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ABSTRACT 

The problem investigated in this paper is identification of 
sensor that was used to obtain a given digital image. We 
show that the high-medium frequency component of the 
sensor pattern noise is an equivalent of “bullet scratches” 
for digital images and can be used for reliable forensic 
identification. For each sensor, we first calculate its 
reference pattern (an estimate of the sensor pattern noise) 
by averaging the noise component from multiple images. 
This pattern serves as a unique identification fingerprint 
whose presence in a given image is established using a 
correlation detector. The proposed identification 
technique was tested on several thousand images obtained 
by nine digital cameras. In all cases, we were able to 
correctly identify the camera that took the image. We also 
show that it is possible to identify the camera from images 
subjected to combined processing, including lossy JPEG 
compression, gamma correction, recoloring, and resizing.  

1. INTRODUCTION 

With the rapid spread of digital imaging technology, the 
importance of reliable sensor identification from digital 
images will only increase. This is especially true for 
establishing the origin of images presented as evidence in 
the court. Also, the identification method could be used to 
prove that certain imagery has been obtained using a 
specific camera and is not a computer-generated image 
(e.g., in a child pornography case). 

The simplest method for identification of digital 
images is the inspection of the image file itself (e.g., its 
EXIF header), image dimensions, or the JPEG 
quantization table. This metadata, however, may not be 
available if the image is resaved in a different format or 
recompressed. Another problem is the credibility of 
information that can be so easily replaced. 

Another alternative is analysis of the color gamut 
or detecting artifacts of color interpolation algorithms and 
other camera processing. This information, however, is 
likely to be very fragile and may not survive common 
image processing. Moreover, it may not be possible to 

distinguish between cameras that share the same 
processing algorithms. 

A few manufacturers, such as Epson and Kodak, 
introduced cameras that embed an invisible fragile 
watermark in their images to protect their integrity. There 
have also been proposals to embed a time stamp or even 
biometric of the person taking the image [1]. While the 
idea to insert the “bullet scratches” in the form of a 
watermark is intriguing, unless all cameras do the same, it 
is only applicable to a closed environment, such as 
“secure cameras” used by forensic experts taking images 
at crime scenes. 

It is possible to use defective pixels (hot or dead 
pixels) for reliable camera identification even from JPEG 
compressed images [2]. This approach fails, however, for 
cameras that do not have any defective pixels or cameras 
that eliminate defective pixels by processing their images 
on-board. 

A qualitatively different approach to image 
identification that has recently proved to be quite 
successful is to extract a set of “features” from images 
and train a classifier to distinguish between images from 
different cameras [3]. It remains to be seen whether this 
method can distinguish between cameras with the same 
sensor or cameras that share the same on-board 
processing algorithms. Another concern is that the large 
number of images needed to train a classifier for each 
camera may not always be available. 

In our previous work [4], we have shown that the 
high-medium frequency component of the pattern noise of 
CCD/CMOS arrays can be used for very reliable camera 
identification and can even distinguish between cameras 
of the exact same model. An important property of the 
pattern noise is that its high-medium frequency 
component is practically scene independent and relatively 
stable over the camera life span. The pattern noise is 
caused by pixel non-uniformity, dust specs on optics, 
interference in optical elements, dark currents [5][6], etc. 
Using the denoising filter described in [7], we extract the 
high-medium frequency component of the pattern noise 
and then use correlation (as in robust watermark detection 
using spread spectrum) to evaluate the presence of the 



pattern noise in a given image. An important advantage of 
this approach is its simplicity while avoiding the need to 
train classifiers on a large number of images. 

In this paper, we subject this methodology to 
further testing, expanding the experiments on images 
subjected to a combination of common image processing 
operations. Section 2 briefly explains the basic signal 
processing inside a digital camera. In Section 3, we 
briefly describe the camera identification method based 
on detection of pattern noise and, in Section 4, we present 
the results of experiments. The paper is summarized in 
Section 5. 

2. DIGITAL CAMERA SIGNAL PROCESSING 

In a typical consumer-end digital camera, the 
light from the photographed scene passes through the 
camera lenses, but before reaching a photo responsive 
sensor, the light goes through an antialiasing filter and 
then through a color filter array (CFA). The photon counts 
are converted to voltages, which are subsequently 
quantized in an A/D converter. This digital signal is in 
most cameras (cameras with Foveon X3 sensor are 
exceptions) interpolated (demosaiced) using color 
interpolation algorithms. The colors are then processed 
using color correction and white balance adjustment. 
Further processing includes low-pass filtering and gamma 
correction to adjust for the linear response of the imaging 
sensor. Finally, the raw image is written to the camera 
memory device in a user-selected image format (e.g., 
TIFF, JPEG, or some other proprietary format). 

3. NOISE PATTERN DETECTION 

Assuming the high-frequency part of the pixel non-
uniformity noise is an iid Gaussian signal N(0,σ 2), the 
camera identification problem is detection of an iid 
Gaussian signal corrupted by noise – the image. Since 
there are no good statistical models of images in the 
spatial domain, we perform the signal-noise separation in 
the wavelet domain, where the image is modeled as an 
additive mixture of a non-stationary Gaussian signal (the 
denoised image) and a stationary Gaussian signal of a 
known variance (the pattern noise). Using the Gaussian 
denoising filter Fσ described in [7], we extract from the 
image an approximation to the high frequency part of the 
pattern noise. Denoting Y and Fσ(Y) the spatial 
representation of the image and its denoised version, 
respectively, we take the difference signal Y–Fσ(Y) as an 
approximation to the pattern noise.  

The first step in camera identification is 
determining the reference camera pattern – the high-
frequency component of its sensor pattern noise. The 
standard approach to obtain this pattern is using flat-
fielding [6]. This needs to be done for the raw sensor data 

before color interpolation and other on-board processing. 
Most consumer-end cameras, however, do not allow 
access to this data. Therefore, we opted for a different 
approach and extract the reference pattern by averaging 
the noise Y–Fσ(Y) extracted from multiple images Y to 
eliminate the influence of the scene content on the output 
of the denoising filter and suppress other random noise. In 
most of our experiments, the reference pattern was 
obtained from about 300 images of natural indoor and 
outdoor scenes. Based on our previous work [4], we 
recommend at least 50 images for computation of the 
reference pattern. Fewer images might suffice if one can 
take images of uniformly lit scenes (e.g., blue sky shots). 

Let PC denote the reference noise from camera 
C. To decide whether image Y was taken by camera C, we 
calculate the correlation ρC between the image noise 
pattern Y–Fσ(Y) and the reference pattern PC 
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where E[ ] stands for the mean value and ||.|| is the L2 
norm. 

The detector performance is fairly insensitive to 
the filter parameter σ, as long as σ > 1. The value σ =5 
gave us the best overall performance. 

There are two types of identification problems 
one can encounter in practice. The first, and easier, 
problem is to determine from several cameras the camera 
that most likely took a given image. This can be achieved 
by assigning the image to the camera whose reference 
pattern had the highest correlation with the image noise. 

The second, harder, problem is to evaluate the 
evidence that a given image was taken by a specific 
camera. In this case, it is necessary to compare the value 
of ρC for images produced by the camera and other 
cameras and to determine an appropriate measure (e.g., 
threshold) for ρC to reach a conclusion about the origin of 
the image. 

4. EXPERIMENTS 

In our experiments, we have used 9 cameras from 
different manufacturers with a variety of sensors and 
resolutions. They included Canon G2, Canon S40, Canon 
A10, Kodak DC290, Olympus C3030, Olympus C765 
(two cameras of this same model), Sigma SD9 (with 
CMOS Foveon X3 sensor), and Nikon D100. With each 
camera, a little over 300 images in the RAW format 
(whenever possible) of natural indoor and outdoor scenes 
were taken, producing a database of more than 2700 
images for our tests. 



In the fist set of tests, we have calculated the 
correlation between the noise from all images and all nine 
reference patterns. In all cases, the reference pattern from 
the camera that took the image produced the highest 
correlation value. As a representative example, we show 
in Figure 1 the correlation of the Olympus C765 images 
with reference patterns from all nine cameras. Note that it 
is possible to distinguish between two cameras of the 
same brand (two Olympus C765 cameras).  
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Figure 1: Correlation of noise from Olympus C765 

images in TIFF format with 9 reference patterns. 
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Figure 2: The correlation (ρC) as a function of the JPEG 

quality factor.  

In another experiment (performed only with 3 
cameras – Canons G2 and S40 and Kodak DC290), we 
tested whether it is possible to perform reliable 
identification after lossy JPEG compression. Figure 2 
shows the correlations between the DC290 reference 
pattern with the noise from JPEG images from all three 
cameras as a function of the JPEG quality factor. The 
crosses stand for the ρC between the reference pattern 

from Kodak DC290 and the noise from Kodak DC290 
JPEG images. Circles correspond to the correlation 
between the reference pattern from Kodak DC290 and the 
noise from Canon G2 and S40 JPEG images. For each 
quality factor, correlations were calculated for 100 
randomly selected images from each camera. Squares 
denote the mean and plus signs mark the standard 
deviation. We can see that both the mean and the standard 
deviation of correlations of noise patterns with the correct 
reference pattern decrease with the decreasing quality 
factor while the variance of correlations with incorrect 
reference patterns remains almost constant. We conclude 
that it is possible to obtain reliable camera identification 
even after subsequent JPEG compression. 

Next, we tested whether it is possible to identify 
images that were taken by a camera set to a lower 
resolution and saved as JPEG. For each camera in the test, 
whenever the dimensions of the noise pattern and the 
reference pattern did not match, the smaller of both was 
resized using bi-cubic interpolation to allow correlation 
computation.  

Our experiments on 1600×1200 Canon G2 JPEG 
images (including those with JPEG quality factor around 
72) revealed that reliable identification is still possible 
even for low quality low-resolution images. 

Additionally, we have tested the possibility of 
reliable image identification from gamma corrected 
images. The pattern noise can be considered as a spread 
spectrum watermark [8] with most energy in the high-
medium spatial frequencies. Since such watermarks are 
known to well survive point intensity transformations of 
the type of gamma correction, it is not a big surprise that 
correcting Olympus C765 TIFF images for gamma 1/1.4 
decreased the separation displayed in the Figure 1 only 
negligibly. In our final test, we have gamma corrected 
low-resolution decompressed JPEG images. 
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Figure 3: Identification of low-resolution 1600×1200 

Canon G2 gamma 1/0.7 corrected JPEG images.  



In Figure 3, the noise from Canon G2 low-
resolution 1600×1200 gamma 1/0.7 corrected JPEG 
images was correlated (after resizing) with the high-
resolution reference patterns obtained from 6 different 
cameras. Images No. 6–33 were compressed with a very 
low JPEG quality factor (around 72) while the rest of the 
images were compressed using JPEG with an average 
quality factor of around 98. Again, in all cases, the 
camera that took the image produced the highest value of 
the correlation. 

We conclude that the pattern noise survives well 
both linear and nonlinear point intensity transformations, 
such as histogram operations, brightness/contrast 
adjustment, or gamma correction.  

It is also quite obvious that simultaneous 
application of several geometrical operations (e.g., 
cropping, resizing, and rotation) causes desynchronization 
and prevents easy detection, which now has to resort to 
expensive brute force searches. 

In general, we believe that camera identification 
should be approached from multiple directions, 
combining the evidence from other methods, such as the 
feature-based identification [3], which is less likely to be 
influenced by geometrical transformations. We also may 
be able to retrieve information about geometrical 
operations using the technique described in [9].  

5. CONCLUSIONS 

We present a new approach to the problem of camera 
identification from images based on pixel non-uniformity 
noise, which is a unique stochastic characteristic for both 
CCD and CMOS sensors. The presence of this noise is 
established using correlation as in detection of spread 
spectrum watermarks. Reliable identification is possible 
even from images processed using lossy JPEG 
compression, resizing, and point intensity transformations 
(e.g., gamma correction). 
 As the identifying pattern is a semi-robust 
spread-spectrum watermark, it should not be surprising 
that malicious processing becomes possible if an attacker 
has the camera in possession or has access to many 
images taken by the camera. In particular, we have shown 
[4] that it is possible to remove the pattern noise from an 
image beyond detection using (1) or plant a given 
reference pattern into another image. 

An interesting question that we are currently 
investigating is whether it is possible to use the proposed 
technique on smaller blocks for identification of tampered 
areas (forgeries). 

6. ACKNOWLEGEMENT 

The work on this paper was supported by Air Force 
Research Laboratory, Air Force Material Command, 

USAF, under a research grant number F30602-02-2-0093. 
The U.S. Government is authorized to reproduce and 
distribute reprints for Governmental purposes 
notwithstanding any copyright notation there on. The 
views and conclusions contained herein are those of the 
authors and should not be interpreted as necessarily 
representing the official policies, either expressed or 
implied, of Air Force Research Laboratory, or the U. S. 
Government. We would like to thank Taras Holotyak for 
providing the code for the denoising filter, and to Paul 
Blythe, Peter Burns, James Adams, Chris Honsinger, John 
Hamilton, and George Normandin for many useful 
discussions. 

7. REFERENCES 

[1] Blythe, P. and Fridrich, J.: “Secure Digital Camera”, 
Digital Forensic Research Workshop, Baltimore, 
Maryland, August 11–13, 2004. 

[2] Geradts, Z., Bijhold, J., Kieft, M., Kurosawa, K., 
Kuroki, K., and Saitoh, N.: “Methods for 
Identification of Images Acquired with Digital 
Cameras”, Proc. of SPIE, Enabling Technologies for 
Law Enforcement and Security, vol. 4232, pp. 505–
512, February 2001. 

[3] Kharrazi, M., Sencar, H. T., and Memon, N.: “Blind 
Source Camera Identification”, Proc. ICIP’ 04, 
Singapore, October 24–27, 2004. 

[4] Lukáš J., Fridrich J., and Goljan M.: “Determining 
Digital Image Origin Using Sensor Imperfections”, 
Proc. SPIE Electronic Imaging, Image and Video 
Communication and Processing, San Jose, 
California, pp. 249–260, January 16–20, 2005. 

[5] Holst, G. C.: CCD Arrays, Cameras, and Displays, 
2nd edition, JCD Publishing & SPIE Pres, USA, 1998. 

[6] Janesick, J. R.: Scientific Charge-Coupled Devices, 
SPIE PRESS Monograph vol. PM83, SPIE–The 
International Society for Optical Engineering, 2001.  

[7] Mihcak M.K., Kozintsev, I., and Ramchandran, K.: 
“Spatially adaptive statistical modeling of wavelet 
image coefficients and its application to denoising,” 
in Proc. IEEE Int. Conf. Acoustics, Speech, and 
Signal Processing, Phoenix, Arizona, vol. 6, pp. 
3253–3256, March 1999. 

[8] Cox, I., Miller, M.L., and Bloom, J.A.: Digital 
Watermarking, Morgan Kaufmann, San Francisco, 
2001. 

[9] Popescu, A.C. and Farid H.: “Statistical Tools for 
Digital Forensic”, in J. Fridrich (ed.): 6th 
International Workshop on Information Hiding, 
LNCS vol. 3200, Springer-Verlag, Berlin-Heidelberg, 
New York, pp. 128–147, 2004. 


