6.2 Single-image detectors

For spreading, the sender uses a single-image detector d° in the
form of an SRNet (SRNet1) trained on Split 1. Splits 2 and 3 are used
by the Warden who will train dV as another instance of SRNet
(SRNet2) on Split 2, Xu2 on Split 2, EfN B4 on Split 3, and SRM on
Split 3. Two Warden Splits were used to ensure the results were not
Split dependent. EfN B4 and Xu2 were modified by removing the
average pooling and strides from the first two layers as described
in [25]. All network detectors are pre-trained on ImageNet, SRNet
was pre-trained on a binary task of steganalyzing J-UNIWARD [9]
(the so-called JIN pre-training exactly as described in [3]), while
the other networks were pre-trained on the ImageNet classification

“In particular, since we observed qualitatively and quantitatively similar conclusions
for MiPOD, the results are not reported.



task.” Steganalysis training on HILL / MiPOD is done with relative
payloads randomly drawn from the uniform distribution on the set
of relative payloads £ ={0.05, 0.1, 0.2, ..., 1.4,1.5}.

We also add another, qualitatively different single-image detector
based on the Spatial Rich Model (SRM) [8] and the LCLC, also
trained on payloads randomly uniformly drawn from P.

6.3 Pooled detectors

For the correlator pooling strategy, the Warden uses her test set
to fit a logistic curve to the embedding shifts QlW(a) - QIW(O) to
obtain y(@). The logistic curve is defined as
plx) = h, (17)
1+

ec(x—m) +
with 0 < a,m < 0o, —00 < ¢ < 0, h € R, and the fit is performed us-
ing non-linear least squares(‘ initialized at (a, m,c, h) = (1,1, -1,0).

For the LRT pooling strategy, the Warden embeds her test set
with a set of relative payloads  ={0.05, 0.1, 0.2, ..., 1.4,1.5}. Then
she proceeds to estimate the distribution of the detector’s output
W for each & € P.” To cover the entire range of possible payloads,
the Warden linearly interpolates between likelihoods evaluated at
the payload grid #.

For the tag-based poolers, the Warden fine-tunes her single image
detectors on a dataset embedded with tags computed by randomly
grouping all training images into bags of B = 100. Note that the
Warden has to train a tag-based pooler for each spreading strategy
and average communication rate.

6.4 Senders

The IMS was implemented by considering a given bag of B images
each with N pixels as a single large image into which the total
payload of rBN bits was embedded using an embedding simulator.
The costs were pre-computed from single images. We would like to
point out that this version of the IMS differs from the implementa-
tion used in [20]. There, the authors first pre-computed tags for all
images from their dataset and then simply selected B images for a
given bag. Thus, the communication rate r varied from bag to bag,
and was maintained across bags only in expectation. This difference
is rather important as will become apparent when studying the
detectability as a function of B.

The SLS was implemented by searching for the smallest § satisfy-
ing (10) using unidirectional search. The SLS uses the RCs estimated
from 100 embeddings of the cover image as explained in Section 3.3,
and linearly interpolates between grid points to cover the entire
range of possible payloads.

The MDS makes use of the same logistic model as in (17), fit
to each RC. A projected gradient descent with momentum ini-
tialized with IMS payloads for each bag was used to search for
the payloads that minimize the deflection (14). To facilitate con-
vergence, the learning rate and momentum were updated accord-
ing to a one-cycle scheduler [23]; the learning rate and momen-
tum fluctuated within the intervals [1072,10%] and [.90,.99], re-
spectively. To comply with the payload constraint and bounds
0 < i £ omax (X(i)), at each step of the gradient descent the
*Downloaded from https://github.com/rwightman/pytorch-image-models

Using scipy’s curve_fit function
"Using scipy’s gaussian_kde function

vector of payloads was projected to the feasible set of points, a
hyperplane formed by (1) contained within the B-dimensional box
[0, amax(X(l))]X <. x[o, amax(X(B))]~

7 EXPERIMENTS

This section contains the results of all our experiments and their
discussion. In particular, the proposed detector-informed senders
are evaluated against the IMS with four pooling strategies. Sub-
stantial space is devoted to studying the impact of the information
available to the Warden as well as the effect of Warden’s choices
for the single-image detector.

7.1 Best spreading and pooling strategies

In this section, we compare the SLS and MDS and the previously
proposed IMS. We also evaluate all poolers to see which pooling
strategy is the best. We do so for a range of bags and one fixed
setup with r = 0.3 bpp and HILL. The Warden uses the same
architecture as the senders, the SRNet, trained on Split 2 (SRNet2)
because it is not feasible to assume that the Warden has the same
training set. Section discusses the effect of this assumption. In this
section, we give the Warden the exact payloads a, s(X) that might
be embedded in each bag. In reality, the Warden would have to
estimate the payloads for each bag, which is likely to decrease the
detectability. We simplify here because executing experiments at
scale with having to estimate the payloads is very time consuming
as the Warden needs to estimate the average response curves w.r.t.
her detector for all images in the bag. In Section 7.2, we show that
the effect of using the estimated payloads leads to only a small drop
in detection accuracy and thus does not affect the results or our
conclusions much.

The detection performance of pooled detectors is reported us-
ing the weighted Area Under the ROC Curve (wAUC) as used in
ALASKA II [5]. We note that the pooled detector makes a binary de-
cision about each bag being either cover or stego. Figure 5 shows the
wAUC of four different poolers versus the bag size. Both detector-
aware senders offer much better security when compared to the
detector-agnostic IMS.

Note that for all senders, as the bag size grows, the detectabil-
ity initially decreases and eventually starts increasing due to the
Square Root Law since the senders maintain a positive communi-
cation rate r. The initial drop, which is far more pronounced for
the two detector-aware senders, can be explained by considering
the response curves. If a bag contains an image with a nearly flat
response curve, it will be embedded close to its maximum capacity
while other images will receive smaller payloads. Taking a bag
of two as an example, it is more advantageous for the sender to
embed payload 0.6 bpp in one of the images rather than 0.3 in each.
The spreading thus initially helps decrease detectability to a point
when the SRL starts engaging and the bags provide more data to
reach a more reliable decision about the use of steganography. Note
that this result is in stark contrast with the behavior of the IMS
from [20] because the IMS there worked with fixed tags attached
to all images and only embedded a given relative payload in each
bag on average. Thus, it was unable to utilize the effect discussed
above. Our concept of batch steganography in bags is more flexible
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Figure 5: Detection accuracy of Warden’s SRNet2 in terms
of wAUC versus the bag size for IMS, SLS, and MDS (top to
bottom) with four different pooling strategies.
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Figure 6: Histogram of relative payloads across the training
dataset for IMS, SLS, and MDS for bag size B = 100. Note that
the new detector-informed senders are far more aggressive
in assigning payloads to images with most images either be-
ing embedded with small payloads and a significant fraction
embedded fully.

and makes better use of the available cover images especially for
small bags.

Continuing our discussion of Figure 5, we now comment on
which poolers are the most effective in detecting batch steganogra-
phy across the same range of bag sizes and for all three senders.
For large bags, the best detection is obtained with the tag-based
detector across all three senders because it is trained on the clos-
est stego source. The correlator zcor and the LRT zpg typically
provide similar performance and are significantly better than the
simple average mayg. This difference is most striking for the MDS
because the simple average is essentially a correlator with uniform
payloads. Thus, the more non-uniform the payload distribution is
the larger the difference (see, e.g., the performance of 7mayG versus
COR across the senders).

The poor performance of the tag-based pooler for small bag sizes
is understandable because, as a binary detector on stego images
embedded with tags, it performs poorly (and is also more difficult
to train) as less than 14% of images have payload larger than 0.05
bpp with a high number of images with extremely small payloads.
It starts being effective only for larger bag sizes, which are more
likely to contain almost fully embedded images.

In Figure 6, we display the histogram of payloads embedded in
images from the training set for all three senders, B = 100, and
r = 0.3 bpp. The SLS and MDS are clearly much more aggressive
in using certain images close to their maximal embedding capacity
than the IMS. This is because these senders are aware of the fact
that the embedding is “invisible” to the sender’s SRNet. Understand-
ably, this leads to a large gain in security at least as long as the
Warden uses the same type of single-image detector. If the Warden
uses a different detector for pooled steganalysis, the almost fully
embedded images may become detectable if their response curves
are not as flat as the sender’s. We take a look at this important
aspect in Section 7.3.

Figure 6 also shows that MDS is slightly more aggressive than
SLS in allocating very large or very small payloads. This can be un-
derstood from Egs. (12) and (16) showing the payloads as functions
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Figure 7: SRNet’s response curves for a bag of 8 images
with payloads allocated to each image by IMS, SLS, and MDS
marked on the x-axis.

of the RC slopes. The payload of the MDS is inversely proportional
to the square of the slope, making this sender more aggressive when
allocating the payload than the SLS. Figure 7 compares the three
senders IMS, SLS, and MDS for a given bag of 8 images. For im-
ages 50571, 38163, and 29092, which have a flat response curve, the
detector-aware senders embed larger payloads than the detector-
agnostic IMS. For images with an increasing RC, such as 30928 and
25597, SLS and MDS are more conservative than IMS and allocate
a smaller payload.

As the last experiment of this section, we include a study of the
effect of the average communication rate r on the optimal bag size.
We limit our study to the SLS and SRNet2 as Warden’s detector.
Figure 8 shows wAUC of the best pooler as a function of the bag
size for four rate r. Note that with increased rate the dip becomes
shallower and also starts moving towards smaller bag sizes.

7.2 Effect of estimating the payloads

In any realistic scenario, the Warden may know the algorithms
used to embed and spread the payloads but not Alice’s data. All
three senders compute the payload size to be embedded in each
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Figure 8: Detection accuracy of the best pooler of SRNet2 for
SLS versus the bag size B and four communication rates r.

image from the cover image itself. The Warden, however, will need
to estimate the payloads from the images at hand. The embedding
changes themselves may skew the estimated payload size should
the Warden estimate from a stego image. For the IMS, the effect
of the embedding changes on computing the embedding costs (or
Fisher information for model-based steganography) is known to be
practically negligible [6, 21]. For the new detector-aware senders,
however, the payloads are also determined from the cover response
curves, which are more sensitive to the embedding itself. For an
image that receives a large payload, the Warden may end up with a
very different response curve. Thus, even if she knows the spreading
strategy, the communication rate, and the type of the detector
used by the senders, the payloads that potentially reside in the
images will be subject to an estimation error and lower the detection
accuracy. We study this effect in this section.

First, it is hard to imagine that it would be advantageous for
the Warden to intentionally mismatch the payloads potentially
embedded in the images. Thus, the Warden should estimate them
using a detector that is as close to the senders’ detector as possible.
As our first experiment, in Table 1 we compare the accuracy of the
pooled detectors for a Warden who trains

(1) SRNet2 on her dataset for 4V but uses the knowledge of the
exact payloads a, 5(X).

(2) SRNet2 on her dataset for dV and uses SRNet2 for estimating
the payloads from the images at hand a, s(Y).

Note that Case 1 corresponds to the setup assumed in the previous
section. In Figure 9, we show the ROCs corresponding to two se-
lected entries of Table 1. While estimating the payloads leads to a
performance drop, the effect is minimal because most images in the
bag hold small payloads and thus their response curves are close
to the response curves of the corresponding covers. For images
embedded with medium to large payloads, which however form
a small portion of each bag, the estimated payloads may be very
different. Figure 10 shows the the relative payloads used by the
sender as determined from her version of SRNet1 versus payloads
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Table 1: Accuracy (WAUC) of Warden’s detectors for two senders, two bag sizes, and two pooling strategies with exact/ estimated
payloads. Warden’s single-image detector is SRNet2, HILL 0.3 bpp.
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Figure 9: ROCs of pooling strategies using Warden’s SRNet2
with exact and estimated payloads; 7y pT for SLS with bag size
16 (top) and ncor for MDS with bag size 64 (bottom) for HILL
atr = 0.3 bpp.

estimated using SRNet2 by the Warden from a HILL stego bag for
SLS and MDS for B = 16 and r = 0.3 bpp.

7.3 Devious Warden

Since the SLS and MDS use feedback from a detector, while being
more powerful than IMS when the Warden uses the same type
of detector for pooling, they could potentially become vulnerable
when the Warden intentionally or unintentionally mismatches the
single-image detector. In this section, we study such a devious War-
den who trains a different architecture (or a completely different
single-image detector) on her training set. Since the effect of using
payloads estimated from the images at hand instead of exact ones
is small, we give the Warden the exact same payloads for pooling.
This has been adopted for simplicity due to excessive computational
cost of having to estimate the average response curves. Moreover,
it helps us isolate the effect of the mismatched detector for pool-
ing. The experiments were carried out for the SLS, MDS and IMS
with SRNet2, EfN B4, Xu2, and SRM for a range of bag sizes. The
results displayed in Table (2) for bag sizes 16 and 64 show that the
Warden indeed may gain from mismatching the detector. The gain
is, however, quite small, and the detector-aware senders still ex-
hibit a much better security than the IMS. In Figure (11), we show
wAUC of Warden’s best detector from among 16 different possibil-
ities (four pooling strategies and four single-image detectors) as
a function of the bag size. The new spreading strategies perform
significantly better than IMS, even when considering different CNN
architectures, training sets, and a very different detector (SRM) than
what Alice uses. For bag sizes between 8 and 128, security gains
are between 0.10 and 0.15 in terms of wAUC when comparing the
new strategies to IMS.

8 CONCLUSIONS

When communicating using steganography, the sender can be
clever and choose to split the desired secret message among a bag
of cover images to avoid being detected. In this paper, we determine
the sizes of the payload chunks by inspecting how each image in
the bag reacts to embedding in terms of changing the soft output
of a steganography detector as a function of the payload size, the
image’s “response curve” Two such detector-informed senders are
investigated for spatial-domain steganography: 1) a sender that
makes sure that all images in the bag experience the same shift
in the detector response and 2) a sender that minimizes the sum
of squares of the shifts, which can be interpreted as a deflection
coefficient for a binary test distinguishing stego images from covers
naturally corrupted by acquisition noise.

Using feedback from a detector indeed brings substantial im-
provement over the previously proposed image-merging sender
that considers the bag as a single large image. The detectability as
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IMS .8902 8836 .8877 .6664 .9858 9907 .9842 7244

Table 2: Accuracy (WAUC) of Warden’s detectors for three senders, two bag sizes, with two pooling strategies for HILL 0.3 bpp.
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Figure 10: Payloads estimated by the Warden using SRNet2
versus the true embedded payloads as determined by the

senders using SRNet1 for the SLS (top) and MDS (bottom).
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Figure 11: Accuracy (WAUC) of the best detector and best
pooling strategy versus the bag size for IMS, SLS, and MDS.
The best detector for each setting is highlighted using a dif-
ferent marker.

a function of the bag size for a fixed secret communication rate ini-
tially decreases, because the sender makes better use of all available
covers, and then starts increasing due to the square root law since
a fixed rate is maintained. We experimentally determined that the
optimal bag size is 8-16 images per bag depending on the average
communication rate.

On the detection side, we study three different strategies for
the Warden to pool the outputs of her single-image detector: 1)
correlator of the outputs with the expected detector output increase,
2) likelihood ratio test based on actual models of the detector output,
and 3) detector trained on payload tags that the images would
receive for sufficiently large bags. The likelihood ratio was the best
pooling strategy for small to moderate bag sizes up to 16 while the
tag based detector performed better for bag sizes larger than 16.

Using feedback from a detector for spreading can potentially
backfire as the Warden may use a different detector for pooling. We
looked into this issue in great detail by training alternative deep
learning architectures as well as older rich-model based detectors.
We discovered that doing so increases the Warden’s accuracy, but
not substantially and the detector-aware senders are still much
more secure than the IMS.

In the future, we intend to further investigate the problem of
optimal bag size by modeling the statistical collection of response
curves. We also intend to explore the JPEG domain.
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