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ABSTRACT

The reverse JPEG compatibility attack has recently been
introduced as a very accurate and universal steganalysis
algorithm for JPEG images with quality 99 or 100. The
limitation to these two largest qualities appears funda-
mental as the prior work on this topic suggests. In this
paper, we provide mathematical analysis and demon-
strate experimentally that this attack can be extended
to double compressed images when the first compression
quality is 93 or larger and the second quality equal or
larger than the first quality. Comparisons with state-
of-the-art deep convolutional neural networks as well as
detectors built in the JPEG domain show the merit of
this work.

Index Terms— Steganography, steganalysis, re-
verse JPEG compatibility attack, double compression,
rounding errors

1. INTRODUCTION

Recently, a qualitatively new type of attack on JPEG
steganography has been introduced, the Reverse JPEG
Compatibility Attack (RJCA) [2], which forms the detec-
tion statistic from the rounding errors of a decompressed
JPEG image. Unlike other detectors, the RJCA is uni-
versal (can detect any steganography) and can reliably
detect even very short messages. It can thus provide a
very high certainty about usage of steganography even
from a single intercepted image. The disadvantage of this
attack is its limited applicability to only JPEG quality
99 or 100. As the original paper on this topic shows, this
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limitation is quite fundamental and cannot be overcome
due to the nature of the JPEG compression itself.

The main reason why the RJCA works is because,
during compression, the discrete cosine transform (DCT)
is applied to an integer-valued signal. This allows mod-
eling the rounding errors after decompression as a zero-
mean Gaussian with variance ≈ 1/12 folded into the in-
terval [−0.5, 0.5). The embedding increases the variance
of the Gaussian, which begins to fold into a uniform dis-
tribution. The attack can be realized by training a clas-
sifier on rounding errors [2] or using a simplified likeli-
hood ratio test when the selection channel is known [3].
The attack does not work for lower qualities because the
variance of the folded Gaussian increases rapidly with
increasing quantization steps, making the distribution of
the rounding errors essentially uniform even for cover
images.

The main novel idea presented in this paper is the re-
alization that the above-mentioned limitation relates to
single compressed images, and does not necessarily ap-
ply to images that were compressed more than once. We
show using mathematical analysis as well as experimen-
tally that the RJCA can be extended to images doubly
compressed with qualities 93 ≤ Q1 ≤ Q2, broadening
thus the applicability of this attack in practice. In par-
ticular, the attack is extremely accurate when Q1 = Q2,
when the detectors that do not utilize rounding errors
perform poorly. Images doubly compressed with the
same quality factor naturally arise due to minor retouch-
ing, such as removing wrinkles or sensor dust, and adding
a visible watermark when the editing tool is set to pre-
serve the compression parameters. Moreover, double
compressed JPEG covers can be introduced either by a
conscious action of the sender or inadvertently due to the
processing pipeline that precedes the actual embedding.

In the next section, we introduce the notation and
preliminary concepts. Section 3 analyzes the distribu-
tion of rounding errors in the spatial domain after double
compression for both cover and stego images. We analyt-



ically show that the rounding errors after decompression
can again be modeled as a folded Gaussian distribution if
either the quality settings during both compression steps
are the same or ifQ2 = 99 or 100 andQ1 ≥ 93. The theo-
retical insight is put to test in Section 4, where we report
the detection accuracy of the RJCA for J-UNIWARD
and benchmark it against SRNet [1] and JRM [4]. The
paper is concluded in Section 5.

2. PRELIMINARIES AND NOTATION

Boldface symbols are reserved for matrices and vectors
with elementwise multiplication and division denoted �
and �. The uniform distribution on the interval [a, b] will
be denoted U [a, b] whileN (µ, σ2) is used for the Gaussian
distribution with mean µ and variance σ2. Rounding x
to an integer is denoted [x]. The set of all integers will be
denoted Z. For X ∼ N (µ, σ2) with µ ∈ Z, the rounding
error X− [X] ∼ NF , the Gaussian distribution folded on
−1/2 ≤ x < 1/2, with pdf

ν(x;σ2) = 1√
2πσ2

∑
n∈Z

exp
(
− (x+ n)2

2σ2

)
. (1)

For better readability, we strictly use i, j to index
pixels and k, l DCT coefficients. Denoting by xij , 0 ≤
i, j ≤ 7, an 8 × 8 block of pixels, they are transformed
during JPEG compression to DCT coefficients dkl =
DCTkl(x) ,

∑7
i,j=0 f

ij
klxij , 0 ≤ k, l ≤ 7, and then quan-

tized ckl = [dkl/qkl], ckl ∈ {−1024, . . . , 1023}, where qkl

are quantization steps in a luminance quantization ma-
trix, and f ij

kl = wkwl/4 cosπk(2i+1)/16 cosπl(2j+1)/16,
w0 = 1/

√
2, wk = 1, 0 < k ≤ 7, are the discrete cosines.

During decompression, the above steps are reversed.
For a block of quantized DCTs ckl, the corresponding
block of non-rounded pixels after decompression is yij =
DCT−1

ij (c � q) ,
∑7

k,l=0 f
ij
klqklckl, yij ∈ R. To obtain

the final decompressed image, yij are rounded to integers
and clipped to [0, 255].

For color images, the RGB representation is typi-
cally changed to Y CbCr (luminance, and two chromi-
nance signals), the luminance Y is processed as above,
while the chrominance signals are optionally subsampled,
then transformed using DCT, and finally quantized with
chrominance quantization matrices [7].

3. ROUNDING ERRORS AND DOUBLE
COMPRESSION

In this section, we derive a model for the statistical dis-
tribution of the rounding errors in the spatial domain
when decompressing a doubly compressed cover image
and its stego version. The quantization matrices and
quality factors used for the first and second compression
will be denoted as q(1), q(2) and Q1, Q2, respectively.

c(1) y(1) x(1)

d

y(2)c(2) x(2)

DCT−1(�q(1)) [·]

DCT(·)[�q(2)]

DCT−1(�q(2)) [·]

Fig. 1. Double compression pipeline.

Fig. 2. Relative number of different quantized DCTs
when recompressing an image with quality Q with the
same quality. Results averaged over 1000 images from
BOSSbase 1.01.

3.1. Cover images

Starting with a single-compressed JPEG file represented
with quantized DCT coefficients c(1), we consider the
pipeline shown in Figure 1, which consists of decompress-
ing c(1) to y(1), rounding to integers x(1), compressing
the second time with quantization matrix q(2) to obtain
DCT coefficients before quantization d and after quan-
tization c(2), decompressing to non-rounded pixels y(2)

and rounding to x(2). Assuming the rounding errors in
the spatial domain u(1)

ij = y
(1)
ij − x

(1)
ij ∼ U [−1/2, 1/2), we

have E[u(1)
ij ] = 0, V ar[u(1)

ij ] = 1/12. Since

y
(1)
ij = DCT−1(c(1) � q(1)) =

7∑
k,l=0

f ij
klc

(1)
kl q

(1)
kl (2)

x
(1)
ij = y

(1)
ij − u

(1)
ij =

7∑
k,l=0

f ij
klc

(1)
kl q

(1)
kl − u

(1)
ij , (3)

we can write

dkl = DCTkl(x(1))
= DCTkl(y(1) − u(1))

= c
(1)
kl · q

(1)
kl −

7∑
i,j=0

f ij
klu

(1)
ij . (4)



Assuming that u(1)
ij are mutually independent, from

the CLT and orthonormality of the DCT :

dkl ∼ N
(
c

(1)
kl q

(1)
kl ,

1
12

)
. (5)

Denoting the rounding error in the DCT domain dur-
ing the second compression as ekl = dkl/q

(2)
kl − c

(2)
kl =

dkl/q
(2)
kl − [dkl/q

(2)
kl ], from (5), ekl follows a folded Gaus-

sian distribution on [−1/2, 1/2)

ekl ∼ NF

(
c

(1)
kl

q
(1)
kl

q
(2)
kl

,
1

12(q(2)
kl )2

)
(6)

with expectation

E[ekl] = c
(1)
kl

q
(1)
kl

q
(2)
kl

−

[
c

(1)
kl

q
(1)
kl

q
(2)
kl

]
. (7)

Continuing our analysis,

y
(2)
ij = DCT−1

ij (c(2) � q(2))

= DCT−1
ij (d− e� q(2))

= DCT−1
ij

(
DCT(y(1) − u)− e� q(2)

)
= y

(1)
ij − u

(1)
ij −DCT−1

ij (e� q(2))

= x
(1)
ij − ηij , (8)

where ηij =
∑7

k,l=0 f
ij
kleklq

(2)
kl . Assuming the indepen-

dence of the rounding errors ekl, the CLT implies

ηij ∼ N
( 7∑

k,l=0
f ij

klq
(2)
kl E[ekl],

7∑
k,l=0

(f ij
kl )

2(q(2)
kl )2V ar[ekl]

)
.

(9)

Thus, y(2)
ij follows a Gaussian distribution with mean

E[y(2)
ij ] = x

(1)
ij −

7∑
k,l=0

f ij
klq

(2)
kl E[ekl]. (10)

Note that for q(2)
kl > 1, the variance of the folded

Gaussian distribution (6) is approximately the same as
the variance of the Gaussian that ekl follows, V ar[ekl] ≈
1/(12(q(2)

kl )2), and thus V ar[y(2)
ij ] ≈ 1/12.

With this approximation, the rounding error after the
second decompression u(2)

ij = y
(2)
ij − x

(2)
ij follows a Gaus-

sian distribution, which is folded into [−1/2, 1/2), with
mean and variance

E[u(2)
ij ] = −

7∑
k,l=0

f ij
klq

(2)
kl E[ekl] +

 7∑
k,l=0

f ij
klq

(2)
kl E[ekl]


(11)

V ar[u(2)
ij ] = 1/12. (12)

For the RJCA to work, the distribution of the round-
ing error cannot be uniform as in this case, the embed-
ding would not change it. In particular, if the expec-
tations (11) are not zero and vary across pixels ij, the
resulting mixture becomes practically uniform. On the
other hand, when E[ekl] = 0 for most DCT modes kl and
blocks, E[u(2)

ij ] ≈ 0 and the RJCA works again. Note that
from (7) E[ekl] = 0 when q(2)

kl divides c(1)
kl q

(1)
kl . Since we

need this to be satisfied for the majority of the blocks
and irrespectively of the content, we arrive at our first
condition:

[C1] q(2)
kl divides q(1)

kl for most modes kl.
Note that this means that Q1 ≤ Q2. Unless both qual-
ities are equal, however, the double-compressed image
will exhibit strong signs of double-compression with gaps
and peaks in the DCT histogram, which will make stega-
nography highly detectable using standard steganalysis
features, such as the JRM [4]. Thus, from now on, we
mainly focus on cases when Q1 = Q2 while noting that
the RJCA remains extremely accurate when Q2 = 99 or
Q2 = 100.

Moreover, notice that when c(1) = c(2), the double-
compressed image is the same as the single-compressed
image, and, as already established in [2], the RJCA for
single-compressed images works only for qualities 99 and
100. Thus, the second condition for the RJCA to work
in doubly-compressed images with Q1 = Q2 is

[C2] c(1) 6= c(2),
which is mainly fulfilled if there are ones in the quanti-
zation table or equivalently Q2 ≥ 93. This is confirmed
in Figure 2 showing the average number of DCT coeffi-
cients that changed during recompression with the same
quality factor across 1000 images selected from BOSS-
base 1.01 at random. This result is not sensitive to the
specific implementation of the JPEG compressor.

3.2. Stego images

Given a JPEG cover image represented by DCT coeffi-
cients c(1), the steganographer embeds the secret mes-
sage into the image after recompression c(2). We model
the steganography by adding steganographic noise ξkl ∈
{−1, 0, 1}, Pr{ξkl = 1} = β+, Pr{ξkl = −1} = β− to the
cover: skl = c

(2)
kl + ξkl. Note that E(ξkl) = β+

kl − β
−
kl and

V ar[ξkl] = β+
kl + β−kl.

Decompressing the stego image block gives

zij = DCT−1
ij (s� q(2))

= DCT−1
ij (c(2) � q(2) + ξ � q(2))

= x
(1)
ij − ηij + ζij , (13)



Q1 detector Q2
93 94 95 96 97 98 99 100

93
e-SRNet 0.0438 0.3678 0.4104 0.3545 0.2845 0.0317 0.0002 0.0002

eOH-SRNet 0.0485 0.0059 0.0019 0.0024 0.0035 0.0051 0.0001 0.0001
JRM 0.4360 0.0029 0.0028 0.0016 0.0010 0.0031 0.0064 0.0053

94
e-SRNet 0.0028 0.3356 0.4205 0.1725 0.0994 0.0001 0.0000

eOH-SRNet 0.0027 0.0076 0.0030 0.0033 0.0060 0.0002 0.0001
JRM 0.4304 0.0023 0.0022 0.0019 0.0022 0.0050 0.0068

95
e-SRNet 0.0009 0.3449 0.2870 0.0463 0 0.0001

eOH-SRNet 0.0008 0.0008 0.0038 0.0038 0.0002 0.0001
JRM 0.4232 0.0067 0.0024 0.0039 0.0052 0.0067

96
e-SRNet 0.0006 0.3251 0.0412 0.0001 0.0001

eOH-SRNet 0.0004 0.0118 0.0062 0.0001 0.0002
JRM 0.4196 0.0079 0.0058 0.0068 0.0086

97
e-SRNet 0.0005 0.2055 0.0001 0.0003

eOH-SRNet 0.0003 0.0482 0.0002 0.0001
JRM 0.4159 0.0207 0.0070 0.0061

98
e-SRNet 0.0003 0.0001 0.0001

eOH-SRNet 0.0001 0.0002 0.0001
JRM 0.4194 0.0031 0.0041

99
e-SRNet 0 0.0001

eOH-SRNet 0.0001 0
JRM 0.4127 0.0026

100
e-SRNet 0.0002 0.0001

eOH-SRNet 0.0001 0.0001
JRM 0.4126 0.3965

Table 1. Detection error PE with different detectors,
J-UNIWARD at 0.4 bpnzac.

where ζij =
∑

kl f
ij
klξklq

(2)
kl

ζij ∼ N
( 7∑

k,l=0
f ij

klq
(2)
kl (β+

kl − β
−
kl),

7∑
k,l=0

(f ij
kl )

2(q(2)
kl )2(β+

kl + β−kl)
)
. (14)

For steganography without side information β+
kl =

β−kl, thus

zij ∼ N
(
x

(1)
ij −

7∑
k,l=0

f ij
klq

(2)
kl E[ekl],

7∑
k,l=0

(f ij
kl )

2(q(2)
kl )2(β+

kl + β−kl + V ar[ekl])
)
. (15)

Notice that the rounding error of zij is a folded Gaus-
sian whose variance is increased due to embedding (c.f.
Eq. (9) with Eq. (15)) and whose mean is now non-zero,
dependent on the rounding errors in DCT domain. Both
contribute to the fact that in stego images, these Gaus-
sians will start folding into a uniform distribution with
increased payload (change rates).

4. RESULTS

All experiments in this paper are executed on the union
of the popular datasets BOSSbase 1.01 and BOWS2,
each containing 10,000 grayscale images downsampled
to 256 × 256 using ’imresize’ with default parameters
in Matlab. The detectors were trained on all BOWS2

images and a randomly selected 4,000 BOSSbase im-
ages, with 1,000 BOSSbase images used for validation
and 5,000 for testing.

Table 1 shows the detection error under equal priors
on the testing set for J-UNIWARD at 0.4 bpnzac. The
cover JPEG images were doubly compressed with the
first quality factor being represented by rows and the sec-
ond quality factor by columns. We only show the cases
when 93 ≤ Q1 ≤ Q2 and also when Q1, Q2 ∈ {99, 100},
since these cases satisfy condition [C1]. Three detec-
tors are tested: SRNet [1] trained on the rounding errors
after decompressing the JPEG image (e-SRNet), JRM
with the ensemble classifier [5], and OneHot network [9]
combined with e-SRNet (eOH-SRNet), which is imple-
mented as OneHot-SRNet in the original paper with clip-
ping threshold T = 5. The SRNet, however, takes the
rounding errors on the input instead of the spatial rep-
resentation of the image. We want to point out that
both network based detectors converge to their optimum
extremely quickly, within 20k iterations. Even though
e-SRNet fails for some combinations of the compression
qualities, such as (96, 97), double compression with such
combinations of quality factors leads to peaks and val-
leys in cover DCT histograms, which allows very accu-
rate detection with JRM and other prior art [6, 8, 10, 9].
Note that these detectors perform rather poorly when-
ever Q1 = Q2. The eOH-SRNet provides overall reliable
detection.

The condition [C2] dictates that the RJCA will work
whenever the (equal) quality factors are at least 93 and
that can be confirmed in Table 1. Results for lower quali-
ties are not included because RJCA stops working there,
in agreement with the analysis from Section 3.

5. CONCLUSIONS

The reverse JPEG compatibility attack is an extremely
accurate, universal, and quite simple steganalysis tech-
nique that was originally shown to be limited to high
quality factors (99 or 100). In this paper, we extend this
attack to cover images that are doubly compressed with
quality factors 93 ≤ Q1 ≤ Q2. By analyzing the distri-
bution of the rounding errors in the spatial domain, we
arrived at two conditions that need to be satisfied for the
attack to work. The conclusions reached from the theo-
retical considerations match our experimental results. In
combination with the OneHot-SRNet, the detector pro-
vides the most reliable detection across all above combi-
nations of quality factors. In particular, the compatibil-
ity attack works extremely reliably also when Q1 = Q2,
which is the case when all other tested detectors (SRNet
and JRM) perform rather poorly.
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