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ABSTRACT

In this paper, we propose a new method for estimating the number of embedding changes for non-adaptive ±K
embedding in images. The method uses a high-pass FIR filter and then recovers an approximate message length
using a Maximum Likelihood Estimator on those stego image segments where the filtered samples can be modeled
using a stationary Generalized Gaussian random process. It is shown that for images with a low noise level, such
as decompressed JPEG images, this method can accurately estimate the number of embedding changes even for
K = 1 and for embedding rates as low as 0.2 bits per pixel. Although for raw, never compressed images the
message length estimate is less accurate, when used as a scalar parameter for a classifier detecting the presence
of ±K steganography, the proposed method gave us relatively reliable results for embedding rates as low as 0.5
bits per pixel.
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1. INTRODUCTION

Steganography is the art of invisible communication. Its purpose is to hide the very presence of communication by
embedding messages into innocuous-looking cover objects. Each steganographic communication system consists
of an embedding algorithm and an extraction algorithm. To accommodate a secret message in a digital image, the
original cover image is slightly modified by the embedding algorithm. As a result, the stego image is obtained. The
most important requirement for a steganographic system is undetectability: stego images should be statistically
indistinguishable from cover images. In other words, there should be no artifacts in the stego image that could be
detected by an attacker with probability better than random guessing, given the full knowledge of the embedding
algorithm, including the statistical properties of the source of cover images, except for the stego key (Kerckhoffs’
principle). For a more exact treatment of the concept of steganographic security, the reader is referred, for
example, to Ref. 1, 2.

By far the most popular and frequently used steganographic method is the Least Significant Bit embedding
(LSB). It works by embedding message bits as the LSBs of randomly selected pixels. The pixel selection is
usually determined by a secret stego key shared by the communicating parties. Today, a fairly large portion of
steganographic programs3 available for download on the Internet use this technique (Steganos II, S-Tools 4.0,
Steghide 0.3, Contraband Hell Edition, Web Stego 3.5, EncryptPic 1.3, StegoDos, Winstorm, Invisible Secrets
Pro, and many others). The popularity of LSB embedding is most likely due to its simplicity as well as the
(false) early belief that modifications of LSBs in randomly selected pixels are undetectable because of the noise
commonly present in digital images of natural scenes. However, flipping the bits of the LSB plane does not occur
naturally. The even pixel values are either unmodified or increased by one, while odd values are either decreased
by one or left unchanged. This imbalance in the embedding distortion was recently utilized to mount successful
attacks.4–6 The current state-of-the-art in detection of LSB embedding is represented by RS analysis,5 Sample
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Pairs analysis,6 and their improved versions.7, 8 These methods can detect stego images with an extremely high
reliability and accurately estimate the number of embedding changes.

A better approach than manipulating bit planes is embedding by adding noise of specific properties. The early
example of this approach is the work of Marvel,9 Alturki,10 and Sharp.11 Recently, Stochastic Modulation12

was proposed in which the act of embedding is realized by superimposing noise with an arbitrary (user-selected)
probability distribution. This method attempts to mask the act of embedding as adding a device noise of specific
properties. A special case of this method is, what we call, ±K embedding that is investigated in this paper. In
±K embedding, some pixel values are left unchanged, while others are either increased or decreased by K. The
modifications can be either content independent or adapted to the image content.

The ±K embedding for K = 1 is a trivial generalization of LSB embedding. Instead of flipping the LSB,
the sender increases or decreases the pixel value by one to match its LSB with the message bit. This seemingly
innocent modification of the LSB embedding is significantly harder to detect because the pixel values are no longer
paired. As a result, none of the existing attacks on LSB embedding can be adapted to attack ±1 embedding.

One of the first papers on detection of embedding by noise adding is the paper by Harmsen.13 The detection
relies on the fact that adding noise to the cover image smoothes out its histogram. This method seems to work
reasonably well for images that have low level of high frequency noise, such as decompressed JPEG images. It is
not clear, however, if one can find a universal threshold distinguishing cover and stego images for a sufficiently
wide class of images (e.g., for never compressed images, scans, or resampled images) and whether the method
can reliably estimate the number of embedding modifications, which is an important piece of knowledge for the
steganalyst. Also, the detection is less reliable for grayscale images.

A different method for detection of steganography based on noise adding was proposed by Westfeld.14 Noise
adding creates many (up to 26) neighbors for each color present in the cover image. In decompressed JPEG
images and images with a low level of noise, each color typically has no more than 10–15 neighboring colors.
However, ±1 embedding increases the number of neighbors quite significantly even for low embedding rates.
Thus, by counting the number of neighbors for each unique color in the image, one can detect the presence of
±1 steganography. This method seems to be limited to color images and it is not known if it can estimate the
number of embedding changes. Images with a large noise component, such as never compressed images, scans of
photographs, or certain resampled images are often misdetected as false positives.

In this paper, we propose a new method for detection of non-adaptive ±K embedding that can also estimate
the number of embedding changes, which is proportional to the length of the embedded message. Thus, this
paper can be thought of as an extension of our previous work on quantitative steganalysis capable of detecting
the embedded message length.15 Also, this method works for color as well as grayscale images.

The method uses a simple denoising filter and then applies a Maximum Likelihood Estimator on pixels from
those parts of the stego image where the filtered pixels can be modeled using a stationary Generalized Gaussian
random process. In Section 2, we describe the new approach and in Section 3 we evaluate its performance on
decompressed JPEG images and never compressed images obtained using digital cameras. The last Section 4
concludes the paper.

2. PROPOSED METHOD

Our method estimates the unknown message length p using a Maximum Likelihood Estimator. The estimator
is applied to the high-pass filtered image data, which we model as a convolution of a discretized Generalized
Gaussian variable with a discrete distribution of a known form (with an unknown parameter p). We derive this
model in the following subsections.

2.1. Notation

A grayscale n×m image will be represented with a two-dimensional array of integers xij , xij ∈ {0, . . . , 255}, i ∈
{0, . . . , n− 1}, j ∈ {0, . . . ,m− 1}. A true color 24 bit n×m image will be represented as three grayscale n×m



Table 1. PM1 embedding operation.

Pixel value x To embed bit b, modify x to
b = 0 b = 1

0 < 2i < 255 2i 2i + 1 or 2i− 1
0 < 2i + 1 < 255 2i or 2i + 2 2i + 1

0 0 1
255 254 255

images rij , gij , bij . The distortion due to non-adaptive ±K embedding is modeled as an additive independent
identically distributed (i.i.d.) noise signal η with the following Probability Mass Function (PMF)

P (η = 0) = 1− p/2 (1)
P (η = K) = P (η = −K) = p/4.

For K = 1, for example, this PMF corresponds to embedding a random binary bitstream of length pmn in
randomly selected pixels using the embedding rule in shown Table 1.

2.2. Model Description

We model the stego image pixel sij as a sample from the random variable Sij

Sij = Xij + ηij(p), (2)

where Xij is a random variable modeling the distribution of pixels (i, j). The random variables∗ ηij(p) model
the stego signal and are distributed according to (1). They are assumed to be independent of each other as well
as of the image pixels Xij . This is indeed the case for non-adaptive embedding.

Our goal is to estimate p from the stego image pixels sij . Direct estimation of the message length p from sij

is very difficult because of the lack of a good model for Xij . Good models are, however, available in transform
domains, such as DCT, DFT, or DWT, where the samples are decorrelated and well modeled with a Generalized
Gaussian distribution. Because our goal is to estimate the secret message length p, we need a transformation F
that will enable us to obtain the probability density function (PDF) of F (ηij) in a closed form, yet, at the same
time provide decorrelation of the cover image samples. A reasonable trade-off between these requirements is a
simple FIR high-pass filter I − FA, (A > 0), where

FA =
1

A + 4




0 1 0
1 A 1
0 1 0


 . (3)

As explained above, the simplicity of this filter allows us to analytically derive the PMF of the filtered image
from the assumed models, which we then use to obtain the ML estimate of p. Applying this filter to the stego
image† yields the high-frequency “image” yij

yij = sij − FA(sij) = xij − FA(xij) + ηij(p)− FA(ηij(p)) = xF
ij + ηF

ij ,

due to the linearity of FA. The first term xF
ij contains the high-frequency component of the cover image xij and

the second term ηF
ij is a discrete random variable with PMF described below. As already mentioned above, the

high-frequency components of an image will be modeled as independent continuous random variables with the
∗We use the same symbol ηij(p) to denote the random variable modeling the embedding distortion as well as a sample

from the random variable.
†With the notational convenience FA(xij)

def
= 1/(A + 4)(Axij + xi−1,j + xi+1,j + xi,j−1 + xi,j+1).
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Figure 1. Histogram of the filtered image xF
ij and its approximation using Generalized Gaussian distribution. The solid

line is the histogram of the data and the dashed line is the PDF of the Generalized Gaussian fit.

Generalized Gaussian distribution. The probability density function of the Generalized Gaussian distribution
with mean value µ, variance σ2, and parameter α > 0 is

fGG(x;µ, σ, α) =
αΓ(3/α)1/2

2σΓ(1/α)3/2
exp

{
−|x− µ|α

σα

(
Γ(3/α)
Γ(1/α)

)α/2
}

, (4)

where Γ(·) is the Euler Gamma function. We have derived and implemented the ML estimator using this
continuous distribution and we obtained a working estimator. However, its performance was not satisfactory.
During our analysis, we have discovered that modeling xF

ij using a discrete distribution is much more appropriate
because the stego image pixels are integers in the range [0, 255]. After filtering, xF

ij take on only values that
are integer multiples of 1/(A + 4). So, we do not actually have real-valued samples. This observation is very
important, especially in the case of ±1 embedding, whose amplitude is comparable to that of the quantization
noise.

Therefore, we have replaced the continuous distribution (4) with its discretized version. We have defined the
“quantized” zero-mean Generalized Gaussian distribution taking on values l∆ with probability

fDGG(l∆;σ, α) = P (x = l∆;σ, α) =
∫ l∆+∆/2

l∆−∆/2

fGG(x; 0, σ, α) dx, (5)

for an integer l and ∆ = 1/(A+4). This operation can be viewed as histogram binning at points l∆ or equivalently
as quantization with the quantization step ∆. Note that the parameter σ2 is no longer the exact variance of the
quantized distribution (5). The variance of the distribution fDGG(l∆; σ, α) is from definition

VarXF
ij =

∞∑

l=−∞
(l∆)2P (x = l∆; σ, α) ≈ 2∆2

lmax∑

l=1

l2P (x = l∆; σ, α), (6)

because of the symmetry of the distribution. Theoretically, the summation must be carried over all integers,
practically however, depending on the particular parameters σ, α, the probability P (x = l∆; σ, α) quickly
approaches zero with increasing l. For typical values: ∆ = 1/5, σ = 1, and α = 1.6, the probability is already
less than 10−12 for lmax = 50.

It can be shown that the random variable ηF
ij , the filtered stego signal, has a unimodal symmetric discrete

distribution taking on seventeen values of the form

λl = lK∆ = l
K

A + 4
, (7)
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Figure 2. From left to right, examples of the distribution ξl(p) for p = 0.5 and p = 1.

with probability
ξl(p) = P (ηF

ij = λl; p) = g(l; p), (8)

where l = −8,−7, . . . , 7, 8 and g(−l; p) = g(l; p) is given by

g(l; p) =





−69/512p5 + 115/128p4 − 19/8p3 + 13/4p2 − 5/2p + 1 l = 0,
13/128p5 − 43/64p4 + 27/16p3 − 2p2 + p l = 1,
−7/256p5 + 13/64p4 − 15/32p3 + 3/8p2 l = 2,
−5/128p5 + 11/64p4 − 5/16p3 + 1/4p2 l = 3,
17/256p5 − 79/256p4 + 9/16p3 − 1/2p2 + 1/4p l = 4,
−7/128p5 + 15/64p4 − 3/8p3 + 1/4p2 l = 5,
7/256p5 − 3/32p4 + 3/32p3 l = 6,
−1/128p5 + 1/64p4 l = 7,
1/1024p5 l = 8.

(9)

We see that the probabilities ξl(p) are polynomials of the fifth order in p. We also see that ξ0(p) for λ0 = 0 is
the only polynomial that contains an absolute term. Figure 2 illustrates this distribution for p = 0.5 and p = 1.

To summarize our model, we represent the samples yij of the filtered stego image sij as samples from a
collection of independent discrete random variables Yij ,

Yij = XF
ij + ηF

ij , (10)

where XF
ij is distributed according to fDGG(l∆;σij , αij) and ηF

ij is distributed according to P (ηF
ij = λl; p). We

also assume that XF
ij and ηF

ij are independent, which is true for non-adaptive embedding. The distribution of
Yij is then the convolution the two distributions. Thus, Yij ∝ f(·; K, ∆, σij , αij , p),

f(yij ; K, ∆, σij , αij , p) =
αijΓ(3/αij)1/2

2σijΓ(1/αij)3/2

8∑

l=−8

ξl(p) exp

{
−|yij − λl|αij

σ
αij

ij

(
Γ(3/αij)
Γ(1/αij)

)αij/2
}

. (11)

In this most general model, we allow the local characteristics of the image to vary from pixel to pixel—the
parameters σ and α depend on the pixel position. This non-stationary model turns out to be too general and
difficult to handle. Later, we will describe a simple heuristics that enables us to assume that σij and αij are
constant (the stationary model).



2.3. ML Estimator

To simplify the notation, we use a single index i instead of the two dimensional index (i, j); the index i may be
interpreted as an index of some path through the image. Assuming independency and stationarity (with respect
to σi and αi), the joint density of the vector Y = (Y1, . . . , YN ), N = nm, can be written as

fY(y; K, ∆, σ, α, p) =
N∏

i=1

f(yi; K, ∆, σ, α, p), (12)

and the log-likelihood function is then (dropping the explicit dependence on known K, ∆)

log fY(y; σ, α, p) = N log
αΓ(3/α)1/2

2σΓ(1/α)3/2
+

N∑

i=1

log
8∑

l=−8

ξl(p) exp

{
−|yi − λl|α

σα

(
Γ(3/α)
Γ(1/α)

)α/2
}

. (13)

The Maximum Likelihood estimate of p having observed samples y is then

(p̂ML, σ̂ML, α̂ML) def= argmax
(p,σ,α)

log fY(y; σ, α, p). (14)

We see that along with the unknown message length p, we must also estimate the nuisance parameters σ, α.
This maximization is a rather complex task; the function log fY is not convex and has several local maxima.
We decided to find the maximum using a grid search. To reduce the complexity of the search, we employed the
following measures.

First of all, since the variance of ηij(p) is Var ηij(p) = K2p/2, the variance of ηF
ij(p) is

Var ηF
ij(p) = Var

{
ηij(p)− 1

A + 4
(Aηij(p) + ηi−1,j(p) + ηi+1,j(p) + ηi,j−1(p) + ηi,j+1(p))

}
(15)

=
10K2

(A + 4)2
p,

which, in turn, means that

σ2
Y = VarY = VarXF +

10K2

(A + 4)2
p. (16)

Because 0 ≤ p ≤ 1, we can narrow the search interval for σ2 ≈ VarXF to the interval
[
σ2

Y −
10K2

(A + 4)2
, σ2

Y

]
. (17)

In reality, of course, we do not know the variance VarY ahead of time, so we estimate it by the sample variance
σ̂2

Y computed from y.

Because the parameter σ2 of the discretized Generalized Gaussian distribution is no longer the exact variance
VarXF , we increase the search interval for σ2 a little bit.

Using the constraint (16) not only narrows the search interval but it also effectively reduces the dimensionality
of the search from three independent variables to two. This is because when we fix α and σ, then p is calculated
from (16) and (6).

Further computational optimizations are possible by iterating through α in the outer-most loop and leaving
the iteration through σ as an inner-loop. This arrangement allows us to precompute the terms containing the
computationally-expensive Gamma function, since they only depend on α. Here is the pseudo-code for our MLE.

1. Estimate the variance σ2
Y by calculating the sample variance σ̂2

Y of the sample vector y.



2. Compute the lower bound σ2
L and the upper bound σ2

U of the search interval for σ2 using (17). Enlarge
the search window to compensate for the fact that σ2 is not the variance of XF by setting σL ← σL− 1/∆
and σU ← σU + 1/∆. If σL < 0.05, set σL = 0.05. Compute the search step δσ = (σU −σL)/Nσ, where Nσ

is the number of values for σ that should be examined.

3. Set the search interval for α; we have used αL = 0.4 and αU = 1.6 with the search step δα = 0.05.

4. For α ← αL to αU with the step δα do

For σ ← σL to σU with the step δσ do

i. Compute the variance VarXF using (6). (The variance depends on σ and α.)
ii. Compute p as

p =
(A + 4)2

10K2

(
σ̂2

Y −VarXF
)
. (18)

iii. Create a look-up table for the distribution f(y;K, ∆, σ, α, p). This is possible, because the dis-
tribution is discrete and we know the maximum a minimum value that y can take on from the
data.

iv. Evaluate the function log fY(y; σ, α, p) using the look-up table and store the value in f(σ, α).

5. Find the maximum value of f(σ, α). The σML, αML for which we obtain the maximum are, by definition,
the ML estimates of σ, α. Compute the ML estimate of p from (18) with the optimal σML, αML.

2.4. Pixel Selection

We have seen in the previous section that along with the unknown message length p we also need to estimate
the parameters σ and α. If we did not have to estimate them, the estimation would be much faster, because we
could treat σ and α as known constants. The fundamental problem is that we cannot estimate σ and α from
the data without first knowing p, since we do not observe samples from Xi or XF

i but only from S or Y , which
depend on p. We have experimentally verified that the estimation of σ and α is sensitive with respect to p, which
is to be expected for σ but is not so obvious for α. For large σ, the dependence on p weakens but so does our
ability to reliably estimate p.

This is a fundamental problem because the parameter σ is obviously non-stationary—there are regions in the
image where the simple filter FA does a good job at removing the correlation among pixels but there are regions
where this filter is not good enough. This will be reflected in the variance of the variable Yi. The behavior
of α is not clear but it is reasonable to expect that it is also non-stationary. An obvious solution is to assume
non-stationarity for both and along with p estimate also σi and αi for each pixel. This “solution” is obviously not
feasible because we cannot reliably estimate a parameter set from a data set of the same cardinality. Therefore,
we have to restrict the set of parameters to a smaller number. We could try to identify the regions in the stego
image that have the same or similar structure and assume stationarity of σ and α within these regions. We have
used an even simpler approach: we try to find such samples of Yi whose local σi can be considered as constant
and use only those samples for estimation. To find such samples, we use a heuristics described in the following
algorithm.

1. First, segment the stego image to localize areas of the “same structure”. The segmentation allows us to
avoid pixels that lie on a boundary between two segments (pixels with a high local variance). We have
used an implementation of the segmentation algorithm16 created by one of the authors of the algorithm.

2. Calculate yi by filtering the stego image si using the filter FA.

3. Calculate the estimate σ̂2
i of the local variances of yi from a small square window of width B centered

about the pixel i. During this estimation, only use those samples from the window that belong to the same
region as the center pixel i. Calculate the number of samples in each region and denote as Ni.



4. Remove those samples yi whose estimated local variance σ̂2
i was computed from fewer than 90% of samples

in the window, in other words those samples yi for which Ni < 0.9B2. Remove also those samples whose
estimated local variance σ̂2

i is larger than a given threshold. We have used the following threshold T ,

T = 9 +
10K2

(A + 4)2
,

obtained by experimenting with the ML estimator on ideal data generated from the assumed model. This
indicates that the ML estimator starts to fail to reliably estimate the message length p once the variance
of XF exceeds 9. Denote the set of pixels i that fulfill both of these conditions by I.

5. Compute the histogram h(·) of the set {σ̂i | i ∈ I} and find all local maxima of this histogram. Denote
the points where a local maximum is attained by σmax

l for l = 1, . . . , L, where L is the number of local
maxima. In other words, at point σmax

l , the histogram h has a local maximum h(σmax
l ), and this holds for

all l.

6. Sort the local maxima in an ascending order and select the first σmax
l with enough samples i whose estimated

local standard deviation σ̂i is in the interval

σ̂i ∈ (σmax
l − ε, σmax

l + ε),

where ε is a small constant, for example ε = 0.04. In other words, select the smallest σmax
l for which

|J | > M, J = {i | σ̂i ∈ (σmax
l − ε, σmax

l + ε)},
and M is the minimum number of samples that allow reliable estimation. We have used M = 100.

7. Perform the ML estimation of (p, σ, α) from the data set {yi | i ∈ J}.

In Steps 5 and 6, we try to identify pixels that have very similar local variance so that we can assume that
σi is constant (because stationarity of VarYi implies stationarity of σi since the variance of η(p)i is fixed). We
make a tacit assumption that for such pixels the parameter αi will also be stationary. We further select those
pixels whose local variance is the smallest of all. This rationale comes from the natural feeling that the smaller
the local variance, the better the estimation (we verified experimentally on ideal data).

This heuristics did, indeed, lead to a significant performance improvement. Without it, the variance of the
estimator pML was too high to provide any useful estimates. This also indicates that our method would not work
for adaptive ±K embedding.

3. EXPERIMENTAL RESULTS

Perhaps the best performance measure would be the Cramér-Rao Lower Bound (CRLB). It is however very
difficult to establish the CRLB for the distribution (12). The bound does not exist in a closed form and its
numerical evaluation is also problematic because the function is not convex. This is a part of our future research.
We have therefore performed several experiments to assess the performance of our estimator. We describe the
experiments based on the source of the cover images.

3.1. Experiment One
The test database comprised of 180 grayscale images selected from the Greenspun database.17 These images are
stored as JPEGs with quality factor 75. In the test, we have embedded random messages with relative message
length p = 0, 0.25, 0.5, 0.75, and 1 using ±1, ±2, and ±3 embedding. The parameters of the test were as follows:
the filter parameter A = 1 and the size of the window used for the variance estimation was B = 13. To speed-up
the computations, the estimator used at most 25,000 samples. The minimum number of samples required for
the test was set to 100.

Because of the relatively small number of tested images, we show the results of detection in Figures 3 and 4.
The estimated mean and standard variation of the estimator are provided in Table 2. Note how the estimator
accuracy dramatically improves with increasing amplitude K of the stego signal.



Table 2. Mean and variance of the estimator.

p ±1 ±2 ±3
µ̂ σ̂ µ̂ σ̂ µ̂ σ̂

0 0.137 0.281 0.058 0.177 0.023 0.098
0.25 0.295 0.240 0.277 0.145 0.250 0.071
0.5 0.530 0.171 0.517 0.085 0.495 0.055
0.75 0.780 0.070 0.762 0.044 0.747 0.022
1 0.980 0.017 0.989 0.008 0.985 0.010
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Figure 3. Estimates of message lengths for ±1 and ±2 embedding (on the left and right respectively) performed on a
database of 180 grayscale images.
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Figure 4. Estimates of message lengths for ±3 embedding performed on a database of 180 grayscale images.

3.2. Experiment Two

The second experiment was performed on a database of images taken by three different cameras (Canon Pow-
erShot G2, Canon PowerShot S40, and Kodak DC290) in their native raw formats (RAW and TIFF). There
were 195 images from Canon PS G2, 197 images from Canon PS S40, and 195 images from Kodak DC290. The
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Figure 5. The ROC curves for ±1 and ±2 (on the left and right figure respectively) computed from 587 never-compressed
images.
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Figure 6. The ROC curves for ±3 computed from 587 never-compressed images.

images stored in the RAW format have been losslessly converted to the TIFF format. All images were converted
to grayscale before the experiments.

We have again embedded random messages with p = 0, 0.25, 0.5, 0.75, and 1 into each image using ±1, ±2,
and ±3 embedding and run the estimation. The parameters of the test were the same as in the previous test in
Subsection 3.1.

As can be intuitively expected, the message length estimation is much less accurate for raw images than
for decompressed JPEGs. Thus, for raw images we have decided to use the estimate as a scalar parameter to
evaluate the presence of hidden data. The results are shown in Figures 5 and 6 in the form of Receiver Operating
Characteristic (ROC) curves.

3.3. Experiment Three

We have applied this method also to a small set of raw, never compressed, images from a scanner. We were
unable to detect any ±1 embedded message in any of the images. We attribute this behavior to a stronger noise
component that is inherently present in scanned images. Detection of low-amplitude stego noise in scans or very



noisy images appears to be fundamentally difficult as none of the other detection methods works for this case
either. We expect that the detection performance will improve with increasing K even for these images.

4. CONCLUSIONS

In this paper, we have proposed a new method for detection of non-adaptive ±K embedding and tested its
performance on a database of images. This method can also estimate the secret message length and is applicable
both to grayscale and color images. After a simple high-pass FIR filter is applied to the stego image, the
unknown message length is estimated using a Maximal Likelihood estimator. We have used a simple filter to
be able to derive a closed form of the PMF of the stego signal. The filtered cover image is modeled using a
Generalized Gaussian distribution. The estimation is carried out only for those segments of the stego image
where the distribution of the filtered cover image can be considered as stationary. On such segments, the ML
estimator is used to obtain two parameters of the stationary generalized Gaussian distribution and the unknown
parameter—the message length.

There is room for improvement in our analysis that we plan to investigate in our future research. One
possibility would be to utilize the results of the segmentation more systematically. So far, we use the segmentation
to improve the estimation of local variance by using only pixels belonging to the same region as the pixel whose
variance is being estimated. The model later assumes that all the samples we use for estimation have the same
variance and parameter α. It would perhaps be more realistic to assume that only pixels within the same
connected region share the same σ and α.

Another possibility to implement our methodology is to apply linear decomposition to the image (e.g., wavelet
decomposition) and perform the estimation in the transform domain. Because the wavelet transform achieves
significantly better decorrelation than our simple high pass filter, we can expect an improvement in performance.
The problem is that we can no longer find an analytic expression for the transformed stego message. On the
other hand, based on our experiments, it appears that the wavelet transform of the stego message signal is well
modelled using Generalized Gaussian distribution. Thus, we can precalculate (or tabulate) its parameters as
functions of p. The approach would then proceed in the same manner as in Section 2.2. Instead of considering
the wavelet transform of the stego image as a convolution of a Generalized Gaussian and a discrete distribution
(9), we will now have a convolution of a Generalized Gaussian with another Generalized Gaussian.
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