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Abstract—Currently, the most popular detectors of
content-adaptive image steganography are built using
machine learning with images represented with rich
features. Such high-dimensional descriptors, however,
prevent utilization of more complex and potentially
more accurate machine learning paradigms, such as
kernelized support vector machines, due to infeasibly
expensive training. In this paper, we demonstrate that
explicit non-linear feature maps coupled with simple
classifiers improve the accuracy of current steganalysis
detectors built as binary classifiers as well as quan-
titative detectors in the form of payload regressors.
The non-linear map is obtained by approximating a
symmetric positive semi-definite kernel on selected
pairs of cover features. Exponential forms of kernels
derived from symmetrized Ali-Silvey distances improve
the detection accuracy of binary detectors and lower
the error of quantitative detectors across all tested
steganographic schemes on grayscale and color images.
The learned non-linear map only weakly depends on the
cover source and its learning has a low computational
complexity. The technique can also be used for unsu-
pervised feature dimensionality reduction. For payload
regressors, the dimensionality can be significantly re-
duced while simultaneously decreasing the estimation
error.

Index Terms—Steganalysis, adaptive steganography,
explicit transformation, Nyström approximation, sup-
port vector machine

I. Introduction
The prevailing paradigm for detection of content-

adaptive steganography [1]–[7] uses machine learning with
high dimensional image representations called rich media
models [8]–[21].1 This holds true for binary detectors
targeted to a specific steganographic algorithm as well
as quantitative detectors that estimate the number of
embedding changes (payload size) [24], [25]. The high
dimensionality of rich models, however, limits the choices
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1Recently, convolutional neural networks [22], [23] have been pro-
posed as an alternative to this established detection paradigm.

for the detector construction due to prohibitively expen-
sive training. The problem becomes worse for quantitative
detectors estimating the payload size [24] as support vector
regression (SVR) generally requires an expensive three-
dimensional search for the hyperparameters. The commu-
nity has thus sacrificed some of the detection accuracy by
resorting to simpler machine learning tools, such as the
ensemble of FLD base learners [26] (Fisher Linear Dis-
criminant), its linear version derived as a likelihood ratio
test based on a multivariate Gaussian model of base learn-
ers’ projections [27], regularized linear discriminant [28]
implemented using the large linear system optimization
method called LSMR [29], regression trees [25] used for
estimating payload size, and the on-line average ensemble
perceptron [30] for large training sets.
Prior art offers evidence that the accuracy of steganal-

ysis can be improved whenever it is feasible to train the
detector as a Gaussian support vector machine (G-SVM).2
In [8], the authors pointed out that a G-SVM trained on a
3,300-dimensional subset of the 12,753-dimensional spatial
rich model (SRMQ1) selected using a simple forward
feature selection method on SRM submodels performed
better than the FLD-ensemble with the rich model (see
Table II in [8]). Feature sets of dimensionality less than
2,000 formed by variable quantization co-occurrences with
a G-SVM were also shown to be competitive with detectors
built using rich models and the FLD-ensemble [11].
The approach proposed in this paper finds a non-linear

decision boundary between cover and stego features by
training a simple (e.g., linear) classifier on features that
were transformed using an explicit non-linear mapping.
The mapping is obtained by approximating an implicit fea-
ture transformation determined by a symmetric positive
semi-definite kernel and can be interpreted as endowing
the Euclidean feature space with a different metric. This
well-founded approach has been used in machine learning
and specifically in computer vision as a low-cost method
for training kernelized SVMs [33], [34]. Square-rooting
features, which has been employed for object retrieval [35]
and in digital forensics [36], is a special case of the
methodology introduced in this paper.
The value of the proposed approach is demonstrated on

four content-adaptive embedding algorithms in the spatial
domain on standard image sets with grayscale as well as

2In the JPEG domain, steganalysis with co-occurrences of quan-
tized DCT coefficients [31] does not seem to benefit from kernelized
SVMs because the classes of cover and stego features are approx-
imately linearly separable [32], mostly likely because such features
are built directly in the embedding domain.
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color images for both binary and quantitative steganogra-
phy detectors. The non-linear mapping can also be used
for unsupervised reduction of feature dimensionality. For
quantitative detectors, the reduced features surprisingly
further decrease the payload estimation error.

In the next section, we provide background information
regarding kernels derived from symmetrized Ali–Silvey
distances, the associated explicit feature transformation,
and its Nyström approximation learned from a set of
training feature vectors. We also explain how to extend
the methodology to high-dimensional rich models with a
low computational complexity and memory requirements.
After spelling out the common core of experiments in
Section III, we experimentally investigate the suitability of
various kernels for steganalysis on low-dimensional feature
sets in Section IV. The results of all experiments on color
and grayscale images with binary detectors appear in
Section VI, while Section VII is devoted to experiments
with quantitative detectors estimating the payload size.
Since the proposed feature transformation can be used
for unsupervised dimensionality reduction, in Section VIII
we report how the detection accuracy of binary classifiers
and the estimation error of payload size regressors depends
on the number of retained dimensions of the transformed
features. After discussing the limitations of the proposed
method in Section IX, the paper is concluded in Section X.

This paper is an extension of our initial investiga-
tion [37]. In contrast to this workshop version, here we
frame the methodology more rigorously within the body
of existing literature on approximations of explicit feature
maps. Second, we extended the approach from binary
classifiers to quantitative detectors (payload size regres-
sors) constructed using regression trees as well as linear
regressors. Third, we expanded the experiments with bi-
nary classifiers to color images on the never-before-studied
version of color features that consider the selection chan-
nel (the maxSCRM). Fourth, we substantially expanded
the section dealing with dimensionality reduction and its
effect on detection accuracy of binary classifiers as well
as payload regressors. Surprisingly, reducing the feature
dimensionality by 60% further decreases the payload esti-
mation error of quantitative detectors.

For better readability, below we provide a list of fre-
quently used symbols.

M Number of images for map training
D Feature dimensionality
Ntrn Number of images for detector training
x(i), y(i) Cover, stego features
ϕ, ϕ(h) Explicit map, its component form
E Number of retained dimensions in range of ϕ

k, k(h) Kernel, its component form
d(x, y) Distance between vectors x, y
〈·, ·〉 Dot product
PE Minimal total detection error

II. Transformations from kernels
Virtually all rich models of images used for steganalysis

in the spatial as well as JPEG domain are either his-
tograms or higher-order co-occurrences of noise residuals

or DCT coefficients or their differences. A D-dimensional
feature vector x extracted from an image is thus an
element of RD+ , where R+ stands for the set of non-negative
real numbers.

A. Kernels
Mapping k : RD+ × RD+ → R+ is called positive semi-

definite if for any n and any u(1), . . . ,u(n) ∈ RD+ , the n×n
matrix Kij = k(u(i),u(j)) is positive semi-definite. Many
symmetric positive semi-definite kernels used in computer
vision are either additive or multiplicative: k(x,y) =∑D
i=1 k

(h)(xi, yi) and k(x,y) =
∏D
i=1 k

(h)(xi, yi), respec-
tively. The component kernel k(h) : R+×R+ → R is called
γ-homogeneous if k(h)(cx, cy) = cγk(h)(x, y) for all c ≥ 0
and stationary if k(h)(c+x, c+y) = k(h)(x, y) for all c. We
now introduce several kernels commonly used in machine
learning that will be studied in this paper in the context
of steganalysis.

A kernel k defines a metric (distance) in RD+ using the
formula

d2(x,y) = k(x,x) + k(y,y)− 2k(x,y). (1)

For example, assuming that vectors x,y ∈ RD+ are L2-
normalized, meaning that ‖x‖2

2 =
∑D
i=1 x

2
i = ‖y‖2

2 =
1, their square Euclidean distance can be written as
‖x− y‖2

2 = 2 (1− k(x,y)), where we introduced

k(x,y) =
D∑
i=1

xiyi (2)

for the dot product, a homogeneous additive linear ker-
nel with k(h)(x, y) = xy. In this case, and in general, the
value k(x,y) can be thought of as a measure of similarity.
An entire family of kernels can be constructed using a
similar approach from symmetrized Ali–Silvey distance
measures [38] also called f -divergences that share the
leading term with the Kullback–Leibler divergence in the
limit when the class distributions are close.

The Hellinger kernel

k(x,y) =
D∑
i=1

√
xiyi, (3)

is derived from the Bhattacharyya distance. Here, x and y
need to be L1-normalized. Note that the Hellinger kernel
corresponds to the linear kernel on square-rooted features.
The chi-square kernel

k(x,y) =
D∑
i=1

2xiyi
xi + yi

(4)

with x and y L1-normalized originates from the χ2 dis-
tance defined as the symmetrized χ2 statistic:

d2(x,y) = 1
4

D∑
i=1

(xi − yi)2

(xi + yi)/2
= 1

2

D∑
i=1

(xi + yi)2 − 4xiyi
xi + yi

= 1−
D∑
i=1

2xiyi
xi + yi

= 1− k(x,y) (5)
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with x and y L1-normalized.
The Jensen–Shannon kernel

k(x,y) = 1
2

D∑
i=1

xi log xi + yi
xi

+ yi log xi + yi
yi

(6)

is easily shown to stem from the symmetrized KL diver-
gence

d2(x,y) = DKL

(
x
∥∥∥∥x + y

2

)
+DKL

(
y
∥∥∥∥x + y

2

)
(7)

when x and y are L1-normalized.
Since for a symmetric positive semi-definite kernel k

and α > 0, e 1
α (k(x,y)−1), is also symmetric positive semi-

definite, it can be used to define exponential counterparts
of all the above kernels. We will refer to them using the
preposition ’exp’, such as ’exp-linear.’ Note that the expo-
nential form of an additive kernel becomes multiplicative.
Also note that, due to normalization, 0 ≤ k(x,y) ≤ 1 for
all x,y ∈ RD+ and all kernels. Undefined terms in the chi-
square and the Jensen–Shannon kernels due to division by
zero or logarithm of zero are set to zero.

B. Explicit feature embedding

A kernelized SVM is a linear SVM in a space of features
transformed into a Hilbert space H, ϕ : RD+ → H,
endowed with a dot product 〈·, ·〉 : H × H → R+ such
that

〈ϕ(x), ϕ(y)〉 = k(x,y) for all x,y ∈ RD+ . (8)

In the classic exposition to SVMs [39], the transforma-
tion ϕ is implicit and does not need to be constructed
because the SVM can be trained and evaluated by using
dot products in the Hilbert space, which can be com-
puted using the kernel (8). This has become recognized
as the “kernel trick.” However, despite the availability of
efficient solvers for linear SVMs, with the training set
size Ntrn the complexity of training a kernelized SVM
is O(max{Ntrn, D} ×min{Ntrn, D}2) whether the primal
or dual formulation is used [40]. This is a problem in
steganalysis since the feature dimensionality of rich models
is D ≈ 104 and the training sets also need to be large (104

or larger).
One possibility to decrease the training complexity is to

use an explicit form of ϕ truncated to a finite-dimensional
space, ϕ̂ : RD+ → RE , where one can make use of
classifiers with low training complexity, such as the FLD-
ensemble, on transformed features ϕ̂(x(i)) and ϕ̂(y(i)),
i = 1, . . . , Ntrn. To classify a feature z ∈ RD+ , the low-
complexity classifier is presented with ϕ̂(z). Next, we
review several possibilities for finding an approximation
ϕ̂ to the explicit form of ϕ and identify the one that will
be used in this paper.

The map that satisfies (8) can be found explicitly us-
ing Bochner’s Theorem [33], [41]. For component kernel

k(h)(x, y), the component map ϕ(h) assigns a complex-
valued function Ψ (a function of ω) to each component
x

Ψω(x) = exp(−iω log x)
√
xγκ(ω) (9)

Ψω(x) = exp(−iω)
√
κ(ω) (10)

with ω ∈ R and κ(ω) being the kernel spectrum, which
adopts a rather simple closed form for most commonly
used kernels (see, e.g., Fig. 1 in [33]). The form of the map-
ping in (9) and (10) corresponds to γ-homogeneous and
stationary kernels, respectively. We note that k(h)(x, y) =∫
R Ψ?

ω(x)Ψω(x)dω =
〈
ϕ(h)(x), ϕ(h)(y)

〉
, where Ψ? denotes

the complex conjugate. The mapping for the kernel k op-
erating on D-dimensional vectors is obtained for additive
and multiplicative kernels by

ϕ(x) =
D⊕
i=1

ϕ(h)(xi), ϕ(x) =
D⊗
i=1

ϕ(h)(xi), (11)

where the operators
⊕

and
⊗

stand for cartesian and
Kronecker product. In particular, if the range of ϕ(h) is
constrained to RE , the dimension of ϕ(x) is E × D and
ED, respectively.
Since ϕ maps to an infinite dimensional space of

complex-valued functions, discretization (approximation)
of some form, ϕ̂, is needed for practical applications. This
can be achieved by either requesting that the range of fea-
tures be a compact set (which makes the kernel spectrum
discrete) or by imposing periodicity on the kernel [33]. The
complexity of this approach associated with multiplicative
kernels (Section 7 in [33]), however, lead us to the third
option, which is the Nyström approximation. It has the
advantage of being computationally rather efficient for
both additive and multiplicative kernels and it is simple to
implement. On the other hand, it requires a training set,
which makes the mapping ϕ̂ data dependent. According to
our experience, this dependence is weak, and the training
set can be rather small even for high-dimensional rich
features.

C. Nyström approximation
We opted for an accessible explanation of this method

adapted from [34]. The approximation of ϕ, which we
denote with ϕ̂ : RD+ → RM , will be derived from M
(D ≤ M ≤ Ntrn) training vectors x(1), . . . ,x(M) ∈ RD+ .
Specifically, we find the images of x(i) under ϕ̂, ϕ̂(x(i)),
that approximate the kernel evaluated on all pairs of
training vectors by minimizing

M∑
i,j=1

(
k(x(i),x(j))− ϕ̂(x(i)) · ϕ̂(x(j))

)2
. (12)

To avoid redundant components, the following orthogo-
nality constraint is added to the minimization problem:

M∑
i=1

ϕ̂a(x(i))ϕ̂b(x(i)) = 0 for all 0 ≤ a 6= b ≤M, (13)
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where ϕ̂a(x), 1 ≤ a ≤ M denotes the ath component
of ϕ̂(x) ∈ RM . This constrained optimization can be
solved using the method of Lagrange multipliers, which
gives that the ath coordinate of vector ϕ̂(x(i)) across
i, φa , (φa(x(1)), . . . , φa(x(M)))′ ∈ RM , must be an
eigenvector of the kernel matrix K = (Kij) ∈ RM×M+ ,
Kij = k(x(i),x(j)):

Kφa = λ2
aφa, 1 ≤ a ≤M, (14)

with the components permuted if necessary to have the
eigenvalues λ2

a non-increasing: λ1 ≥ λ2 ≥ . . . ≥ λM . We
note that λa = ‖φa‖2.
Having determined the images of training vectors

x(i), ϕ̂(x(i)), the Nyström approximation of ϕ(z) for
any z ∈ RD+ is a linear combination of trans-
formed vectors ϕ̂(x(i)) with coefficients given by the
“projections” of z on x(i) evaluated using the kernel
K(z, ·) =

(
k(z,x(1)), . . . , k(z,x(M))

)
. Formally, ϕ̂(z) =

(ϕ̂1(z), . . . , ϕ̂M (z)), with

ϕ̂a(z) = 1
λ2
a

K(z, ·) · φa, 1 ≤ a ≤M. (15)

By retaining the first E ≤ M coordinates a corre-
sponding to the largest eigenvalues λ2

a, we can restrict the
dimensionality of the explicit map ϕ̂ : RD+ → RE . When
E = D, the feature transform ϕ̂ preserves the feature
dimensionality.

Because the Hellinger kernel (3) corresponds to the
linear kernel (2) on L1-normalized features that have been
square-rooted elementwise, the explicit map ϕ̂ for this
kernel adopts a particularly simple closed form:

ϕ̂(z) = (
√
z1, . . . ,

√
zE). (16)

The complexity of this particular feature transform (16)
is negligible in comparison to the classifier training. This
is why in our experiments, we include results obtained
with square-rooted features. They are expected to match
the results obtained with the transform learned using the
above Nyström approximation for the Hellinger kernel.

III. Common core of experiments
Unless stated otherwise, all experiments in this pa-

per were conducted with four steganographic methods,
WOW [2], S-UNIWARD [4], HILL [5], and MiPOD [7]
on BOSSbase 1.01 [42] containing 10,000 512 × 512 8-bit
grayscale images and on its color version, called BOSS-
Color, with 24-bit PPM images prepared using the same
script that was used for creating BOSSbase with the
following modifications [20]. The output format of ’ufraw’
(ver. 0.18 with ’dcraw’ ver. 9.06) was changed to PPM and
all calls of ’convert’ used PPM for the output as well as
for Lanczos resizing so that the smaller image dimension
was 512 before central cropping to 512× 512.

Experiments were run on ten random splits of the
database into 5000 training and 5000 testing images. The
detection performance was evaluated with the minimum
total error probability PE = minPFA

1
2 (PFA +PMD), where

PFA and PMD are the empirical false-alarm and missed-
detection rates, averaged over the ten splits, PE. The
performance of payload regressors was evaluated using
mean square error (MSE) and mean absolute error (MAE)
on the testing set, again averaged over ten splits.
The feature transformation was learned onM randomly

selected cover images from the training set. Unless men-
tioned otherwise, the FLD-ensemble (or the regressor)
was then trained and tested on the transformed fea-
tures. The constant α in exponential kernels was com-
puted from M training features x(1), . . . ,x(M) as α =
1/M2∑M

i,j=1 k(x(i),x(j)).
Experiments on grayscale images were purposely con-

ducted with maxSRMd2 features [13] to obtain the best
possible performance within the paradigm of steganalysis
with rich models. For color images, we used the spatio-
color rich model (SCRM) [20], which is a merger of the
SRMQ1 (SRM with residual quantization q = 1) and
the color rich model (CRM). We modified the feature
set to maxSCRM that incorporates the knowledge of the
selection channel as in [13]. Note that, according to the
best knowledge of the authors, this is the first time a
selection-channel-aware feature set was used for detection
of steganography in color images. Again, we opted for this
more powerful version of the SCRM in order to report the
best possible detection with rich models.
In all our experiments, we removed from all rich models

those co-occurrence bins that are equal to zero indepen-
dently of the input image. We did so to stabilize the nu-
merical computations and prevent ill-conditioned matrices
in the eigenvector problem (14). The empty bins, which
are due to the overlap of adjacent residual supports, occur
only in the ’minmax22h’, ’minmax34h’, and ’minmax41’
submodels of SRM, maxSRM, and SRMQ1 for first-order
and third-order differences. The CRM part of the color
SCRM does not contain any zero features because the sup-
ports of color residuals are disjoint as they are computed
from different color channels. For SRM and SRMQ1, only
101 bins in the above-mentioned submodels are generally
non zero, which makes the true dimensionality of SRMQ1
equal to 11,409 =12, 753−2×3×(325−101) and the dimen-
sionality of SCRMQ1 equal to 16, 813 = 11, 408 + 5, 404.
Because maxSRMd2 [13] uses the ’d2’ scan for forming

co-occurrences (residuals with indices (i, j), (i, j + 1),
(i + 1, j + 2), (i + 1, j + 3) and three more horizontally
and vertically flipped versions), the number of non-zero
elements in the above three submodels is different. For
quantization q = 2, the ’minmax22h’, ’minmax34h’, and
’minmax41’ submodels for the first and third order resid-
uals have dimensionality 190. For q = 1 and q = 1.5, their
dimensionality is 120. This gives the maxSRMd2 feature
set a dimensionality of 32,016.

IV. Pilot study
The purpose of this section is to study the benefits of us-

ing the non-linear transformation on individual submodels
of the SRMQ1 rich model and to assess the effectiveness
of different kernels introduced in Section II-A.
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The first experiment was carried out with S-
UNIWARD [4] and HILL [5] with a fixed payload of
0.4 bits per pixel (bpp) and two low dimensional feature
sets – the 169-dimensional co-occurrence matrix obtained
using the “KB residual” from the ’SQUARE 3x3’ sub-
model and the ’minmax22h’ submodel for the first-order
residual, both quantized with quantization step q = 1.
The ’minmax22h’ submodel has effective dimensionality of
only 101 after removing from it elements that are always
equal to zero. Figure 1 shows the detection error PE
when the FLD-ensemble was trained on the original form
of the features, their square rooted form, and features
transformed with the Nyström approximation of eight
kernels. For comparison, we also report the results with a
G-SVM trained on the original features. The exponential
versions of kernels are consistently better than their ad-
ditive counterparts and offer similar detection gain w.r.t.
non-transformed features (up to 3.5%). While the G-SVM
always offers the best performance, the exponential kernels
match it except for the ’minmax22h’ feature set. Finally,
we confirm that the results obtained with the Nyström
approximation of the Hellinger kernel indeed match the
square-rooted features. The statistical spread of the results
in terms of the mean absolute deviation was in the range
0.0016− 0.0039.

In the next experiment, we assessed the effectiveness
of the non-linear mapping across all submodels of the
SRMQ1. This was executed for the embedding algorithm
WOW at 0.4 bpp. Because the detection accuracy of
individual submodels varies substantially, in Figure 2 we
show the difference between PE obtained using the non-
transformed features / transformed features and PE ob-
tained using a Gaussian SVM for that submodel. The
transformation decreases the detection error by up to
4% (s1-minmax34v), depending on the submodel. For
some submodels, the transformed features can perform
equally well as the G-SVM, e.g., for s35-spam11 and
s5 × 5-minmax22v. Certain submodels do not benefit
from the transform at all: s1-minmax41, s1-minmax34h,
and s3-minmax34. The improvement in detection error
will necessarily depend on the degree of non-linearity of
the decision boundary between cover and stego features
and on the accuracy of the learned mapping ϕ̂ as an
approximation of the infinite-dimensional transformation
defined in (9)–(10).

V. Transforming rich models
The complexity of learning the map is largely deter-

mined by the training set size, M , because forming the
M ×M matrix K requires O(DM2) operations and the
complexity of the eigenvector problem (14) is O(M3)
if implemented using the Cholesky decomposition.3 This
makes the total training complexity O(DM2 +M3). The
eigenvector problem (14) only needs to be executed once
for a given cover source because the map is trained on

3Note that Matlab’s implementation of ’eig.m’ is based on an
iterative algorithm with a different complexity.
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Figure 1. P E for various kernels for S-UNIWARD and HILL at 0.4
bpp for KB co-occurrence and ’minmax22h’. The exponential versions
of kernels are the overlapping black bars.

cover images only and is thus independent of the payload
size and the steganographic scheme. Once the eigenvectors
are found, the cost of transforming a new feature z ∈ RD+
is O(MD) to evaluate K(z, ·) and O(ME) to compute all
E coordinates of ϕ(z) (15).

Because we need M ≥ D ≈ 104 training images for typ-
ical rich feature sets, the complexity of training the non-
linear map for the entire feature vector, O(DM2 + M3),
would be infeasibly large. Moreover, the constraintM ≥ D
implies that we would not be able to benchmark the
performance on standard image sets, such as BOSSbase.

Thus, instead of applying the Nyström approximation
directly to rich models, we learned the map for each sub-
model of the rich model. For this task, the sameM training
images are used across all submodels. Everywhere in this
paper, the mapping ϕ̂ was trained only on M = 350 cover
images as we did not observe any gain when increasing
M . In fact, based on [43], [44] we hypothesize that it
may be possible to train the map on a set of “canonical”
features that represent a large variety of images or even
on synthetic features.
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Figure 2. Difference in PE obtained with the non-transformed / transformed features and PE obtained with a G-SVM for all submodels of
SRMQ1. WOW at 0.4 bpp.

VI. Binary detectors
In this section, we report the results of all experiments

with steganography detectors implemented as binary clas-
sifiers on rich models. In order not to increase the feature
dimensionality, the number of retained coordinates was
kept at E = d, where d is the submodel dimensionality.
For each payload, a separate FLD-ensemble [26] was

trained on the original features and on the transformed
features. For each split of the database into a training
and testing set, the map ϕ̂ was retrained. Only the expo-
nential Hellinger was tested because it provided a similar
performance as the other exponential kernels in Section IV
and because it has lower complexity than the chi-square
or Jensen–Shannon kernels.

A. Grayscale images
Table I shows PE as a function of payload for the

original maxSRMd2 feature set [13], its square rooted
version, and the transformed version using exp-Hellinger
on BOSSbase 1.01. A consistent improvement of up to
≈ 3% in PE is obtained across all four embedding algo-
rithms with the biggest gain for WOW and the smallest
for MiPOD and HILL. A qualitatively similar behavior
and gains were observed with the SRM features while all
detection errors were merely slightly larger, which is why
we do not report these essentially redundant results in this
paper. We have also investigated the gain by replacing
the FLD-ensemble with the regularized linear discriminant
implemented using the LSMR optimizer [28]. The results
were in majority of cases within the statistical spread of
the results obtained with the ensemble and are thus not
included in the paper.

B. Color images
In our second experiment, the above four steganographic

algorithms were applied by color channels to images from
BOSSColor (Section III) by embedding the same relative
payload in each channel. The complete results are listed
in Table II. The non-linear map boosts detection to a

different degree depending on the steganographic method
and payload. The largest gain of almost 4% is observed for
WOW for medium payloads.

VII. Quantitative steganalysis
A general approach to quantitative steganalysis pro-

posed in [24] calls for a regressor between a feature
extracted from an image and the payload. The same
publication demonstrated the benefit of using non-linear
regressors (SVRs) over linear ones when detecting LSB
matching. With modern content-adaptive schemes, the
dependence of the feature on payload is likely going to
be much more complex (and non-linear) than for non-
adaptive LSB matching since the shift of the feature vector
due to embedding is likely more influenced by content. The
complexity of training a SVR with high-dimensional fea-
tures forced researchers to look into alternative non-linear
regressors whose complexity better scales with feature
dimensionality, such as regression trees [25]. In this section,
we report that both linear regressors and regression trees
benefit from explicit non-linear feature transforms.

Experiments were conducted again with all four
steganographic schemes on BOSSbase images. To lower
the computational complexity of all experiments, we used
the SRMQ1 feature vector. The stego images used for
training the regressor were embedded with relative pay-
load size R selected uniformly randomly from [0, 1] bpp.
Table III lists the MSE and MAE for linear regressors
and regression trees for all four tested steganographic
schemes. Figure 3 contains a few examples of scatter plots
showing the estimated payload R̂ vs. the true payload R
when training the regressors on the original features and
the transformed features. Overall, the non-linear feature
transformation decreases the MSE of linear regressors by
13–22% and regression trees by 4–14%. The biggest gain
was observed for S-UNIWARD and the smallest for HILL
and MiPOD. The scatter plots show how the non-linear
map redistributes the payload estimation error.
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Table I
Detection error P E for four steganographic schemes and a range of payloads on BOSSbase 1.01. The classifier was the

FLD-ensemble trained with maxSRMd2 features, their square rooted form, and transformed by submodels using Nyström
approximation of the exponential Hellinger kernel.

Payload (bits per pixel)
S-UNI 0.05 0.1 0.2 0.3 0.4 0.5

maxSRMd2 0.4168±0.0024 0.3652±0.0008 0.2919±0.0023 0.2374±0.0023 0.1917±0.0042 0.1569±0.0035
Square root 0.4177±0.0033 0.3588±0.0025 0.2851±0.0034 0.2276±0.0021 0.1785±0.0033 0.1433±0.0026
exp-Hellinger 0.4178±0.0020 0.3608±0.0033 0.2803±0.0027 0.2181±0.0028 0.1720±0.0020 0.1348±0.0025

HILL
maxSRMd2 0.4246±0.0040 0.3742±0.0022 0.3105±0.0033 0.2580±0.0033 0.2196±0.0039 0.1815±0.0033
Square root 0.4188±0.0030 0.3669±0.0032 0.3007±0.0025 0.2512±0.0036 0.2116±0.0026 0.1736±0.0030
exp-Hellinger 0.4191±0.0022 0.3653±0.0024 0.2974±0.0028 0.2451±0.0024 0.2004±0.0019 0.1649±0.0031

MiPOD
maxSRMd2 0.4427±0.0026 0.3949±0.0031 0.3246±0.0034 0.2709±0.0027 0.2272±0.0037 0.1865±0.0029
Square root 0.4401±0.0028 0.3926±0.0047 0.3185±0.0022 0.2635±0.0027 0.2209±0.0036 0.1818±0.0022
exp-Hellinger 0.4426±0.0032 0.3911±0.0038 0.3148±0.0026 0.2568±0.0024 0.2104±0.0028 0.1720±0.0031

WOW
maxSRMd2 0.3574±0.0024 0.2984±0.0020 0.2331±0.0018 0.1907±0.0028 0.1559±0.0024 0.1279±0.0030
Square root 0.3492±0.0021 0.2854±0.0033 0.2140±0.0031 0.1702±0.0026 0.1375±0.0020 0.1118±0.0033
exp-Hellinger 0.3470±0.0024 0.2820±0.0024 0.2094±0.0025 0.1645±0.0031 0.1310±0.0028 0.1068±0.0032

Table II
Detection error P E for four steganographic schemes and a range of payloads in bits per pixel per color channel on color
version of BOSSbase with FLD-ensemble trained with maxSCRMQ1 features, their square rooted form, and transformed

using exponential Hellinger kernel by submodels.

Payload (bpp per channel)
S-UNIWARD 0.05 0.1 0.2 0.3 0.4 0.5

SCRM 0.4549±0.0022 0.3939±0.0026 0.2977±0.0027 0.2216±0.0016 0.1710±0.0032 0.1306±0.0038
Square root 0.4499±0.0028 0.3853±0.0029 0.2885±0.0023 0.2154±0.0017 0.1630±0.0027 0.1230±0.0032
exp-Hellinger 0.4487±0.0047 0.3789±0.0031 0.2761±0.0037 0.2016±0.0017 0.1461±0.0033 0.1067±0.0028
maxSCRM 0.3866±0.0021 0.3300±0.0039 0.2480±0.0043 0.1974±0.0029 0.1561±0.0026 0.1262±0.0021

exp-H (maxSCRM) 0.3755±0.0026 0.3109±0.0024 0.2209±0.0036 0.1665±0.0029 0.1243±0.0025 0.0960±0.0021
HILL
SCRM 0.4699±0.0024 0.4227±0.0029 0.3288±0.0022 0.2528±0.0017 0.1967±0.0024 0.1558±0.0043

Square root 0.4586±0.0035 0.4021±0.0031 0.3130±0.0022 0.2416±0.0036 0.1896±0.0025 0.1497±0.0022
exp-Hellinger 0.4520±0.0032 0.3904±0.0044 0.2927±0.0026 0.2212±0.0031 0.1724±0.0027 0.1332±0.0022
maxSCRM 0.3850±0.0036 0.3297±0.0021 0.2583±0.0028 0.2046±0.0030 0.1687±0.0049 0.1346±0.0024

exp-H (maxSCRM) 0.3732±0.0036 0.3094±0.0022 0.2343±0.0019 0.1765±0.0025 0.1398±0.0034 0.1108±0.0029
MiPOD
SCRM 0.4557±0.0029 0.4034±0.0029 0.3081±0.0031 0.2397±0.0042 0.1872±0.0045 0.1476±0.0026

Square root 0.4477±0.0022 0.3904±0.0021 0.3006±0.0018 0.2317±0.0028 0.1812±0.0029 0.1439±0.0030
exp-Hellinger 0.4485±0.0031 0.3802±0.0032 0.2839±0.0014 0.2133±0.0034 0.1633±0.0040 0.1253±0.0034
MaxSCRM 0.4315±0.0027 0.3677±0.0023 0.2815±0.0030 0.2187±0.0029 0.1747±0.0033 0.1385±0.0040

exp-H (maxSCRM) 0.4278±0.0035 0.3562±0.0026 0.2612±0.0036 0.1955±0.0023 0.1514±0.0036 0.1179±0.0042
WOW
SCRM 0.4507±0.0009 0.3975±0.0033 0.2997±0.0033 0.2283±0.0021 0.1793±0.0046 0.1365±0.0036

Square root 0.4367±0.0040 0.3700±0.0042 0.2750±0.0029 0.2092±0.0021 0.1641±0.0011 0.1263±0.0027
exp-Hellinger 0.4296±0.0033 0.3600±0.0029 0.2618±0.0020 0.1936±0.0022 0.1468±0.0019 0.1129±0.0018
maxSCRM 0.3183±0.0017 0.2622±0.0035 0.1993±0.0024 0.1607±0.0029 0.1347±0.0031 0.1091±0.0029

exp-H (maxSCRM) 0.2960±0.0031 0.2331±0.0045 0.1625±0.0027 0.1226±0.0034 0.0975±0.0033 0.0752±0.0022

VIII. Rich model compactification
Decreasing the dimensionality of the descriptors (fea-

tures) may be desirable for numerous resons. For example,
a more compact feature set may allow using more com-
plex (non-linear) classifiers. Lower-dimensional features
also seem essential for constructing unsupervised detectors
where high-dimensional models could not be applied [45].
Finally, smaller feature dimension will decrease computa-
tional complexity of constructing the detector and evalu-
ating it on images, which may be important for practical
applications.

The topic of compressing rich models has been al-
ready investigated before within a wide variety of ap-
plication scenarios. Feature filtering aimed at removing
non-influential features has been shown to improve the
performance of the FLD-ensemble with rich features in
the presence of the cover source mismatch and a small
learning database [46]. Post-selection of features combined
with boosting by regression [47] has been shown to im-
prove the detection performance of the FLD-ensemble
with HOLMES features [48]. Calibrated least squares
(CLS) [45] was proposed as a general method to jointly
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Table III
Mean absolute and mean square error for linear regression and regression trees for four steganographic schemes with

SRMQ1, its square-rooted version, and after transformation with exponential Hellinger kernel on BOSSbase.

S-UNIWARD WOW HILL MiPOD
MAE MSE MAE MSE MAE MSE MAE MSE

Linear regression
SRMQ1 .1683±.0010 .0454±.0008 .1778±.0011 .0507±.0009 .1809±.0011 .0522±.0013 .1803±.0012 .0524±.0013

Square root .1540±.0006 .0391±.0007 .1640±.0008 .0447±.0011 .1698±.0007 .0472±.0015 .1696±.0012 .0475±.0013
expH-SRMQ1 .1436±.0011 .0356±.0009 .1585±.0011 .0432±.0012 .1615±.0012 .0446±.0015 .1633±.0012 .0455±.0014

Regression tree
SRMQ1 .1347±.0010 .0324±.0004 .1478±.0011 .0377±.0004 .1546±.0013 .0406±.0005 .1539±.0011 .0403±.0004

Square root .1251±.0009 .0291±.0005 .1394±.0010 .0350±.0004 .1456±.0008 .0375±.0005 .1469±.0014 .0381±.0005
expH-SRMQ1 .1224±.0013 .0280±.0005 .1407±.0015 .0353±.0007 .1471±.0013 .0380±.0006 .1492±.0011 .0388±.0005
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Figure 3. Selected scatter plots showing the estimated payload R̂ in
bpp vs. the true payload R for S-UNIWARD, HILL, and MiPOD (top
to bottom) with the SRMQ1 feature set (left column) and the same
set transformed with exponential Hellinger kernel (right column).
The plots for S-UNIWARD and HILL are for regression trees while
a linear regressor is shown for MiPOD.

compactify rich models that minimizes the scatter of cover
features while maximizing the separation between cover
and stego features. Random projections for compactifica-
tion was investigated in [49].

In this section, we describe a different feature compact-
ification method that is unaware of the distribution of the
stego class. Since it is driven solely by the distribution
of cover features, it may be used for building universal
(unsupervised) steganography detectors. At this point, we
would like to state that the above cited feature selec-
tion / filtering methods can likely be combined with the
proposed non-linear feature transformation to provide a
possible additional boost and/or to further compress the

feature dimensionality. Since the best compactification of
rich models is likely application-dependent due to various
inevitable trade offs between computational complexity,
detection accuracy, robustness to source, and generaliza-
tion to unseen embedding, in the interest of keeping the
findings of this paper on a more general level and balanced,
we refrain from investigating these enticing research topics
in this paper, leaving them for potential future work.
The non-linear transform as explained in Section II can

be easily adapted for reducing the dimensionality of the
feature vector by simply retaining the first E coordinates
in ϕ̂, a = 1, . . . , E, corresponding to the largest eigenvalues
λa. This is similar in spirit to applying a regular PCA to
cover features. Since the compactification only depends on
the cover source, it is potentially useful for unsupervised
universal steganalysis.
Even though the detection errors of individual SRM

submodels increase with the decreased number of retained
coordinates, the entire rich model may still perform rather
well when compacted because the submodels “compensate
for each other weaknesses.” This is confirmed in Figure 4,
which shows the detection error PE as a function of
the number of retained coordinates for binary detectors
trained on BOSSbase images (left) and BOSSColor (right).
Even when retaining only 10% of the coordinates, E =
0.1 × D for each submodel of dimension D, there still
appears to be a small gain in detection accuracy w.r.t.
the original maxSRMd2 feature.
Surprisingly, for quantitative detectors the dimensional-

ity reduction further increases their accuracy. As Figure 5
shows, by retaining only 40% of the rich feature, the MAE
further decreases to a combined improvement of 18–28%
(from 13–22% for full dimensionality) for linear regressors
and 8.4–17% (from 4-14% for full dimensionality), depend-
ing on the embedding algorithm. The MSE followed similar
trends.

IX. Discussion
The degree of improvement due to the non-linear map-

ping will necessarily depend on two factors – the non-
linearity of the decision boundary and the accuracy of
the Nyström approximation. By definition, no gain will
be observed when the decision boundary is (near) linear.
Small or no gain may also be due to the poor accuracy of
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Figure 4. Detection error P E as a function of the relative number of retained coordinates, E/D. Tested payload 0.4 bpp, exp-Hellinger
kernel. Left: BOSSbase (maxSRMd2), Right: BOSSColor (maxSCRM).
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Figure 5. MSE as a function of the relative number of retained coordinates, E/D. BOSSbase, SRMQ1 feature set. Left: OLS, Right: regression
tree. Note the gain when retaining 40% of feature dimensionality.

the Nyström approximation to approximate the infinite-
dimensional mapping (9)–(10).

In particular, as reported in [31], [32], for the stegano-
graphic algorithm nsF5 [50], [51], the decision boundary
in the JPEG rich model (JRM) [31] and CC-C300 [32]
is (near) linear because the features are formed by two-
dimensional co-occurrences of DCT coefficients directly
affected by the embedding. Consequently, the proposed
non-linear maps did not provide any boost when applied to
these feature sets. No boost of non-linear transforms was
observed for the projection SRM (PSRM) model [9] for
spatial domain steganography and for JPEG-phase-aware
rich models [16]–[19] when detecting JPEG steganographic
algorithms J-UNIWARD [4] and UED [3], [6]. We note
that the non-linearly transformed SRM offers better de-
tection than the PSRM with a much lower computational
complexity.

Finally, we wish to comment on the possibility to com-
bine the proposed transformation with normalization tech-
niques. It is customary in machine learning to normalize

the features by, e.g., scaling each bin to be within a unit
interval or to scale it to zero mean and unit variance
before applying a given machine learning tool. Such scaling
cannot affect detection accuracy with the FLD-ensemble
because the individual base learners are built using the
FLD, which is oblivious to linear transformations. By the
same token, linear transformations, such as PCA, will
have no effect on detection with the FLD-ensemble. The
same is true for regression trees with “base estimators”
constructed as ordinary least square regressors.
On the other hand, non-linear normalization can be

combined with the proposed approach and may potentially
provide further boost. In particular, the authors tested
whether the non-linear normalization called random con-
ditioning proposed in [52] could provide detection boost in
combination with the non-linear mapping. Since these two
feature preprocessing operations do not commute, both
orders were tested on various scenarios of binary classifica-
tion of grayscale images with the SRMQ1 model. Neither,
however, lead to any statistically significant improvement.
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Random conditioning before transformation is expected
to have no or little effect because the proposed non-linear
transformation with the Hellinger kernel executes L1 nor-
malization of features, which is equivalent to conditioning
on each submodel.

X. Conclusions

Currently, training a kernelized support vector machine
with high dimensional rich representations on tens of thou-
sands of images is computationally infeasible for research
in steganalysis considering that the established practice
calls for reporting detection performance on multiple splits
of the image source into training and testing sets and
considering the need to show performance across payloads
and multiple embedding schemes. The computational com-
plexity is even higher for quantitative detectors that esti-
mate the payload size (support vector regressors) because
the search for the hyperparameters is three-dimensional.
To deal with this complexity, the community resorted
to simpler machine learning paradigms, such as linear
classifiers and regression trees.

In this paper, we describe a simple method for increasing
the performance of the detectors by transforming the fea-
tures prior to training a low-complexity classifier / regres-
sor. The methodology draws from recent advances in ap-
proximations of positive semidefinite kernels proposed in
the literature. The mapping is derived from symmetrized
Ali–Silvey distances (kernels) and estimated using the
Nyström approximation. The approach is applied to rich
models by learning the transformation separately for each
submodel in order to keep the computational complexity
low. A small fixed set of cover features is needed to train
the transform, which only depends on a handful of cover
features and not on the steganographic scheme or the
embedded payload.

Coupled with the ensemble classifier, a consistent gain
in detection accuracy between 2–4% was observed for
binary classifiers with the selection-channel-aware maxS-
RMd2 features for grayscale images as well as the Spatio-
Color Rich Model for steganalysis of color images. For
quantitative detectors (payload regressors), the gain in
terms of decreased statistical spread of the payload size
estimate measured as MSE estimate was in the range of
18-28% for linear regressors and 8–17% for regression trees.

The proposed methodology naturally lends itself for
unsupervised dimensionality reduction by simply retaining
fewer transformed dimensions. In particular, it is possible
to compactify the rich descriptor by a factor of 10 without
losing the detection performance of the original (non-
transformed) feature vector. For quantitative detectors,
the features can be compacted by 60% while further
decreasing the statistical spread of the payload estimates.
This dimensionality reduction could be useful for unsuper-
vised universal steganalysis detectors.

The code for all algorithms (steganographic methods,
feature extractors, and classifiers) is available for download
from http://dde.binghamton.edu/download/.
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