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ABSTRACT 

In this paper, we revisit the problem of digital camera sensor identification using photo-response non-uniformity noise 
(PRNU). Considering the identification task as a joint estimation and detection problem, we use a simplified model for 
the sensor output and then derive a Maximum Likelihood estimator of the PRNU. The model is also used to design 
optimal test statistics for detection of PRNU in a specific image. To estimate unknown shaping factors and determine 
the distribution of the test statistics for the image-camera match, we construct a predictor of the test statistics on small 
image blocks. This enables us to obtain conservative estimates of false rejection rates for each image under Neyman-
Pearson testing. We also point out a few pitfalls in camera identification using PRNU and ways to overcome them by 
preprocessing the estimated PRNU before identification. 

1. INTRODUCTION

The problem of establishing the origin of digital media obtained through an imaging sensor is important whenever 
digital content is presented as silent witness in the court. For example, in a child pornography case, establishing solid 
evidence that a given image was obtained using a suspect’s camera is obviously very important. The identification 
technology could also be used to link a camcorder confiscated inside a movie theater to other, previously pirated 
content. In these applications, it is necessary to link an image or a video-clip to a specific piece of hardware and not 
just a camera brand or model [1–3]. To solve this problem, an equivalent of “biometrics for cameras” or fingerprint is 
needed. One of the first fingerprints for digital imaging sensors were defective pixels (hot and dead pixels) [4]. Lukas 
et al. [5] proposed the PRNU and its detection inside a given image using correlation in a manner similar to digital 
watermarking methods. In this paper, we also use the PRNU but construct the estimation and detection methods from 
a model of the sensor output using the apparatus of statistical signal estimation and detection. This enables us to 
estimate the detection errors more accurately and make better use of available data. In particular, the number of 
images needed to estimate the PRNU can be significantly smaller than what was reported in [5]. Moreover, by 
estimating the error probabilities for each image separately, rather than for all images from the camera, more reliable 
results can be obtained. 

In Section 2, we describe a simplified sensor output model that will be used in this paper. Estimation of PRNU and its 
detection is detailed in Section 3. The predictor of the test statistics is described in Section 4. The Neyman-Pearson 
testing methodology employed in this paper appears in Section 5. Experimental results for 5 cameras are discussed in 
Section 6. In Section 7, we point out the importance of preprocessing the PRNU to decrease the false alarm rate (false 
camera identification). The paper is summarized in Section 8, where we also outline future research directions. 

Everywhere in this paper, boldface font will denote vectors of length specified in the text, e.g., X and Y are vectors of 
length n and X[i] denotes the i-th component of X.  Unless mentioned otherwise, all operations among vectors, such as 
product, ratio, raising to a power, etc., are element-wise. The norm of X is denoted as ||X|| = X X with 

 being the dot product of two vectors. Denoting the mean values with a bar, the normalized 
correlation is 
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2. IMAGING SENSOR OUTPUT MODEL 
The chain of processing that occurs in digital cameras is quite complex and varies greatly for different camera types 
and manufacturers. It includes signal quantization, white balance, demosaicking (color interpolation), color correction, 
gamma correction, filtering, and, optionally, JPEG compression. Because the processing details are not always easily 
available (e.g., hard-wired or proprietary), we decided to use a simplified model [6] that captures the most essential 
elements of typical in-camera processing. This enables us to develop a low-complexity camera ID procedure 
applicable to a wide spectrum of cameras. We acknowledge that a more accurate model tailored to a specific camera 
would likely produce more reliable camera ID results at the cost of increased complexity. 

Let I[i] be the signal in one color channel at pixel i, i = 1, …, n, generated by the sensor before demosaicking is 
applied and let Y[i] be the incident light intensity at pixel i. Here, we assume that the pixels are indexed, for example, 
in a row-wise manner. Dropping the pixel indices for better readability, we use the following model of the sensor 
output 

( ) s rgI 1 K Y q ,                                                   (1) 

where g is the color channel gain,  is the gamma correction factor (typically,  1/2.2), K is a zero-mean 
multiplicative factor responsible for PRNU (the sensor fingerprint), and , , ,s r q  stand for the following noise 
sources: dark current, shot noise, read-out noise, and quantization noise. The gain factor g adjusts the pixel intensity 
level according to the sensitivity of the pixel in the red, green, and blue spectral bands to obtain the correct white 
balance. We remind that all operations in (1) are element-wise. 

Because the dominant term in the square bracket in (1) is the light intensity Y, we can factor it out. Using the first two 
terms in Taylor expansion of (1 + x)  = 1 +  x + O(x2), from (1) we obtain 

                      (0) (0)I I I K ,       (2) 

where (0) (gI Y)  is the sensor output in the absence of noise;  is a complex of independent random noise 
components.

3. CAMERA IDENTIFICATION METHODOLOGY  
The camera identification methodology is a joint estimation and detection problem. First, we estimate the PRNU K
from a set of N images taken by the camera. Then, using hypothesis testing we detect the presence of the term I(0)K in 
a specific image I whose origin is in question. In this section, we describe the details of both tasks. 

The first step is host signal rejection to improve the SNR between the signal of interest and observed data. We 
suppress the influence of the noiseless image I(0) by subtracting from both sides of (2) an estimate (0)ˆ ( )FI I  of I(0)

obtained using a denoising filter† F

, or      (0) (0) (0) (0)ˆ ˆ ( )W I I IK I I + I I K
      .W IK         (3) 

The term  is a combination of  with the additional distortion introduced by the denoising filter. Working with the 
noise residual W significantly improves the SNR for our signal of interest IK and thus improves the reliability of the 
camera identification process. However, the denoising filter also shapes the signal we are trying to estimate or detect 
and it also makes the noise  highly non-stationary. For example, in textured areas  is larger and the signal IK is 
attenuated by a multiplicative factor that depends on local texture. 

                                                          
† We use a wavelet based denoising filter F that removes from images Gaussian noise with variance 2

F  (in this paper, 
we used 2

F = 3.) More details about this filter can be found in our previous work [5] or in the original publication [7].  



3.1 ML estimation of PRNU 

We now explain the methodology for estimating the PRNU K from N images I1, …, IN obtained by the same camera. 
We will assume for simplicity that the images are relatively smooth and non-saturated, such as blue sky images. 
Because we can make arbitrary test images with the camera, this assumption is reasonable. For such images, the 
model (3) is approximately accurate. From (3), we have for each k = 1, …, N
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Assuming that for each pixel i the sequence  is WGN (white Gaussian noise) with variance 2,
the log-likelihood of obtaining the measured data 
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Taking partial derivatives of (5) with respect to individual elements of K and simplifying, we finally obtain the ML 
estimate for the PRNU 
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We also compute the second partial derivative and obtain the Cramer-Rao Lower Bound (CRLB) on the variance of 
,K̂
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Due to the linearity of the signal model, our ML estimator is actually the minimum variance unbiased (MVU) 
estimator and the CRLB is its variance. Expression (7) also gives us clues on what images should be used for the best 
estimation of PRNU. First, we want the luminance Ik to be as high as possible but not saturated because saturated 
pixels (Ik[i]  255 for an 8-bit grayscale image) carry no information about PRNU. Second,  is proportional to 

 2, which is the combination of various noise sources and the term 

ˆvar( )K

0
ˆ

0I I  introduced by denoising (3). Thus, the test 
images should be as smooth as possible. In summary, the best candidates for PRNU estimation are images of bright 
(but not saturated) uniformly white scenes. In practice, one might take out-of-focus images of cloudy sky after 
zooming in. Finally, we note that  is approximately inversely proportional to the number of images N used for 
estimation and thus decreases as 1/N.

ˆvar( )K

3.2 PRNU detection 

The model (3) with the assumption that is a WGN is an approximately valid representation of reality as long as the 
image is spatially homogenous with no saturated areas, such as sky images. As explained in the previous section, such 
images are the best for PRNU estimation. In most real-life images, however, the PRNU noise ˆIK  is modulated. It is 
attenuated in areas of the image that were “flattened” by processing, such as JPEG compression. Also, in overexposed 
regions of the image saturated at the maximum value of the dynamic range, the effect of the PRNU (and any other 
noise) is not present at all. Additional attenuation is produced by the denoising filter because we may be subtracting a 
portion of the PRNU noise with the denoised image. As a result, we accept the following model for the camera output 



ˆW TIK ,       (8) 

where now T[i] is a multiplicative attenuation factor and is a sequence of independent Gaussian variables with 
unequal variances  (colored Gaussian noise). We formulate the problem of detection of PRNU in the noise 

residual  of a given image I as a binary hypothesis testing 

[ ]i
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0
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                 H0: W    
H1: ,W TX        (9) 

where  is the non-attenuated PRNU signal. Here, more accurately we should have written 
H0: , where  corresponds to a PRNU from some other camera. However, because the combined 
noise term  dominates the contribution from the PRNU, we consider the PRNU as a weak signal and include it in 
the noise term. 

ˆX IK
ˆ 'W TIK ˆ 'K

To estimate the shaping factor T and the variance , we can either accept a parametric model for them and estimate 
the parameters, or we can estimate T and  locally from the image. Finding a good model, however, is not an easy 
task because both factors depend on the complex interplay between the denoising filter and the local texture and 
content of the image. Likewise, due to insufficient data, it is not possible to accurately estimate these two non-
stationary factors at every pixel. Instead, we opted for the following approach. We divide the image into M smaller 
disjoint blocks and assume that within each block b {1, …, M} T and are constant equal to Tb and b,
respectively

2

2

2

‡. Both Tb and b will be estimated from a predictor constructed in the next section. Allowing these 
estimates to be accurate up to an unknown multiplicative factor common to all blocks (see the discussion at the end of 
Section 4), we arrive at the following hypothesis testing problem 

    H0: W
 H1: .aW TX       (10) 

where now is a sequence of zero-mean independent Gaussian variables with known variance equal to [ ]i 2ˆb  on the 

b-th block, and T[i] is piece-wise constant equal to , which is also known. Both a and  are unknown multiplicative 
factors. The optimal detector for (10) is the normalized Generalized Matched Filter (see Chapter 4.4 in [8]) 
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We now explain the estimation of the shaping factor Tb and variance b. Under hypothesis H1, the noise residual W
comes from the tested camera and the normalized correlation b calculated for pixels in the b-th block is 
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Because  is zero mean and uncorrelated with X[i], the mixed term  is small compared to the other terms in 
(12). Thus, 
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‡ The blocks will be described by their index sets Bb {1, …, n}. Signals constrained to the b-th block will be denoted 
with subscript b, e.g., Xb, Wb, etc. 



where ,  denote the energy of the signal of interest TX and the noise 
in the b-th block, respectively (|Bb| is the cardinality of Bb). Finally, we obtain from (13) an estimate for the SNR 
between the signal of interest and noise 
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Expression (14) assumes knowledge of the correlation b, which we only know under hypothesis H1 but not under H0.
We address this problem by constructing a predictor of the normalized correlation b on small blocks based on our 
knowledge of , , and some features extracted from the block that we expect to most influence b (see Section 4). 
In other words, we will calculate for each block an estimate (prediction) 

K̂ 0Î
ˆb  of what the correlation should be if I was 

obtained by the camera with PRNU  (hypothesis H1).K̂

From (8),  and thus using (14) we obtain estimates for both Tb and 2
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In the expression for 2ˆb  in (15), we skipped the multiplicative factor 1/|Bb| because it is the same for all blocks if all 
blocks are of the same size and thus does not influence the value of  (11). We note that once the shaping factors Tb

and the noise variance 2
b  are estimated, the test statistics for the generalized matched filter (10) is calculated by 

evaluating (11) after substituting for  and b̂T 2ˆb  their corresponding estimates (15) 
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4. CORRELATION PREDICTOR 

In this section, we construct a predictor of the correlation ( , )b bcorr bX W  on small blocks for images coming from 
the same camera as the PRNU (the matched case corresponding to hypothesis H1). From experiments, we determined 
that the most influential factors are 

1) Image intensity; 
2) Texture;
3) Signal flattening. 

The predictor will be a mapping from some feature vector to a real number in the interval [0,1] – the predicted value 
of b. The block size can not be too small to avoid the lack of statistically significant data but not too large because 
then the assumption of stationarity of the shaping factor T and the variance  is less likely to hold. For typical sizes 
of digital camera images with 1 million pixels or more, we recommend square blocks with |Bb| = 128 128 pixels. 

2

Image intensity. Because the PRNU noise is multiplicative, the correlation is higher in areas of high intensity. 
However, due to the finite dynamic range, the PRNU noise is not present in saturated regions (  = 255) and is [ ]iI



attenuated for , where the critical value of intensity Icrit depends on the camera. Thus, we define the 
first feature as the average image intensity attenuated close to the maximum dynamic range 
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where att(x) is the attenuation function 
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where  is a constant. For example, for our tested Canon G2 camera, we determined from experiments Icrit = 250,  = 
6.

Texture. The correlation tends to be smaller in textured areas for two reasons – the variance is larger (and thus b

(13) smaller) and the shaping factor T < 1 (the denoising filter removes part of the signal of interest). Since the 
denoising filter that we use is constructed in the wavelet domain (8-tap Daubechis), we conveniently use this 
transformed signal and calculate the texture feature fT as the average reciprocal power of wavelet coefficients w in the 
LH, HL, and HH subbands in the first three levels of the wavelet decomposition of the block Bb:
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where Sb is the union of indices of all wavelet coefficients from all 9 subbands and var(w[i]) = min {var3(w[i]), 
var5(w[i]), var7(w[i]), var9(w[i])} is the variance of wavelet coefficients in the neighborhood of the coefficient w[i]
estimated from local 3 3, 5 5, 7 7, and 9 9 square neighborhoods (all these quantities are calculated during 
denoising). The purpose of the reciprocal function is to normalize the feature to the interval [0, 1]. 

Signal flattening. Image processing that is of low-pass filtering nature, such as JPEG compression, further attenuates 
the PRNU noise and thus decreases the correlation. In a relatively flat and high intensity (but not saturated) area, the 
predictor would thus incorrectly predict a high correlation. These “flattened” areas will typically have a low value of 
the local variance. Thus, we added the third feature fS defined as the ratio of pixels in the block with average local 
variance below a certain threshold  
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where c is an appropriately chosen constant that depends on the variance of the PRNU K (e.g., c = 0.03 for Canon G2) 
and  is the local variance of image intensity I[i] at pixel i estimated from a local 5 5 neighborhood. 2[ ]iI

From experiments, the correlation coefficients strongly depend on the collective influence of texture and intensity. 
Sometimes, highly textured regions are also high-intensity regions. Thus, we included the following combined 
texture-intensity feature calculated in the wavelet domain from the same wavelet coefficients as fT
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where in (22) for each i, att(I[i]) is the attenuated pixel intensity after subsampling the image to an appropriate size 
that matches the corresponding subband. 

Having specified the features, machine learning can now be used to learn the relationship between the features and the 
correlation. In this paper, we opted for a simple polynomial multivariate least square fitting. Let  be a column vector 
of K normalized correlations (12) calculated for K image blocks and fI, fT, fS, and fTI be the corresponding K-
dimensional feature vectors. We model  as a linear combination of the features and their second-order terms 
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where [k] is the modeling noise and  is the vector of coefficients to be determined. In (23), there are total of 
1+4+10=15 terms. Rewriting (23) in a matrix form, we have  

H ,       (24)  

where H is a K 15 matrix of features and their multiplications and = ( 1, …, 15) is the unknown vector parameter. 
Applying the least square estimator (LSE) to estimate , we obtain 
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and the estimated correlation .                  
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Figure 1. a) Scatter plot of b  vs. ˆb  for K=30,000 128 128 blocks from 300 images for Canon G2; b) True test statistics (16)

vs.
1

ˆ M
b bb

ˆ  for 285 Canon G2 images not used for calculating the PRNU or the predictor. 

The images used to build the predictor should be as diverse as possible so that the features extracted from the blocks 
cover as large portion of the feature space as possible. This is in contrast to the requirements for calculating the PRNU 
where we desire to have images mostly without texture. By overlapping the blocks, one can extract several hundreds 
of blocks from one image, depending on the image size. In practice, we have obtained very good predictors even from 
as few as 10 images. 

We note that if the image under investigation I is a JPEG image, the predictor should also be trained on JPEG images 
of approximately the same quality factor because JPEG compression influences the correlation. If the image has 
undergone an unknown processing that influences the values of correlations, the predictions may be off by a 
multiplicative factor because the PRNU will be attenuated in such images. This is why we allow in our model (10) 
unknown multiplicative factors a and .

We remark that the features can be defined in other ways and evaluated in different domains. We tested predictors 
based on features calculated all from the spatial domain and obtained a very similar performance. Likewise, other 
machine learning tools that we tested, e.g. neural networks, provided very similar results. It is very likely that a more 
detailed study of the influence of image properties on the test statistics combined with better machine-learning tools 
will further improve the predictor and lead to a more accurate camera ID process. 



5. NEYMAN-PEARSON TESTING 
We now describe the Neymann-Pearson hypothesis testing approach to decide whether or not a given image I was 
taken with a specific camera whose PRNU K has been estimated in Section 3. We would like to estimate the 
probability of making an incorrect decision. Recalling (9), false acceptance occurs when hypothesis H0 is true but we 
decide H1, while false rejection occurs when we accept H0 when H1 is true.  

To estimate the false acceptance ratio (FAR), we tested 2500 images from www.flickr.com coming from over 1000 
different cameras against the PRNU K. The test statistics (11) was modeled as a Generalized Gaussian §

GG( 0, 0, 0) where 0 is the mean, 0 the shape parameter, and 0 the width parameter. To estimate the false 
rejection rate (FRR), we need to obtain a pdf for the test statistics for images from the same camera. However, 
because the statistics heavily depend on the image content, modeling the distribution for very diverse images is nearly 
impossible as it strongly depends on the available images. Moreover, this would lead to overly conservative estimates 
for “good” images and too optimistic estimates for highly textured images. We should be evaluating the FRR against 
images of approximately the same content (close in the feature space). The predictor constructed in the previous 
section will enable us to achieve this goal.  

First, note that the experimental predictor data displayed graphically in Fig. 1 can be used to estimate the pdf of the 
prediction error b for each estimated block correlation ˆb

ˆb b b .       (27) 

From Figure 1a we see that the variance of b does not depend on the predicted correlation value. Thus, we model the 
prediction error b as identically distributed (but not necessarily independent) Generalized Gaussian variables with pdf 
f (x) = fGG(x; 0, , ). The errors from different blocks, however, are not independent because it is likely that 
neighboring blocks will have similar texture and thus the prediction errors will also be similar. To obtain a 
conservative estimate of the FRR, we made the assumption that the prediction errors are completely correlated, in 
which case the pdf of the test statistics 
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feature space). 

We set the decision threshold Th to obtain 0 0 0FAR ( ; , , )GGTh
f x dx  = 10–5, and calculate the FRR for images of 

approximately the same content as 
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.     (28) 

We note that we decide that I was taken by the camera when > Th, given by (16). 

6. EXPERIMENTS 

We selected five cameras for our tests: Canon G2 with a 4 megapixel (MP) CCD, Olympus C765-1 and Olympus 
C765-2 with a 4MP CCD, Sigma SD-9 with a 3MP CMOS Foveon sensor, and Olympus C3030 with a 3MP CCD. 
We note that the two Olympus C765 cameras are of exactly the same brand. The PRNU was calculated from 30 blue 
sky images or uniformly lit test images obtained using a light box. The predictors were trained on more than 10,000 
blocks from 20 images. We first calculated the test statistics for the H0 hypothesis by testing the PRNU from each 
camera against 2500 images from 1000 different cameras (including the images from the other four tested cameras). 
The distribution of the test statistics was used to calculate the threshold Th giving FAR = 10–5. Then, we tested 200–
300 images from the correct camera and evaluated the FRR for each image using (28) and (29).  
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Table 1. True and predicted values of test statistics  and FRR for eight test images from each of five cameras.

RAW JPEG 90 JPEG 75 Canon
G2 True/Pred. FRR True/Pred. FRR True/Pred. FRR

1 0.026/0.030 3.4e–2 0.021/0.023 5.6e–2 0.014/0.016 8.7e–2
2 0.066/0.069 2.3e–4 0.036/0.036 1.2e–2 0.020/0.020 4.5e–2
3 0.107/0.111 3.8e–7 0.050/0.050 1.8e–3 0.025/0.025 1.9e–2
4 0.137/0.136 4.6e–9 0.068/0.066 1.7e–4 0.036/0.036 2.5e–2
5 0.134/0.145 8.2e–10 0.068/0.068 1.2e–4 0.034/0.034 3.5e–3
6 0.139/0.141 2.0e–9 0.067/0.069 1.1e–4 0.035/0.036 2.5e–3
7 0.250/0.236 5.5e–17 0.113/0.108 2.7e–7 0.051/0.049 1.7e–4
8 0.281/0.271 0 0.119/0.110 1.9e–7 0.048/0.050 1.4e–4

RAW JPEG 90 JPEG 75 Olympus 
C 765-1 True/Pred. FRR True/Pred. FRR True/Pred. FRR

1 0.019/0.020 8.6e–2 0.015/0.016 1.2e–1 0.012/0.012 1.8e–1
2 0.028/0.027 4.3e–2 0.022/0.021 5.7e–2 0.016/0.015  1.1e–1 
3 0.059/0.052 3.7e–3 0.039/0.033 1.1e–2 0.021/0.018 7.1e–2
4 0.052/0.053 3.6e–3 0.029/0.032 1.0e–2 0.019/0.020 4.7e–2
5 0.073/0.069 7.1e–4 0.046/0.044 2.0e–3 0.029/0.026 1.6e–2
6 0.079/0.075 4.1e–4 0.061/0.055 3.3e–4 0.047/0.040 1.1e–3
7 0.102/0.098 4.5e–5 0.076/0.071 2.3e–5 0.058/0.050 1.4e–4
8 0.178/0.180 2.6e–8 0.124/0.109 2.9e–8 0.079/0.072 8.1e–7

RAW JPEG 90 JPEG 75 Olympus 
C 765-2 True/Pred. FRR True/Pred. FRR True/Pred. FRR

1 0.015/0.014 1.4e–1 0.013/0.012 1.7e–1 0.009/0.009 2.5e–1
2 0.043/0.041 2.9e–3 0.033/0.028 1.1e–2 0.023/0.020 3.6e–2
3 0.040/0.047 1.2e–3 0.029/0.028 1.0e–2 0.011/0.018 6.0e–2
4 0.062/0.058 2.2e–4 0.033/0.036 2.4e–3 0.016/0.023 1.9e–2
5 0.074/0.078 4.9e–6 0.054/0.058 1.6e–5 0.040/0.040 2.6e–4
6 0.080/0.077 7.0e–6 0.040/0.047 2.1e–4 0.025/0.030 4.0e–3
7 0.092/0.083 2.3e–6 0.050/0.042 6.7e–4 0.020/0.023 1.9e–2
8 0.130/0.127 5.7e–10 0.090/0.085 1.6e–8 0.054/0.050 1.6e–5

RAW JPEG 90 JPEG 75 Sigma
SD-9 True/Pred. FRR True/Pred. FRR True/Pred. FRR

1 0.047/0.038 4.4e–2 0.024/0.021 1.2e–1 0.014/0.011 2.4e–1
2 0.068/0.075 3.5e–3 0.032/0.034 4.6e–2 0.018/0.020 1.1e–1
3 0.088/0.083 2.1e–3 0.030/0.035 4.1e–2 0.019/0.024 7.9e–2
4 0.100/0.097 8.7e–4 0.038/0.036 4.0e–2 0.022/0.021 9.7e–2
5 0.133/0.130 9.5e–5 0.062/0.054 1.0e–2 0.031/0.032 3.9e–2
6 0.143/0.135 6.6e–5 0.056/0.057 8.7e-3 0.030/0.035 2.9e–2
7 0.170/0.183 3.0e–6 0.076/0.070 3.7e-3 0.042/0.035 2.9e–2
8 0.176/0.158 1.5e–5 0.077/0.079 2.0e-3 0.040/0.035 3.1e–2



RAW JPEG 90 JPEG 75 Olympus 
C3030 True/Pred. FRR True/Pred. FRR True/Pred. FRR

1 0.045/0.058 1.5e–2 0.044/0.031 3.8e–2 0.021/0.019 5.3e–2
2 0.081/0.088 1.2e–3 0.058/0.062 5.3e–4 0.038/0.033 2.6e–3
3 0.102/0.113 1.2e–4 0.061/0.064 3.9e–4 0.035/0.032 3.2e–3
4 0.140/0.131 2.0e–5 0.076/0.074 7.7e–5 0.036/0.035 1.5e–3
5 0.143/0.146 4.4e–6 0.077/0.078 3.7e–5 0.036/0.038 7.4e–4
6 0.171/0.156 1.7e–6 0.094/0.089 8.4e–6 0.044/0.039 4.8e–4
7 0.212/0.190 3.5e–8 0.103/0.096 1.5e–6 0.045/0.043 1.6e–4
8 0.209/0.206 4.4e–9 0.104/0.103 3.3e–7 0.046/0.047 3.7e–5

In the tables (Table 1) we display the true value of the test statistics  (16), its predicted value 
1

ˆ M
b bb

ˆ , and the 
FRR (at FAR=10–5) for eight selected images. We always selected the worse image in the set (No. 1), the best image 
(No. 8), and 6 other in-between representative images. Fig. 2 shows the eight images from Cannon G2. We note that 
the worst images were always heavily textured images, often combined with very bright (saturated) and dark areas. 
The PRNU in such images is largely attenuated and difficult to detect. 

    1              2       3        4 

5               6      7         8 
Figure 2. Eight Canon G2 images used in experiments. 

7. PRNU PRE-PROCESSING 

Besides the PRNU, the signal  estimated in Section 3.1 will contain all components that are systematically present 
in every image, such as artifacts due to color interpolation, on-sensor signal transfer [9], and JPEG compression 
(blockiness). These artifacts are not unique to the sensor and are shared among cameras of the same brand or cameras 
sharing the same imaging sensor design

K̂

**. This may cause the estimated PRNUs between two different cameras to be 
slightly correlated, which increases the false identification rate and decreases the reliability of the camera ID process.  

Thus, to further improve the accuracy of the camera ID algorithm, we suppress these artifacts by pre-processing the 
estimated PRNU before it is used for identification. We measure the success of removing the unwanted artifacts by 

                                                          
** This observation was already made in [5] but was not further investigated. 



calculating the correlation between PRNUs from different cameras (of the same brand or sharing the same sensor 
design), aiming for the correlation to be as close to zero as possible. 

We identified three main causes responsible for the artifacts. 

1. Color interpolation. Cameras equipped with a CFA (color filter array) only capture one color at each pixel, while 
the remaining colors must be interpolated from neighboring pixels. Although there exists a large number of 
interpolation algorithms, all involve some common elements. In particular, after quantization the sensor raw output is 
first adjusted for gain (because of varying sensitivity of silicone to light of different wavelengths). The resulting colors 
are then interpolated. The asymmetry of most color interpolation algorithms combined with slightly offset gains might 
introduce small but measurable biases into the interpolated colors. Because CFAs contain a periodic structure, these 
biases will show up as a periodic bias in column and row averages of the estimated PRNU. Thus, we can remove such 
artifacts by zeroing out the means of rows and columns of the estimated PRNU. 

2. Row-wise and column-wise operation of sensors and processing circuits. The row-wise and column-wise 
character of operations of digital imaging sensors and/or image processing circuits [9]†† also introduces a bias into 
each column and row. This linear pattern is also removed by zeroing out columns and rows. 

3. JPEG blockiness artifacts. Strong JPEG compression, especially in digital camcorders, causes blockiness artifacts 
that can propagate into the estimated PRNU [10]. These artifacts manifest themselves as peaks and ridges in the 
magnitude of the PRNU in the Fourier domain. 

We note that the first two artifacts are specific to the sensor design, the color filter array (CFA), and color 
interpolation. Thus they might be potentially useful for identification of the camera brand or model. We again leave 
this idea to our future work and now focus on methods for removing the artifacts. 

To suppress the artifacts, we pre-process the estimated PRNU by zeroing out the means of rows and columns and by 
further filtering/masking of the PRNU in the Fourier domain. In column and row zeroing, we first subtract column 
averages from each pixel in each column (for each color channel separately) and then subtract row averages from 
every pixel in the row. This makes the column and row averages of the estimated PRNU equal to zero. We denote this 
matrix operation as . The linear pattern, a potentially a useful forensic entity by itself, is the difference 

. The linear pattern is weak compared to  with SNR below –10 for compact or SLR cameras 
and it can be stronger for cheap cameras, e.g., cell-phone cameras. Figure 3 shows the enhanced linear pattern 
estimated from Canon G2 camera. This camera has the Bayer CFA with periodicity 2 along the rows and columns, 
which clearly shows up in the liner pattern. 

ˆ( )ZM K
ˆ ˆ ˆ( ) ( )LP ZMK K K K̂

                           
   Figure 3.  Linear pattern of Canon G2 (detail).                    Figure 4 Fourier transform of the PRNU after zero-meaning. 

To remove the JPEG blockiness and remaining periodic patterns from the zero-meaned PRNU, we apply the Wiener 
filter in the Fourier domain and only keep the noise component: ,1ˆ ˆ( ( )) { ( ( )) W( ( ( )))}WF ZM ZM ZMK K= F F F K̂

                                                          
†† Gamal et al. [9] model the readout process as a first order isotropic autoregressive process. 



where W is the Wiener filter with variance determined from the magnitude of the Fourier transform 

and window size 3 3. The resulting PRNU has a much flatter frequency spectrum than  (see Figure 4). 

ˆ| ( ( ))ZM KF |
ˆ( )ZM K

Table 2. Correlations between  for Canon G2 and  for Canon S40 before and after pre-processing.G2K̂ S40K̂

Red Green Blue 

G2K̂  vs. S40K̂ 0.02505 0.01341 0.01971 

G2
ˆ(ZM K )  vs. S40

ˆ( )ZM K 0.01224 0.01127 0.00768 

G2
ˆ( ( )WF ZM K ) ) vs. S40

ˆ( ( )WF ZM K 0.00133 0.00076 0.00046 

In Table 2 we show the correlations between differently processed PRNUs estimated from two Canon cameras, G2 
and S40. Both cameras share the same CCD sensor. Both PRNU estimates were generated from 20 images (high 
quality JPEGs in case of G2 and uncompressed images for S40). 

Another example shown in Table 3 involves two 1.3 Mp cell phone cameras LG VX8100 and Samsung A900. Only 
10 images of sky and gray wall were the source for  and 125 similar images for . The zero-meaning 
efficiently reduced the correlation between the PRNU estimates. Further filtering in the Fourier domain removed the 
blockiness caused by JPEG compression. 

LGK̂ SAK̂

Table 3. Correlations between  for LG VX8100 and  Samsung A900 before and after pre-processing.LGK̂ SAK̂

Red Green Blue 

LGK̂  vs. SAK̂ 0.01635 –0.00580   0.03441 

LG
ˆ(ZM K )  vs. SA

ˆ( )ZM K  –0.00107   0.00141 –0.00199 

LG
ˆ( ( )WF ZM K ) ) vs. SA

ˆ( ( )WF ZM K 0.00023   0.00100 –0.00121 

8. CONCLUSIONS 

In this paper, we present an improved method for camera ID based on joint estimation and detection of the camera 
photo-response non-uniformity (PRNU) in images. The method can be used whenever there is a need to answer the 
question whether or not a given image was taken with a specific camera that is either in our possession or images 
provably taken by that camera are available. 

The method uses the same principles as the approach proposed by Lukas et al. [5] but uses more advanced signal 
estimation and detection methods. First, the available images are denoised and the PRNU is estimated from the 
denoising residuals. In contrast to the intuitive approach reported in [5] in which the residuals were averaged, we start 
with a simplified linearized model of camera output and formulate the problem as parameter estimation in noisy 
observations. Under the assumption that the corrupting noise sources are Gaussian, the maximum likelihood estimator 
is MVU. The detection of presence of the PRNU in a given image then amounts to detection of a known signal 
attenuated by local image properties in independent Gaussian noise with unequal variances. The attenuation factor and 
the noise variance are estimated from a specially constructed predictor of normalized correlations on small image 
blocks. The optimal detector for this detection problem is the normalized correlation of pre-whitened signals 
(generalized matched filter). 

Using the Neyman-Pearson hypothesis testing, we estimate the probability of false rejection (falsely deciding that the 
camera did not take the image when it did) when setting the probability of false identification to 10–5. The correlation 
predictor enables us to estimate the probability of false rejection for images of similar content (images producing 



similar values of the test statistics). This leads to much more accurate error estimates because the reliability of the 
camera identification method is known to strongly depend on image content. 

Finally, we report some new results regarding the PRNU estimation. Besides the PRNU, the estimated signal will 
contain all the components that are systematic (present in every image), artifacts due to JPEG compression 
(blockiness), column (or row) artifacts due to on-sensor signal transfer, and artifacts due to color interpolation. These 
artifacts slightly increase the value of the test statistics among cameras of the same brand or cameras sharing the same 
imaging sensor design. This increases the false identification rate and decreases the reliability of the camera ID 
process. To suppress the effect of these artifacts, we proposed to pre-process the estimated PRNU by zeroing out the 
means of rows and columns and further filtering the PRNU in the Fourier domain. We note that some of these artifacts 
are specific to the sensor design, the CFA, and color interpolation, and thus might be potentially useful for 
identification of the camera brand or model. 

Our future research will be focused to applying the developed methodology to digital forgery detection. 
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