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ABSTRACT 

In this paper, we study the trade-off in steganography between the 
number of embedding changes and their amplitude. We assume 
that each element of the cover image is assigned a scalar value 
that measures the impact of making an embedding change at that 
pixel (e.g., the embedding distortion). Given the embedding 
impact profile of all pixels, we derive an analytic formula for the 
optimal number of pixels that should be used in combination with 
syndrome coding to minimize the overall embedding impact. We 
interpret the results and formulate several “rules of thumb” that 
should improve steganographic security. Contrary to what has 
been recommended in the literature before, our analysis implies 
that it is never optimal to only use the pixels with the smallest 
embedding impact. We also study q-ary embedding in the spatial 
domain and conclude that the smallest embedding impact is 
achieved for ternary schemes. This confirms some empirically 
derived facts previously published elsewhere.  

 Categories and Subject Descriptors 
E.4 Coding and Information Theory, I.4 Image processing and 
computer vision 

General Terms 
Algorithms, Security, Theory 

Keywords 
Steganography, steganalysis, matrix embedding, distortion, 
perturbed quantization, syndrome coding 

1. MOTIVATION 
The primary goal of steganography is to build a statistically 
undetectable communication channel (the famous Prisoner 
Problem [1–3]). In order to embed a secret message, the sender 
slightly modifies the cover object and obtains the embedded stego 
object. In steganography under the passive warden scenario, the 
goal is to communicate as many bits as possible without 

introducing any detectable artifacts into the cover object. 
Attempts to give a formal definition of steganographic security 
can be found in [4–7]. In practice, a steganographic scheme is 
considered secure if no existing attack can distinguish between 
cover and stego images with a success better than random 
guessing. 
Although the results of this study are applicable to steganography 
in general, we limit our discussions to digital images. The security 
of a steganographic scheme is a function of its attributes, which 
are (1) the cover image source whose properties are known to the 
attacker (Kerckhoffs’ principle), (2) the embedding operation that 
is applied to pixels to embed a message, and (3) the selection 
channel, which is a rule according to which pixels are selected for 
embedding. By imposing an upper bound on the maximal number 
of allowed embedding changes, we obtain an upper bound on the 
maximal number of bits one can communicate. To minimize the 
impact of embedding, we should intuitively only use those pixels 
whose modifications will introduce the least detectable artifacts. 
On the other hand, allowing the embedding scheme to use more 
pixels gives us the possibility to apply syndrome coding (matrix 
embedding [9, 12, 13]) and decrease the number of embedding 
changes. The questions are “what is the optimal strategy the 
sender should choose? How should he balance the number of 
embedding changes and their amplitude?” We now explain these 
issues on the example of Perturbed Quantization steganography 
(PQ) [8]. 
In PQ, the sender uses side information about the cover image, 
such as its high-resolution form, to determine the selection 
channel. For example, the sender may embed data into a JPEG 
file while utilizing his knowledge of the unquantized DCT 
coefficients and constrain the embedding changes to those DCT 
coefficients that experience the largest quantization error – the 
coefficients that are closest to the middle of the quantization 
intervals. Such coefficients, when rounded to the other value, 
leave the smallest embedding distortion. The concept of PQ is 
very general and can be applied whenever the sender processes 
the cover image before embedding (e.g., using resizing, 
decreasing color bit depth, filtering, A/D conversion, etc.). PQ 
must be combined with codes for memory with defective cells 
(Wet Paper Codes (WPC) [9]) to enable the recipient to extract 
the message.  
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In PQ, the sender, however, has more options. In order to embed 
m bits, he can either select m pixels with the smallest embedding 
distortion or select the best k pixels for embedding, k > m, and 
apply syndrome coding for relative payload m/k. The optimum 
choice of k obviously depends on the embedding distortion 
profile. For example, if the embedding distortion was the same for 
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all pixels in the image, the best strategy is to use all pixels in the 
image because this will allow us to minimize the total number of 
embedding changes using syndrome coding. On the other hand, 
one intuitively feels that if the embedding distortion sharply 
increases as we add more pixels than m, the best strategy might be 
to embed the message only in the best m pixels and not use 
syndrome coding at all. 
The recent work by Kim et al. [10] addresses the issues above for 
the case of JPEG steganography. The authors modify the F5 
steganographic algorithm [11] and allow more than one change in 
matrix embedding [12–13] realized using binary Hamming codes. 
By allowing more than one change in each block of DCT 
coefficients, the sender is presented with multiple possibilities and 
can thus select the one that introduces the smallest distortion. The 
authors use the knowledge of the raw, uncompressed image and 
minimize the combined quantization and embedding error. In this 
sense, this method is similar to PQ. While this approach can 
significantly decrease the embedding distortion when compared to 
F5, no effort is made to compare the proposed scheme with 
respect to the smallest achievable embedding distortion. 
The subject of this paper is to investigate the optimum strategy 
the sender can choose to minimize the overall embedding impact. 
Our goal is to establish the theoretical bounds assuming the 
sender uses the best possible strategy. Towards this goal, we 
allow the sender to use a more general measure of the embedding 
impact that does not have to necessarily be the embedding 
distortion. Assuming that the sender uses syndrome coding with 
the best possible performance, we can analytically derive the 
optimum strategy for a given embedding distortion profile. 
In Section 2, we define the notation and concepts used in this 
paper and review some basic facts concerning syndrome coding. 
The optimum embedding strategy is derived in Section 3, where 
we analyze it and draw some interesting conclusions. In Section 
4, we apply the same framework to q-ary embedding in the spatial 
domain and show that embedding using ternary symbols is 
optimal. We also establish that pooling pixels to groups to obtain 
q-ary symbols does not decrease the embedding impact. The 
paper is concluded in Section 5. 

2. PRELIMINARIES 
Throughout the paper, bold symbols denote vectors or matrices 
and capitals denote sets. The function H(x) is the binary entropy 
H(x) = –x log(x) – (1 – x) log(1 – x), where ‘log’ is the logarithm 
at the base 2. The inverse of H(x) on the interval [0, 0.5] is 
denoted by H–1(x). Important concepts are italicized in the text. 

2.1 Steganographic embedding scheme 
Let X be the set of all possible cover objects x, M the set of all 
messages m that can be communicated, and K the key space. 
Depending on the format of the image, x could be a vector of 
integers in the range [0, 255] (for an 8-bit grayscale image) or the 
range of all integers for quantized DCT coefficients of a JPEG 
file. The length of x and y is equal to the number of elements in 
the cover object, n, the length of m corresponds to the maximal 
number of bits one can communicate – the embedding capacity. 
A steganographic scheme is a pair of embedding and extraction 
functions Emb: X × M × K → X, Ext: X × K → M with the 
property 

( , , )
( ( , , ),

Emb
Ext Emb

=
=

y x m k
m x m )k k

   (1) 

for all cover images x∈X, secret messages m∈M, and secret keys 
k∈K.  

2.2 Measure of detectability 
The embedding map Emb introduces distortion to the cover object 
x so that the stego object y conveys the desired message m. We 
assume that Emb either leaves each element of the cover object 
unchanged or it modifies it in a pre-determined manner. For 
example, in Least Significant Bit Embedding (LSB), the LSB of xi 
is flipped. 
The impact of embedding will be evaluated in the following 
manner. Each pixel is assigned a scalar value (detectability 
measure) that describes the impact of having to change the pixel 
to embed a message. Sorting these values from the smallest to the 
largest and normalizing so that the last value is equal to one, we 
obtain a non-decreasing sequence ρi, i = 1, …, n, ρi ≤ 1, that we 
will call detectability profile. We also assume that the impact of 
embedding at multiple pixels is an additive function of ρi at all 
modified pixels. In other words, the combined impact of 
modifying pixels i1, …, iq is 

1 qi iρ ρ+ + . 

The detectability measure is not necessarily equal to the distance 
between x and y. As an example, consider the PQ steganography 
in an 8-bit grayscale image. Let z denote the raw, unquantized 
value of a given pixel after some processing. The quantization 
error e = |z – [z]|, where [x] is the operation of rounding to the 
nearest integer. It is known that e∈[0, 0.5] is approximately 
uniformly distributed in this range when considered as a random 
variable over all pixels in the image. When in PQ the sender 
rounds z “to the other side” during embedding, the error becomes 
1 – e. Thus, we can say that the additional embedding distortion is 
the difference between both errors  

1 – e – e = 1 – 2e .    (2) 
This is why the authors in [8] proposed to choose for embedding 
those pixels whose quantization error e is the largest, i.e., closest 
in absolute value to 0.5. Such values, when rounded to the “other 
side” experience the smallest embedding distortion. 
We can use the embedding distortion (2) as the detectability 
measure directly or we can multiply (2) by a weight that takes 
into account the empirical fact that modifications are less 
detectable in textured areas than in smooth regions. For example, 
we can choose 

2

1 2
1

eρ
σ

−
=

+
,   (3)  

where 2σ  is the variance of pixels in a local neighborhood of the 
pixel. 
As another example, consider PQ for embedding during JPEG 
compression. Let z be the unquantized DCT coefficient and let Q 
be the quantization step for this coefficient from the JPEG 
quantization table. The quantization error is e = Q |z/Q – [z/Q]| and 
the error when rounding to the opposite direction is Q (1 – | z/Q – 
[z/Q]|) leading to embedding distortion 

Q (1 – 2| z/Q – [z/Q]|) = Q – 2| z – Q[z/Q]| .  (4) 



Note that this detectability measure takes into account the fact 
that the impact of embedding changes depends on the 
quantization step Q. Thus, modifying high-frequency coefficients 
will have a larger impact than modifying a low-frequency DCT 
coefficient. 

2.3 Syndrome coding 
Syndrome coding enables minimizing the number of embedding 
changes if the secret message is shorter than the embedding 
capacity. This concept was for the first time described by 
Crandall [12]. A more recent treatment is in [13, 14] and the 
references therein. 
Let us assume that we want to embed m random bits in k pixels 
using the minimal average number of embedding changes. By 
allowing up to d embedding changes, it is clear that we cannot 
embed more than 

0 1
k k k

d
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

     (5) 

messages. It is a well-known fact (see, e.g., Lemma 2.4.4 in [15]) 
that for large k and d ≤ k/2 the expression (5) is asymptotically 

( / )2
0 1

kH d kk k k
d

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + + ≈⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
.          (6) 

Thus, if we want to embed m bits (i.e., up to 2m messages), we 
must have m ≤ k H(d/k), which implies that the number of 
embedding changes d must be at least  

d ≥ k H–1(m/k).            (7) 
Matrix embedding is an embedding method based on linear codes 
in which the message is communicated as a syndrome for an 
appropriate linear code. Let us assume that we have a linear [k, k–
m] code with covering radius R and parity check matrix H. 
Furthermore, let x be the vector of LSBs of the k pixels from the 
cover object where the payload m consisting of m bits is to be 
embedded. The matrix embedding method based on this code 
modifies x to y = x + e(m–Hx), where e(m–Hx) is the coset 
leader of the coset corresponding to the syndrome m–Hx. In other 
words, the message is communicated to the recipient as the 
syndrome Hy = Hx + He = Hx + m – Hx = m, as required. The 
extraction rule applied by the recipient is simply Hy or 
multiplying the LSBs of the stego image pixels by the parity 
check matrix. This method can embed m bits in k pixels by 
making at most R changes because the Hamming weight of the 
difference x – y = e is weight of the coset leader e and must thus 
be less than R. Note that in matrix embedding the modified pixels 
are determined by the coset leader e. Thus, if the message bits 
form a random bit-stream, the embedding modifications also 
occur randomly in x. 
It is shown in [13] that matrix embedding realized with random 
linear codes of increasing code length can asymptotically achieve 
the bound (7) under the assumption of a fixed relative message 
length m/k. In [9], the authors generalized this scheme to the case 
when only a subset of pixels known only to the sender is allowed 
to be modified (so called wet paper codes). Most known 
structured codes, such as Hamming codes, however do not come 
very close to the bound. The recent progress in linear binary 
quantizers using low density generator matrices by Wainwright 
and Maneva [16], however, seem to provide a venue towards 

practical syndrome coding schemes with performance very close 
to the theoretical bound (7). Thus, in the rest of this paper, we will 
assume that the sender can embed m bits in k pixels by making on 
average k H–1(m/k) embedding changes. 

3. MINIMIZING THE EMBEDDING 
IMPACT 
3.1 Discrete case 
Let us assume that we have a cover image with n pixels and that 
we want to embed m bits, 0 ≤ m ≤ n, while minimizing the 
embedding impact. The sender should ideally make use of all n 
pixels and select them with probabilities determined by their 
embedding impact. Indeed, this would lead to the optimal 
embedding strategy (see [27]). However, it is not clear how to 
obtain practical capacity-reaching codes for such schemes. In this 
paper, we assume that the sender uses a simpler strategy for 
which syndrome-coding approaches discussed in Section 2.3 can 
be used. 

The sender starts by reserving k pixels, m ≤ k ≤ n, with the 
smallest detectability ρ, and then uses capacity-reaching 
syndrome codes as discussed in Section 2.3. Assuming the 
message consists of random bits (e.g., if the message is 
encrypted), the pixels eventually modified by the syndrome 
coding scheme will be distributed uniformly among the k selected 
pixels. Thus, the impact of embedding will be on average equal to 
the expected number of changes × the average embedding impact 
per pixel: 

1 1

1 1

1( / ) ( / )
k k

i i
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Therefore, the optimal choice of k that minimizes the embedding 
impact is 

1

1
arg min ( / )

k

opt i
m k n i

k H m k ρ−

≤ ≤ =

= ∑ .            (9) 

For each detectability profile ρ, (9) can be solved simply by 
enumerating all n – k +1 possibilities. The value of kopt is the only 
parameter that needs to be communicated to the recipient. In 
particular, note that by applying WPCs [9], the recipient does not 
need to know ρ or which pixels were used for embedding. The 
parameter kopt can be communicated, for example, by reserving a 
small part of the image and embedding its binary encoding (at 
most ⎡log n⎤ bits) using some other method. The choice of the 
matrix embedding method can be arranged between the sender 
and the recipient so that it is uniquely determined from k and n. 

3.2 Continuous case 
We now analyze (9) for large n, assuming a fixed relative 
message length β = m/n. Denote x = k/n. Assuming ρi = ρ(i/n) for 
a non-decreasing function ρ (and thus Lebesque integrable) on the 
interval [0, 1], we obtain 
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Thus, (9) becomes 
1

1
/ arg min ( / ) (opt opt

x
)x k n H x R x
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≤ ≤
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where 

0

( ) ( )
x

R x xρ= ∫ dx .              (12) 

We can now find the minimum in (11) using calculus. Utilizing 
the fact that  

11 1
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and R’(x) = ρ(x), we obtain that xopt is determined as the solution 
to the equation 

2 1

( )
( ) log(1 ( / ))
x

R x x x H x
ρ β

β β−=
+ −

.         (14) 

If (14) does not have a solution, in (11) the minimum is reached at 
one of the end points. 
We now analyze (14) in more detail. First, note that for any 
0 < β < 1 

     2 1lim
log(1 ( / ))x x x H xβ

β
β β+ −→

= +∞
+ −

. 

This means that (14) can never have x = β as a solution. Thus, 
quite surprisingly, it is never optimal to choose m pixels with the 
smallest detectability measure for embedding! It is always better 
to use more than m best pixels. This result holds for the limiting 
continuous case for large n. For finite values of n in the discrete 
case, it is possible that the minimum in (9) is achieved at k = m 
for some detectability profiles ρ. 
Let us now take a look at the other extreme – the case when the 
optimum is reached when taking all pixels (x = 1). Equation (14) 
has x = 1 as a solution if and only if 

2 1

1
(1) log(1 ( ))R H

β
β β−=

+ −
.       (15) 

Denoting the right hand side of (15) as G(β), we have 

1
lim ( )G
β

β
−→

= +∞  and 
0

lim ( ) 1G
β

β
+→

=  using the L’Hospitals rule. It 

is also straightforward to establish by differentiating that G is 
increasing on [0, 1). Because 1 ≤ 1/R(1) for any detectability 
profile ρ, we just established that for any ρ, it is always optimal to 
use all pixels for embedding whenever the relative message 
length β ≥ β0, where β0 is the unique solution to (15). 

The right hand side of (15), the function G(β ), is shown in Figure 
1. Because it increases only very slowly with β, for most 
detectability profiles using all pixels for embedding only pays off 
for large messages (β ≈ 1). For example, if we use (2) as the 
detectability measure, we have ρ(x) = x because the quantization 
error e is uniformly distributed. In this case, R(1) = 0.5, and β0 = 
0.8. In other words, taking all pixels for embedding is the best 
strategy only when the payload is larger than 80% of embedding 
capacity. 
Note that when all pixels have the same detectability measure 
(e.g., ρ(x) = 1), it does not matter what pixels are used for 
embedding. Therefore, the best intuitive strategy is to always use 
all pixels or xopt = 1. This fact is confirmed by inspecting (15) as 
well as Figure 1 because in this case R(1) = 1 and thus, indeed, β0 
= 0. 
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Figure 1. Function G(β ). 

3.3 Detectability profile ρ(x) = xp 
Next, we look in detail at a specific class of detectability profiles 
that can be expressed in the form ρ(x) = xp, where p is a positive 
parameter. The case p = 1 is the proper model for PQ in the 
spatial domain because the rounding distortion is uniformly 
distributed on (0.5, 0.5]. The case when p > 1 is a good model for 
PQ in quantities whose distribution has one large peak, such as 
DCT or wavelet coefficients. Moreover, the analysis of this model 
of detectability profile is analytically tractable. 

When ρ(x) = xp, ρ(x)/R(x) = xp/(xp+1/(p+1)) = (p+1)/x, and (14) 
becomes 

 2 1

1
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p
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β
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which can be simplified to 
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where c(p) is the solution to the following equation 

( )( )1log 1 1/
1

pc H c
p
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+
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The value c(p) is a multiplicative parameter by which we should 
multiply the message length to obtain the optimal number of 
pixels for embedding. Figure 2 shows the value of c = xopt/β  as a 
function of the parameter p. In agreement with our previous 
finding, c is always larger than one meaning that it is always 
advantageous to use more pixels for embedding than the message 
length. Also, for the detectability profile ρ(x) = xp, the rule for 
choosing the optimum value of x (or k, for the discrete case) is 
particularly simple. When embedding m bits, select for 
embedding k = cm pixels with the smallest detectability measure. 
For example, for p = 1 (the case of uniformly distributed 



embedding impact), c(1) ≈ 1.254. Thus, the rule of thumb is to use 
25% more pixels for embedding than the message length. 
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Figure 2 xopt/β  for various values of the exponent p. 

We now show the decrease of the embedding impact when 
incorporating the optimal choice of the number of pixels used for 
embedding. From (11), when using x best pixels for embedding 
message of relative length β, the embedding impact D is 

1( ) ( / ) ( )D x H x R xβ−= .     (20) 

We express the decrease in embedding impact as the percentage 
of D(β ) – the impact when using the fraction of β  pixels with the 
smallest ρ. Assuming the detectability profile ρ(x) = xp, we obtain 
from (20) for β ≤ β0
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Figure 3 Decrease in embedding impact for various values of 
the parameter p for detectability profile ρ(x) = xp. 

Because for ρ(x) = xp, c is only a function of p, we can plot (21) 
as a function of p (see Figure 3). 

Depending on the detectability profile ρ, the impact of embedding 
may be reduced by more than 50% (for p approximately less than 
0.3). For p = 1, which is the case of uniformly distributed 
detectability measure, the embedding impact is decreased by one 
quarter when compared to using only the best β pixels. 

4. Q-ARY EMBEDDING 
We now use the same analysis to investigate embedding schemes 
that encode messages using a q-ary alphabet and then use 
embedding operations and syndrome coding mated to alphabet 
symbols. For example, consider encoding a binary message into a 
stream of ternary symbols and allowing two changes at each pixel 
(increase the value by one or decrease by one). This way, a 
ternary symbol is associated with each pixel and one can apply 
ternary matrix embedding to minimize the number of embedding 
changes. Alternatively, we can allow changes by    –2, –1, 1, and 
2 and encode the message using pentary alphabet in combination 
with pentary syndrome coding. More details on syndrome coding 
with q-ary symbols can be found in [14] and [17]. 
At this point, we would like to point out some differences to the 
cases treated in the previous section. The PQ paradigm is 
inherently binary and does not naturally allow using q-ary 
embedding. This is because the embedding modification in PQ is 
always chosen to minimize the embedding distortion. Second, the 
detectability measure ρ is now is a multi-valued function that is 
the same at each pixel. For ternary embedding, ρ ∈ {–1, 0, 1}, 
while in general for q-ary embedding, ρ ∈ {– ⎣(q–1)/2⎦, …, ⎡(q–
1)/2⎤}. Let us denote the q – 1 non-zero elements of this ordered 
set ρ(1), …, ρ(q–1). 
Larger values of q allow embedding using fewer number of 
embedding changes at the expense of increasing their amplitude. 
Because these two trends are working against each other, it is not 
clear what will eventually lead to a smaller embedding impact. 
Reserving k pixels for embedding, we can embed up to  

0
( 1)

d
i

i

k
q

i=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑  bits             (22) 

by making up to d embedding changes because now the sender 
has q – 1 options at each pixel. Because the cost of modifying a 
pixel is now independent of the pixel, the smallest embedding 
impact will always correspond to the largest possible k, k = n. The 
sum (22) is the volume of a ball of radius d in the space of k-
tuples of symbols from a q-ary alphabet. It is well-known that the 
volume of a ball is asymptotically (for large k) well approximated 
as 
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where Hq(x) = H(x) + x log(q–1) is the q-ary entropy function. 
Similar to the binary case in Section 2.3, this bound is tight in the 
sense that the ratio of both sides of the inequality approaches 1 
with n→∞, d/n = const ≤ 1 – 1/q (for poof, see Lemma 2.4.4 in 
[15]). Also, there are syndrome coding schemes realized using 
linear codes of increasing block length whose embedding 
distortion achieves the bound. Thus, when embedding m bits 
using the best possible syndrome coding, we can assume that  
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which gives us the following distortion per pixel 
1 1/ ( / ) (q qd n H m n H β− −= = .        (25) 

Assuming we are embedding a pseudo-random stream of q-ary 
message symbols, when making a change, we are equally likely to 
choose between the embedding amplitude ρ(1), …, ρ(q–1). Ignoring 
for simplicity the fact that the values of pixels at the boundaries of 
the dynamic range cannot be always modified by such amounts, 
the average embedding distortion per modified pixel D =(ρ(1) + 

+ ρ(q–1))/(q – 1) is 

2[1 ( 1) / 2]     for   odd  
1

2[1 / 2] / 2   for   even.
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Both expressions can be written in a more compact form 
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which is valid for any q. This allows us to write down the 
expected value of the embedding impact per pixel (embedding 
distortion in this case) for the continuous case 
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In Figure 4, we plotted the expected distortion per pixel for a 
range of relative message length β and the parameter q. The 
minimal distortion is always obtained for q = 3. This analysis 
confirms the hypothesis made in [14] based on experiments 
reported in [18] that it is in general not beneficial to increase the 
amplitude of embedding changes in exchange for their smaller 
number. 
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Figure 4 Embedding impact for q-ary embedding for q = 2, 3, 
…, 20, and β = 0.1, 0.2, …, 0.9. 
 
We note that if we used the energy of modifications as the 
detectability measure rather than their absolute value (e.g., if we 
took the square of the embedding distortion instead of its 
magnitude), we would reach the same conclusion. The smallest 

impact would be achieved for q = 3 because the average energy of 
an embedding change for q = 2 or 3 is the same as their average 
amplitude and for q > 3 the energy is larger then the amplitude. 

4.1 Pooling pixels 
An obvious attempt to further decrease the embedding impact is 
to form groups of h pixels and consider them as a symbol from a 
qh-ary alphabet. Grouping symbols to vectors is a very 
fundamental idea that has been very successful in compression 
and error correction and it is interesting to see if steganography 
can also benefit from it. Again, we have two conflicting trends 
here. A larger alphabet will allow embedding more bits per pixel 
group, however, we now have h-times fewer pixels. Assuming 
optimal qh-ary syndrome coding, the average number of 
embedding changes needed to embed m bits is (from (25)) 

1 1( /( / )) ( )h hq q

n nd H m n h H h
h h
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After a moments thought, the average embedding change 
generalizes from D = (ρ(1) + + ρ(q–1))/(q – 1) for h = 1 to 
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Figure 5 Ratio (32) between distortion when using ternary 
embedding in single pixels (q = 3) and qh-ary embedding in 
groups of h pixels. 
 
Thus, the total average embedding distortion per pixel is 

1
1 (

1 11 ( )
1h

q
h i

i
hq

hq
H h

h q

)ρ
β

−
−

− =×
−

∑
.           (31) 

The ratio of (28) and (31) is thus 
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This ratio for q = 3 as a function of h for various values of β  is 
shown in Figure 5. We can see that grouping pixels does not lead 
to smaller embedding impact. Similar graphs can be produced for 
q > 3. 



An interesting alternative method for pooling pixels has been 
proposed in [17]. The authors associate with each pixel pair a q-
ary symbol in such a manner that allows them to always embed 
any q-ary symbol in each pair by modifying at most one pixel in 
the pair by one. Since there are 5 possibilities a pixel pair may be 
modified (first pixel by 1 or –1, the second pixel by 1 or –1, or 
both pixels not modified), we can embed a pentary symbol in 
each pair. An example of assignment of pentary symbols to pixel 
pairs with grayscales i and j that allows this type of embedding is  

       i → 
  j   0  1  2  3  4  0  1  2  3  4  0  1  2  3  4 

 ↓   2  3  4  0  1  2  3  4  0  1  2  3  4  0  1 
       4  0  1  2  3  4  0  1  2  3  4  0  1  2  3 
 
Although only hypothesized in [17], this can be generalized to 
groups of h pixels with a (2h + 1)-ary alphabet in the following 
manner. The group of h pixels with grayscale values (g1, …, gh) 
will be assigned the symbol 

(g1 + 2g2 + 3g3 + … + hgh) mod 2h+1.             (33) 
Since the symbols assigned to the two neighbours along the k-th 
dimension, (g1, …, gk − 1, …, gh) and (g1, …, gk + 1, …, gh), 
always differ by ±k, the symbols assigned to all 2d neighbours 
will be pair-wise different. This embedding method could be, for 
example, conveniently applied to RGB images where three 
samples are available at each pixel. 
The question is, if we adopt this embedding mechanism coupled 
with optimal syndrome coding, can we obtain a smaller 
embedding impact than using ternary embedding? 
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Figure 6 Ratio (34) between distortion when using ternary 
embedding in single pixels and in groups of h pixels. 
 
The average number of embedding changes for ternary 
embedding (when embedding m bits in n pixels) is 1

3 ( )nH β− . For 
groups of h pixels, using the scheme above, the average number 
of changes is 1

2 1/ (hn hH h
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.        (34) 

This ratio is plotted for a range of values for β for h = 2, 3, 4, and 
5 in Figure 6. We can again see that this method of pooling pixels 
does not improve the embedding impact either.  
We note that for sub-optimal syndrome codes, for example the 
ones realized using q-ary Hamming codes, this embedding 
method can lead to schemes with a smaller embedding impact (for 
details, see [17]). 

5. CONCLUSIONS 
This paper analyzes the trade-off between the magnitude of 
embedding changes and their number. The fundamental question 
we tried to answer is whether it is better to make fewer 
embedding changes with larger embedding impact or more 
changes with smaller embedding impact. The answer to this 
question depends on the detectability profile, which is the 
distribution of the embedding impact among pixels. Based on the 
assumption that we can perform syndrome coding optimally, we 
derive an analytic expression for determining the optimal number 
of pixels that should be used for embedding. For a linear 
detectability profile, which is most commonly found in perturbed 
quantization steganography, we determined that as a rule of 
thumb, the sender should use 25% more pixels for embedding 
than the message length. We also established that for any 
detectability profile for sufficiently large number of pixels it is 
never optimal to only use the pixels with the smallest embedding 
impact. 
Additionally, we analyzed q-ary embedding in the spatial domain 
and established that ternary embedding is the optimal choice for 
steganography if our goal is to minimize the embedding 
distortion. This confirms the heuristic conclusions in [14] that one 
should not increase the amplitude of embedding changes hoping 
that their smaller number will lead to a less detectable scheme. 
This result also justifies the empirical choices made by the 
authors in [19]. Additionally, we established that grouping pixels 
to form q-ary symbols does not improve the situation. 
While some of the conclusions reached in this paper apply for 
arbitrary detectability profiles, the quantitative recommendations 
heavily depend on the detectability profile and should thus be 
used with caution. It is currently not known how to define the 
detectability measure compatible with the results obtained by 
blind steganalyzers. The most frequently used measures are 
always somehow related to the embedding distortion. It is well 
known, however, that embedding distortion may be a poor 
indicator of steganographic security. LSB embedding introduces 
the smallest possible distortion, yet is easily detectable [20]. 
Nevertheless, for most other embedding operations the embedding 
distortion is strongly positively correlated with detectability of the 
steganographic scheme. This claim is supported by the results 
obtained for detection of ±K embedding in the spatial domain 
reported by Soukal et al. [18] and by the attacks on perturbed 
quantization using blind steganalyzers [21–23]. 
Another caveat we would like to point out is the assumption that 
we perform syndrome coding optimally. If sub-optimal syndrome 
codes are employed, for example binary Hamming codes [11], the 
conclusions might be different. However, the analysis presented 
in this paper can still be carried out by replacing the expression 

)β−
+ . Because the embedding distortion is 

always 1 in both cases, the ratio between the embedding distortion 
for both methods is 



that binds the number of embedding changes d and the payload m 
with the appropriate expression derived from the code. 
The conclusions reached in this paper concern primarily 
steganographic schemes that are non-adaptive to image content. 
We fully acknowledge that incorporating the fact that embedding 
changes are less detectable in textured areas might change the 
results obtained in this paper. One might incorporate adaptive 
schemes [24] by appropriately modifying the detectability 
measure. Thus, the proposed approach applies to adaptive 
schemes as well and will be studied in our future work. The 
detectability measure could also be a second-order property of the 
local embedding distortion, such as the difference between 
spatially adjacent pixels. This way we could tailor the approach to 
steganalyzers that model the cover as Markov chains [23]. 
Finally, only tests on a large number of images supplied with 
sensitive blind steganalyzers [19, 21, 25, 26] will decide whether 
the quantitative conclusions of this paper are, indeed, valid. A 
discrepancy between the analysis and results from blind 
steganalyzers can be used as a feedback to determine better 
detectability measures. 
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