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Abstract. In this paper, we describe a new forensic tool for revealing digitally 
altered images by detecting the presence of photo-response non-uniformity 
noise (PRNU) in small regions. This method assumes that either the camera 
that took the image is available to the analyst or at least some other non-
tampered images taken by the camera are available. Forgery detection using the 
PRNU involves two steps – estimation of the PRNU from non-tampered images 
and its detection in individual image regions. From a simplified model of the 
sensor output, we design optimal PRNU estimators and detectors. Binary hy-
pothesis testing is used to determine which regions are forged. The method is 
tested on forged images coming from a variety of digital cameras and with dif-
ferent JPEG quality factors. The approximate probability of falsely identifying 
a forged region in a non-forged image is estimated by running the algorithm on 
a large number of non-forged images. 

1 Introduction 

The practice of forging photographs is probably as old as the art of photography it-
self. Digital photography and powerful image editing software make it very easy 
today to create believable forgeries of digital pictures even for a non-specialist. Veri-
fying the content of digital images or identifying forged regions can be very crucial 
when digital pictures or video are presented as evidence in the court of law, for ex-
ample, in child pornography and movie piracy cases (http://www.mpaa.org/piracy. 
asp) and even in cases involving scientific fraud [1,2]. 

Recently, several different methods for detecting digital forgeries were proposed 
[3–11]. For each of these methods, there are circumstances when they will fail to 
detect a forgery. For example, the copy-move detection method [9,10] is limited to 
one particular case of forgeries, when a certain part of the image was copied and 
pasted somewhere else in the same image (e.g., to cover an object). Methods based on 
detecting traces of resampling [6] or color filter array (CFA) interpolation artifacts [7] 
may produce less reliable results for processed images stored in the JPEG format. The 
method based on detection of inconsistencies in lighting [8] assumes nearly Lamber-
tian surfaces for both the forged and original areas and might not work accurately 
when the object does not have a compatible surface, when pictures of both the origi-



nal and forged objects were taken under approximately similar lighting conditions, or 
during a cloudy day when no directional light source was present. 

Detection of digital forgeries is a complex problem with no universally applicable 
solution. What is needed is a set of different tools that can be all applied to the image 
at hand. The decision about the content authenticity is then reached by interpreting 
the results obtained from different approaches. This accumulative evidence may pro-
vide a convincing enough argument that each individual method cannot. 

In this paper, we describe another digital forensic tool by extending previous 
work on detection of forgeries [12] and employ the methodology recently proposed 
for camera identification [13]. The method localizes tampered image regions using 
the sensor pattern noise that each camera involuntarily inserts into each image as an 
authentication watermark. This approach is applicable whenever we are in a situation 
when the forged image is claimed to have been taken by a camera that we have in 
possession or, at least, we have other non-forged images taken by the camera. Be-
cause the pattern noise appears to be a unique stochastic fingerprint of digital imaging 
sensors [13], forged regions could be identified by verifying the consistency of their 
noise residual with the corresponding part of the pattern noise. 

In the next section, we describe the sensor output model from which we derive in 
Section 3 and 4 an estimator and detector of the photo-response non-uniformity 
(PRNU). The pdf of the test statistics is obtained through a correlation predictor dis-
cussed in Section 5. The complete algorithm for forgery detection based on Neyman-
Pearson hypothesis testing is detailed in Section 6. Experimental results are included 
in Section 7, while the last section contains a summary and discussion of limitations. 

We use boldface font for vectors or matrices with X[i] denoting the i-th component 
of X.  Unless mentioned otherwise, all operations among vectors or matrices, such as 
product, ratio, or raising to a power, are element-wise. The norm of X is denoted as 
||X|| = X X: with  being the dot product of two vectors. 
Denoting the sample means with a bar, the normalized correlation is 
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2 Sensor Output Model 

Each digital camera contains a sensor that digitizes the image created by the optics by 
converting photons hitting each pixel to electrical signal. The signal then goes 
through a complex chain of processing that includes signal quantization, white bal-
ance, demosaicking, if the sensor is equipped with a CFA, color correction, gamma 
correction, filtering, and, optionally, JPEG compression. The processing details may 
vary greatly between cameras and are not always easily available. 

In this section, we present a simplified model of in-camera processing [14] that 
includes the steps that are most relevant to our approach to forgery detection. We 
denote by I[i] the signal in one color channel at pixel i, i = 1, …, n, generated by the 
sensor before demosaicking is applied and by Y[i] the incident light intensity at pixel 



i. Here, we assume that the pixels are indexed, for example, in a row-wise manner 
and n = n1n2, where n1×n2 are image dimensions. Dropping the pixel indices for better 
readability, we use the following model of the sensor output 

[ ]( ) ng γγ= ⋅ + + +I 1 K Y Θ Θ q ,                                   (1) 

where g is the color channel gain, γ is the gamma correction factor (typically, γ ≈ 
1/2.2), K is a zero-mean multiplicative factor responsible for PRNU (the sensor fin-
gerprint [13]),  is the quantization noise and  is a combination of various noise 
sources, such as dark current, shot noise, read-out noise, etc. [15,16]. The gain factor 
g adjusts the pixel intensity level according to the sensitivity of the pixel in the red, 
green, and blue spectral bands to obtain the correct white balance. We remind that all 
operations in (1) are element-wise. 

qΘ nΘ

We linearize (1) by factoring out the dominant term Y and leaving the first two 
terms in the Taylor expansion of (1 + x)γ = 1 + γ x + O(x2) 

                      (0) (0)γ= + +I I I K Θ ,          (2) 

where we denoted (0) (g γ=I Y)

γ γ γ= − = + − − + = +W I I IK I I + I I K Θ IK Ξ

 the sensor output in the absence of noise; Θ  is a 
complex of independent random noise components. 

3 PRNU Estimation 

In this section, we describe the first step in our approach to forgery detection, which 
is the estimation of the PRNU K from a set of N images taken by the camera. 

We first perform host signal rejection to improve the SNR between the signal of 
interest and observed data. The influence of the noiseless image I(0) is suppressed by 
subtracting from both sides of (2) an estimate  of  obtained using a 
denoising filter

(0)ˆ ( )F=I I (0)I
1 F 
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The noise term Ξ  contains  and additional distortion introduced by the denoising 
filter. 

Θ

Let I1, …, IN be N non-tampered images obtained by the camera. Assuming that 
the images are relatively smooth and non-saturated, the model (3) is approximately 
accurate. From (3), we have for each k∈{1, …, N} 
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1 We use a wavelet based denoising filter [17] that removes from images additive 

Gaussian noise with variance 2
Fσ  (e.g., 2

Fσ = 3 for images with 256 levels of gray). 



Under the assumption that for each pixel i the sequence  is WGN 
(white Gaussian noise), the maximum likelihood estimate of K  is (for detailed deri-
vation and further discussion, see [13]) 
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which we calculate up to the multiplicative constant γ. 
 

4 Detection of PRNU in Blocks 

Having estimated the PRNU K, we identify tampered regions in an image by detect-
ing the absence of PRNU in small blocks. Our basic assumption is that regions that 
have been tampered will not contain the PRNU from the camera. This is certainly true 
if the region has been copied from another image from a different camera. It is also 
true if the region is coming from an image obtained using the same camera as long as 
its spatial alignment in the image is different than in the forged image. We note that 
local “tampering” consisting of local image enhancement, such as contrast/brightness 
adjustment, sharpening, softening, or recoloring does not remove the PRNU and thus 
will not be detected by this forgery detection method. 
 If the forged image was modified using some known geometrical transformation, 
such as resizing or cropping, the PRNU must be pre-processed in the same manner 
before applying our forgery detection algorithm. If the geometrical operation is not 
known, the forgery detection algorithm might still apply after the geometrical trans-
formation is identified. For this purpose, we might use the PRNU itself as a registra-
tion pattern or apply other forensic techniques, such as detection of resampling [6]. 

The forgery detection algorithm follows a similar structure as the method reported 
in [12]. In this paper, however, we use a more sophisticated algorithm that produces 
more reliable results. The presence of PRNU in block B is detected using binary hy-
pothesis testing 

 H0: [ ] [ ]i i=W Ξ              

H1: ˆ[ ] [ ] [ ] [ ],    i i i i iτ= + ∈W I K Ξ B       (6) 

where B is the index set characterizing the block. In (6), we assume that within the 
tested block  is WGN with unknown mean and variance and τ is an unknown at-
tenuation factor due to further processing that the image of interest might have been 
subjected to, such as kernel filtering, enhancement, or lossy compression. 

Ξ

The optimal detector for (6) is the normalized correlation (see, for example, [18]).  

( )ˆ ,corrρ = IK W .        (7) 



where all signals in (7) are constrained to the block B. 

We can easily obtain the distribution of the test statistics ρ under hypothesis H0 
simply by correlating the known signal , i∈B, with noise residuals from other 
cameras. The distribution of ρ under H

ˆ[ ] [ ]i iI K

1 is much harder to obtain. In spatially uniform 
and relatively smooth blocks, the statistical model in (6) is relatively accurate. How-
ever, in highly textured blocks, Ξ  is not stationary or independent and the attenuation 
factor is not constant either because in such blocks the denoising filter is less success-
ful in separating the image content and the noise (see (3)). To estimate the distribu-
tion of ρ under H1 for a specific block, we construct a predictor of the test statistics as 
a function of selected factors that have a major influence on it. This predictor is ob-
tained from blocks coming from a few non-tampered images from the same camera. 
In essence, the predictor tells us what the value of ρ and its distribution should be if 
the block was not tampered. We describe the predictor in the next section. 

5    Correlation Predictor 

In this section, we construct a predictor of the correlation ρ under H1 on small blocks. 
From experiments, we determined that the most influential factors are image inten-
sity, texture, and signal flattening. 

The predictor is a mapping from some feature vector to a real number in the inter-
val [0,1]⎯the predicted value of ρ. In order for the algorithm to have good localiza-
tion properties, the block size should not be too large. However, it can not be too 
small either otherwise the correlation would have large variance. As a compromise, 
for typical sizes of digital camera images with 1 million pixels or more, square blocks 
with b×b pixels, b = 128, gave us quite good performance. 

The correlation is higher in areas of high intensity because the PRNU signal  
is multiplicative. However, due to the finite dynamic range, it is not present in satu-
rated regions (I[i] = 255 for 8-bit per channel images) and is attenuated for I

ˆIK

crit ≤ I[i] 
≤ 255, where the critical value of intensity Icrit is typically in the range 240–250. 
Thus, we define the intensity feature fI as the average attenuated image intensity 
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where att(x) is the attenuation function 
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and β is a constant. For example, for our tested Canon G2 camera, we experimentally 
determined Icrit = 250, β = 6. 

We calculate the texture feature fT from the high-frequency component of the im-
age. Since the denoising filter performs wavelet transform, we conveniently use this 



intermediate data and generate a high-pass filtered image F as the inverse wavelet 
transform of the two outmost high-frequency wavelet subbands. The texture feature is 
then computed as 

                            
5

1 1
| | 1 var ( [ ])i

f
i∈

=
+∑T FBB

,                              (10) 

where var5(F[i]) is the variance of F in the 5×5 neighborhood of the ith pixel. The 
reciprocal normalizes fT to the interval [0, 1]. 

Image processing that is of low-pass filtering nature, such as JPEG compression, 
further attenuates the PRNU and thus decreases the correlation. In a relatively flat and 
high intensity unsaturated region, the predictor would thus incorrectly predict a high 
correlation. These “flattened” areas will typically have a low value of the local vari-
ance. Thus, we added the flattening feature fS defined as the ratio of pixels in the 
block with average local variance above a certain threshold  

                          5
1 { | var ( [ ]) [ ] }f i i c i= ∈ > +S I IB
B

d ,                 (11) 

where c and d are appropriately chosen constants that depend on the sample variance 
of  (e.g., c = 0.03, and d = 0.1 for Canon G2). K̂

The correlation also strongly depends on the collective influence of texture and 
intensity. Sometimes, highly textured regions are also high-intensity regions. Thus, 
we included the following texture-intensity feature 
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To capture the relationship between the features and the correlation, we chose a 
simple polynomial multivariate least square fitting because it is fast and gave us re-
sults comparable to more sophisticated tools, such as neural networks. We denote by 
ρ the column vector of K normalized correlations (7) calculated for K image blocks 
and fI, fT, fS, and fTI the corresponding K-dimensional feature vectors. We model ρ as 
a linear combination of the 4 features and their 10 second-order terms 

0 1 2 3 4 4 5[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] ...k k k k k k k k kθ θ θ θ θ θ θ= + + + + + + +I T S TI I I I Tρ f f f f f f f f ,   (13) 

where = (θθ 0, θ1,…, θ14) is the vector of 15 coefficients determined using the least 

square estimator  and H is a K×15 matrix of features with a vector 
of ones in its first column. The estimated correlation is 

( ) 1T −
=θ H H H ρ

[ ]ˆ 1, , , , , , ,...f f f f f f f fρ = I T S TI I I I T θ .                        (14) 

In order to train the predictor, it is not necessary to use many images because one can 
extract a large number of overlapping blocks from a single image. In practice, good 
predictors can be obtained from as few as 8 images with diverse content. If the image 
under investigation is a JPEG image, it pays off to train the predictor on JPEG images 



of approximately the same quality factor as it leads to more accurate forgery detec-
tion. 

                                                                              
Fig. 1.  Scatter plot ρ  vs. ρ̂  for K=30,000 128×128 blocks from 20 images from Canon G2. 

6    Forgery Detection Algorithm 

The algorithm starts by sliding a 128×128 block across the image and calculating the 
value of the test statistics ρB for each block B. The pdf p(x|H0) of ρB under H0 is esti-
mated by correlating the PRNU with noise residuals from other cameras and is mod-
eled as generalized Gaussian (GG). For each block, the pdf p(x|H1) is obtained from 
the predictor and is modeled again as GG. We basically fit the GG model with pdf 

(| |/( / 2 (1/ )) xe )αμ σα σ α − −Γ through the data displayed in Fig. 1 with ρ̂ ∈ (ρB – ε, ρB + ε) 
for some small ε > 0. 

For each block B, we first perform the Neyman-Pearson (NP) hypothesis testing 
by fixing the false alarm rate α. We decide that B has been tampered if ρB < Th and 
attribute this decision to the central pixel i of B. The threshold Th is determined from 
the condition α =  As a result, we obtain a (n0( | H ) .

Th
p x dx∫ 1–127)×(n2–127) binary 

array T[i] = ρB [i] < Th indicating the tampered pixels i with T[i] = 1. 
While calculating T, we evaluate the p-values for each block (its central pixel i) 

1[ ] ( | H )
Th

p i p x dx
−∞

= ∫                         (15) 

which tell us how much we should trust our decision. We next remove from T tam-
pered pixels i for which p[i] > β and only label as tampered those pixels for which the 
p-value is smaller than β. The purpose of this step is to control falsely identified pix-
els as tampered. The resulting binary map identifying forged regions is what we call 
Digital X-ray. The forged objects show up as regions lacking the PRNU in the same 



manner as bones show up in X-rays as they shield the radiation. The PRNU serves the 
same role as the X-rays. 

The block dimensions impose a lower bound on the size of tampered regions that 
our algorithm can identify. Thus, we remove all simply connected regions from T that 
contain fewer than b/2×b/2 (64×64) pixels. Finally, we dilate the resulting binary map 
T with a square 20×20 kernel. The purpose of this final step is to compensate for the 
fact that we attribute the decision about the whole block only to its central pixel and 
thus potentially miss portions of the tampered boundary region. 

7    Results 

In this section, we subject our forgery detection algorithm to practical tests on forged 
images from 3 cameras: Canon G2 with a 4.1 megapixel (MP) CCD, Olympus C765 
with a 4.1 MP CCD, and Olympus C3030 with a 3.3 MP CCD. We manipulated two 
images from each camera and stored them as TIFF and JPEG with quality factors 90 
and 75. The forgeries varied from a simple copy-move within one image to object 
adding or removing. The PRNU was calculated from 30 blue sky images or uniformly 
lit test images obtained using a light box. If regular images were used, about 50 im-
ages would be required to have the PRNU of the same quality. The predictors were 
trained on more than 30,000 blocks from 20 regular images. 

First, we calculated the test statistics for the unmatched cases by correlating 
15,000 128×128 blocks from the PRNU with blocks from 100 images obtained using 
other cameras. A GG model was then fit through the data. The threshold Th was set 
to twice the standard deviation of the observed data. Since the GG fit was close to 
Gaussian for all tested cameras, this choice of threshold is equivalent to setting the 
false alarm rate α  to approximately 3%. The threshold β for p[i] was set to β = 0.01. 

The performance of the proposed forgery detection technique is shown in Figs. 2–
7, each of which includes the original image, the forged image, the NP decision re-
sult, and the forgery detection result (the X-ray) with tampered regions highlighted in 
the forged image. 
 As an implementation detail, we note that the sliding-window calculation of im-
age features for the predictors can be computed efficiently using convolution imple-
mented using FFT. For example, a full forgery X-ray of a 4 MP image takes between 
4–5 minutes on a Pentium 3.4 GHz computer using Matlab. 

To estimate the probability of false alarms for our method (detecting a tampered 
region in a non-forged image), we applied our algorithm to more than 400 non-forged 
images from the same three cameras in the JPEG format with quality 90. All false 
alarms have occurred in regions containing saturated background with dark regions, 
often combined with a complex texture, such as saturated sky shining through a mesh 
of black tree branches (two examples are shown in Fig. 8). Such regions naturally 
lack the PRNU and thus cannot be authenticated using our algorithm. Although not 
incorporated in this paper, these singularities could be removed by post-processing or 
expanding the predictor by adding a suitable feature. 
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(b) Original 

(c) TIFF (d) TIFF 
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Fig. 2. Forgery detection performance for a forged image from Canon G2 with α = 0.023 and 
β = 0.01: (a) forged image; (b) original image; (c), (e), (g) is the NP decision for TIFF, JPEG 
90, and JPEG 75, while (d), (f), (h) display the final forgery detection result. 
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Fig. 3. Forgery detection performance for a forged image from Canon G2 with α = 0.023 and 
β = 0.01. (a) forged image; (b) original image; (c), (e), (g) is the NP decision for TIFF, JPEG 
90, and JPEG 75, while (d), (f), (h) display the final forgery detection result. 
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Fig. 4. Forgery detection performance for a forged image from Olympus C765 with α = 0.023 
and β = 0.01. (a) forged image; (b) original image; (c), (e), (g) is the NP decision for TIFF, 
JPEG 90, and JPEG 75, while (d), (f), (h) display the final forgery detection result. 
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Fig. 5. Forgery detection performance for a forged image from Olympus C765 with α = 0.023 
and β = 0.01. (a) forged image; (b) original image; (c), (e), (g) is the NP decision for TIFF, 
JPEG 90, and JPEG 75, while (d), (f), (h) display the final forgery detection result. 
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Fig. 6. Forgery detection performance for a forged image from Olympus C3030 with α = 0.023 
and β = 0.01. (a) forged image; (b) original image; (c), (e), (g) is the NP decision for TIFF, 
JPEG 90, and JPEG 75, while (d), (f), (h) display the final forgery detection result. 
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Fig. 7. Forgery detection performance for a forged image from Olympus C3030 with α = 0.023 
and β = 0.01. (a) forged image; (b) original image; (c), (e), (g) is the NP decision for TIFF, 
JPEG 90, and JPEG 75, while (d), (f), (h) display the final forgery detection result. 

 



(a) (b) 

Fig. 8. Representative examples of image patterns giving rise to false alarms. (a) and (b) are 
two non-forged images from Canon G2. The highlighted regions were falsely identified as 
tampered. 

 
We next subjected the forgery detection algorithm to a large scale test in order to 

better evaluate its real performance. We prepared 345 forged images, all from Canon 
G2, into which we pasted rectangular regions from images taken using other cameras. 
The shape and the linear size of the pasted regions was selected randomly and no 
effort was made to make the forged regions look “naturally.” The smallest and the 
largest sides of the rectangles were 228 and 512 pixels, respectively. All forgeries 
were saved with two JPEG quality factors – 90 and 75 and then inspected using the 
Digital X-ray algorithm while registering the ratio of correctly detected forged pixels 
and the ratio of falsely identified pixels (non-tampered pixels marked as tampered). 
Both ratios were calculated with respect to the size of the forged area. 

Figure 9 shows the histograms of these two ratios expressed as percentage for all 
345 tested images. For the JPEG quality factor 90, at least 2/3 of the forged region 
was correctly identified in 85% of forgeries. On the other hand, only 23% of forgeries 
contained more than 20% of falsely identified pixels (again with respect to the size of 
the forged region). For the JPEG quality factor 75, in 73% cases the X-ray correctly 
detected at least 2/3 of the forged area, while 21% of forgeries contained more than 
20% of falsely identified pixels. The falsely identified areas were generally located 
around the boundary of the real forged area due to the 128×128 block size of the 
sliding window and the dilation post processing. We inspected all outliers and con-
cluded that the few cases when a large portion of the tampered region was missed 
occurred when the pasted region contained a large dark region. The conservative 
values of thresholds in our algorithm are the reason why the region was not labeled as 
tampered because in such regions the PRNU is naturally suppressed. The few large 
false positives were all of the type already mentioned above and shown in Fig. 8. 

 
8  Summary 
 
In this paper, we described a new method for revealing digitally manipulated images. 
Assuming we have either the camera that took the image or some other non-tampered 



images from the camera, we first estimate the photo-response non-uniformity, which 
serves as an authentication watermark. By detecting it in individual image blocks, one 
can localize the tampered region in the image. We use Neyman-Pearson hypothesis 
testing to identify the forged areas. The pdf of the test statistics is obtained from tests 
on images from other cameras (non-matched case) and using a correlation predictor 
(for the matched case). The proposed method can reliably identify forged areas larger 
than 64×64 pixels in JPEG images (tested with quality factor 75) while providing no 
falsely identified regions if regions that naturally lack the PRNU are excluded. 
 Among the potential future directions, we mention the possibility to construct a 
single predictor of the test statistics that would work for all cameras and calibrate it 
on a single non-forged image for a specific camera. This would further decrease the 
need for non-forged images taken with the same camera. 
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Fig. 9. Percentage of correctly identified tampered pixels (left) and falsely identified pixels 

(right) for 345 forged images from Canon G2 compressed using the JPEG with quality factor 
90 (top) and 75 (bottom). 
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