
Lossless Data Embedding with File Size Preservation

Jessica Fridrich∗, Miroslav Goljan, Qing Chen, and Vivek Pathak
Department of Electrical and Computer Engineering

SUNY Binghamton, Binghamton, NY 13902-6000, USA

ABSTRACT

In lossless watermarking, it is possible to completely remove the embedding distortion from the watermarked image
and recover an exact copy of the original unwatermarked image. Lossless watermarks found applications in fragile
authentication, integrity protection, and metadata embedding. It is especially important for medical and military
images. Frequently, lossless embedding disproportionably increases the file size for image formats that contain
lossless compression (RLE BMP, GIF, JPEG, PNG, etc…). This partially negates the advantage of embedding
information as opposed to appending it. In this paper, we introduce lossless watermarking techniques that preserve the
file size. The formats addressed are RLE encoded bitmaps and sequentially encoded JPEG images. The lossless
embedding for the RLE BMP format is designed in such a manner to guarantee that the message extraction and
original image reconstruction is insensitive to different RLE encoders, image palette reshuffling, as well as to
removing or adding duplicate palette colors. The performance of both methods is demonstrated on test images by
showing the capacity, distortion, and embedding rate. The proposed methods are the first examples of lossless
embedding methods that preserve the file size for image formats that use lossless compression.

Keywords: Embedding, lossless, erasable, invertible, removable, distortion, file size preservation, RLE, JPEG

1. INTRODUCTION

Lossless embedding is a term for a class of data hiding techniques that are capable of restoring the embedded image to
its original state without accessing any side information. One can say that the embedding distortion can be erased or
removed from the embedded image. This is why some researchers refer to this type of embedding as erasable,
removable, invertible, or distortion-free.

The idea of lossless embedding was for the first time proposed by Honsinger1 in 1999. This technique, originally
designed for lossless authentication, suffered from visible distortion (for some images) and limited capacity. Fridrich et
al.2 introduced a general methodology for lossless embedding in digital images that is based on lossless compression of
image features. In this method, one first selects a subset X of image features that is losslessly compressible and that can
be randomized without causing visible degradation to the image. The lossless embedding proceeds by compressing X
to C(X) and replacing X with C(X) & L

jjm 1}{ = , where mj are the message bits and ‘&’ denotes concatenation. This way,

one can losslessly embed up to |X|–|C(X)| bits. This embedding paradigm is very general and many schemes can be
designed by selecting different image features2,3.

Alternative approaches to lossless embedding were later proposed by Macq4, Tian5, and Kalker6. Researchers have
focused on different aspects of lossless embedding schemes. Increasing the lossless embedding capacity has recently
been the principle motivation3,5,6. Celik3 described a lossless authentication method with localization. Kalker et al.7
proposed an approach that minimizes distortion per embedded bit. The first lossless embedding scheme for audio
signals has been described by Kalker6.

∗ fridrich@binghamton.edu; phone: 1 607 777-2577; fax: 1607 777-4464; http://www.ws.binghamton.edu/fridrich; SUNY

Binghamton; Watson School of Engineering, Dept. of Electrical and Computer Engineering, Binghamton, NY USA 13902-6000

So far, little attention has been paid to the increase of the file size introduced by lossless embedding. In lossless
embedding schemes designed for image formats that use some form of lossless compression, the increase in the file
size could be many times larger than the actual number of embedded bits L. This inefficiency partially outweighs the
advantage of embedding the data as opposed to appending it to the cover image. In fact, the sponsors of this research∗
have expressed the need for lossless embedding schemes that preserve the file size.

The act of lossless embedding of a random message stream increases the entropy E(I) of the cover image I to
E(Y)=E(I)+L, where Y is the embedded image. Fortunately, any specific lossless compression algorithm does not
compress Y to the ideal E(Y) bits but to |C(Y)| bits, where |C(Y)|>E(Y) and C(Y) is the compressed embedded image.
Consequently, one can theoretically at most |C(Y)|–E(Y) bits losslessly and still preserve the file size+. To design such a
scheme, however, one will likely have to tailor it to the specific compression scheme as well as the image format.

For example, if the cover image is an RGB encoded BMP file, the embedding does not increase its file size because the
RGB BMP format does not incorporate any compression. However, the run length encoded (RLE) BMP, GIF, and
JPEG contain lossless compression8 (runlength, LZ77, and Huffman, respectively). Thus, the embedded file has a
different, usually larger, size than the original.

This paper is the first step to developing lossless embedding techniques that preserve the file size. We have chosen two
of the most common formats – the RLE encoded BMP image format and the ubiquitous JPEG format. In the next
section, we describe the RLE compression algorithm and then, in Section 3, the RS lossless embedding scheme with
file size preservation is introduced. Experimental results are presented in Section 4. In Section 5, we describe the
relevant details of the JPEG format and the lossless file-size preserving technique. The algorithm performance is
discussed in Section 6. Conclusions and future research are included in Section 7.

2. RLE COMPRESSION

Run length encoding (RLE) is a simple lossless compression that assigns short codes to long runs of identical symbols.
It is used in the BMP format for images with up to 256 colors. The RLE format decoding rules are simple:

n B decode as byte B repeated n-times, n≥1,
0 0 EOL; end of row,
0 1 EOB; end of bitmap,
0 2 x y Delta; move x pixels to the right and y pixels down,
0 n A1…An (0) n≥3, decode as A1…An , zero is padded when n is odd.

The last decoding rule is called the “absolute mode”. An important observation is that although the decoded image is
always unique, the encoding can be done in many different ways. For example, some RLE implementations never use
the code “nB” for n=1 but use the absolute mode instead. Therefore, different RLE encoders may generate files with
slightly different sizes.

3. LOSSLESS EMBEDDING WITH FILE SIZE PRESERVATION FOR RLE BMPs

3.1 Problem statement
Because there exist many different RLE encoders, the embedding scheme must also guarantee that the message and the
original image can be extracted from the embedded and encoded image independently of the RLE encoder.

∗ The Air Force Office of Scientific Research and the Air Force Research Laboratory in Rome, NY.
+ In practice, however, we are not likely to achieve this capacity because the embedded image must be perceptually equivalent to

the original image.

We have decided to use the RS lossless data embedding method2 as our starting point for the design of a lossless file-
size preserving method. This method seemed to be the most amenable to modifications that would enable us such
construction.

Lossless embedding with file size preservation for RLE compressed images (LE4RLE) should satisfy the following
requirements:

(R1) The file size of the original and the embedded images must be equal after RLE compression using virtually

any RLE compressor.
(R2) The original image can be retrieved from the embedded image exactly.
(R3) Any image processing that does not modify image content (image renaming, palette reordering, removing or

introducing duplicate entries in the palette, image lossless compression and/or decompression of any kind)
must not lead to message extraction failure.

(R4) The message and the original image can be retrieved from both RLE compressed and decompressed images.
(R5) Embedded images should be perceptually equivalent to their originals, keeping the embedding distortion as

low as possible.

3.2 Defining concepts
In this section, we briefly introduce the concepts needed for the description of the RS embedding method2 and its
LE4RLE modification that preserves file size (in Section 3.4).

First, all palette colors are divided into disjoint (unordered) pairs {ci, cj} of perceptually similar colors (some colors
may be paired to themselves). The set of all color pairs is denoted as P. Furthermore, for each color ci , we define its
flipped color as ic = cj, where {ci, cj} is a color pair from P.

Next, we extend the flipping operation to a group of k pixels with colors (c1, c2, …, ck) and a binary mask M∈{0,1}k :

)',...,','(21 k
M cccG = , where G = (c1, c2, …, ck) and





=
=

=
0
1

'
ii

ii
i Mc

Mc
c , i = 1, …, k .

The mask M can be the same for all groups (as it is the case in the original RS embedding) or be individually defined
for each group (in this paper). We further define the discrimination function f(G)

∑
−

=
+==

1

1
121),(),...,,()(

k

i
iik ccdcccfGf , (1)

where d is the distance between two colors. The selection of color pairs and the distance d is detailed in Section 3.5.
Finally, we describe a function that assigns one bit b(G) to each group G:









≤−
−<−

>−
=

.)()(undefined,
)()(,1
)()(,0

)(
TGfGf
TGfGf

TGfGf
Gb (2)

The threshold T can be used to achieve different capacity-distortion rate (see Section 4). Note that for natural images
the flipped group G will be “noisier” than G and thus Prob{f(G)>f(G)}>1/2. Consequently, b(G) will have more 0’s
than 1’s.

Because HGHG =⇔= , we have)(1)(GbGb −= , whenever b(G) is defined. Also, b(G) is defined if and only if

)(Gb is defined.

3.3 RS lossless embedding
Following the original method, the RS lossless embedding starts by dividing the original image X into disjoint groups
of the same size and shape (e.g., 2×2 blocks). Let Gi, i=1, 2,…, N be all the groups for which bi = b(Gi) is defined. The
RS algorithm flips some of the groups Gi to Gi′ so that their associated bits bi′ = b(Gi′) encode the message and the
(compressed) original bits)}({ 1

N
iibC = & L

jjm 1}{ = , where C({bi}) is the losslessly compressed∗ bit-stream {bi} needed for

reconstruction of the original image. Note that because the bit-stream {bi} contains more 0’s than 1’s, it will be
losslessly compressible. As a result, this method can embed up to N–|C({bi})| message bits mj.

At the decoder, the compressed bit-stream C({bi}) and the message bits {mj} are extracted. Then, the groups Gi′ are
flipped as needed to match their associated bits bi with the extracted and decompressed bit-stream {bi} thus obtaining
an exact copy of the original image.

Next, we explain how this scheme can be modified to guarantee file size preservation for RLE encoded BMP images.

3.4 RS lossless embedding with file size preservation
In the RLE BMP format, the image data X is represented by indices xi to the image palette, which can have up to 256
entries. Let c(xi) denote the color of the pixel xi. During embedding, each pixel xi can either stay unmodified or be
changed to ix , where ix is the index to the color)(ixc .

We start with a simple observation that the size of the RLE compressed image will not be changed by embedding if the
length of all runs (along image rows) is not changed. This means that any sequence of pixels ‘yxx…xz’ can be changed
to ‘yww…wz’ by replacing x with w, w≠y and w≠z.

Given the image X ={xi}, i=1, 2,…, Np, represented as a row vector (pixels arranged by rows), we define the invariant
image R={ri} as

},min{ iii xxr = , i=1, 2,…, Np .

Thus, the image R does not distinguish between the colors in the pair ∈)}(),({ ii xcxc P.

When scanning a row of pixels in R, transform this image using the RLE code “nB” only, whenever the index B is
repeated n times, and as “00” for End of Line. The sequence of numbers n determines the length of row segments that
the embedding algorithm must leave unmodified or modify simultaneously to Bn . Because each segment will carry the
same amount of hidden information regardless of its length, to keep the distortion low, it is better to limit the length of
each segment to a small number. In this paper, we use segments consisting of exactly one pixel. The set of all pixels
that belong to such segments of length 1 will be denoted as Q

xi∈Q ⇔ (ri ≠ ri–1 and ri ≠ ri+1).
If the embedding algorithm flips only the pixels in Q, the file size of the embedded image will be preserved under any
RLE encoder. Thus, the lossless method with file size preservation proceeds in the same way as the original RS
method with one difference – the mask M for each group G is determined by pixels from Q. This mask will reflect
which pixels can be modified and which cannot.

To obtain the individual masks, we define a binary matrix E=(ei), of the same size as the image, that captures which
pixels may (1) and must not (0) be modified





∉
∈

=
.0

1
Qx
Qx

e
i

i
i

∗ In RS method2, adaptive arithmetic coding was used to compress the bit-stream b(Gi).

Each group of k pixels),...,,(
21 kiii xxx with colors G =))(,),((

1 kii xcxc K will have its own embedding mask M

),...,,(
21 kiii eeeM = . Thus,)',..,','(21 k

M cccG = , where







∉
∈

=
.)(

)(
'

Qxxc
Qxxc

c
jj

jj

ii

ii
j

Note that the embedding mask can be uniquely determined from both the original and embedded images.

Now, let us summarize all steps of lossless embedding with file size preservation.

Encoder

1. Determine pairs of close colors P (see Section 3.5)
2. Calculate the set Q of modifiable pixels.
3. Divide the image into disjoint groups G. Calculate bi = b(Gi) for all groups of pixels whenever they are

defined. Use a pseudo-random order for index i of Gi.
4. Start compressing the bit sequence {bi} to C{bi}. Stop the compression at bk as soon as the inequality

k ≥ l + L + length(C{bi} k
i 1=) is satisfied (l is the number of bits that encodes message length).

5. Form the composite message Message_length & Message_bits & C{bi} spanning l, L, and V bits.
6. For each i, if (bi ≠ i-th bit of C{bi}&{mj}) then flip Gi to iG .

Decoder
1.–2. The same as in Encoder.
3. Divide the image into disjoint groups G. Calculate b′i = b(Gi) for all groups of pixels whenever they are
 defined. Use the same pseudo-random order for index i of Gi as during embedding.
4. Read b1′ b2′… bl′ and message bits b′l+1 b′l+2… b′l+L.
5. Set j=1. Decompress the segment b′l+L+1 … b′l+L+j and denote the length of the decompressed segment V.
6. If V < l+L+j then Go to 5, else Stop. The decompressed bits are b1b2 …bl+L+V.
7. For i =1, …, V, if (bi ≠ b′l+L+i), flip Gi to iG .

Because both the encoder and decoder start from the image decompressed to the spatial domain, the method is
insensitive to differences between RLE encoders. Also, presorting the palette to a fixed order (e.g., alphabetically)
before determining color pairs P will make the system work after palette reshuffling. The problem of removing or
adding duplicate palette entries can be addressed by unifying duplicate entries in the palette to the lowest one from all
duplicate indices before embedding and returning the occurrences of the duplicate colors after embedding. In
particular, let c1, c2, …, ck are different palette entries corresponding to one RGB color, c1 < c2 < … < ck. Before
embedding, we modify all pixels with colors c2, …, ck to c1. After embedding, the pixels with colors c1 are changed
back to cj if they were equal to cj in the original image, for all j = 2, …, k. The first step guarantees that it will not
matter whether or not the duplicate entries are removed and the last step guarantees that the file size will not decrease
during data insertion.

3.5 Color pairing and distance d
Let D = {dij}, i, j =1, …, n, n ≤ 256, be the matrix of distances between colors i and j after presorting the colors that
appear in the image. These distances can be measured in any color space, such as RGB, YUV, or CIELAB. After
subjectively evaluating results of experiments with different spaces, we selected the square of the weighted Euclidean
RGB distance

222222)()()(jibjigjir bbwggwrrwd −+−+−= ,

where wr = 0.35, wg = 0.4, and wb = 0.25, and ri, rj, gi, gj, bi, and bj are integers in the range from 0 to 255.

Once an appropriate distance measure d in the RGB color space is established, one can attempt to determine the color
pairing P that minimizes the distortion with a lower bound on the capacity or maximize the capacity with an upper
bound on the distortion.

Such problems can be formulated as an optimal incomplete matching problem10 in a weighted graph with three weights
at each edge and with one constraint. Since the optimal matching can be incomplete, some colors can be paired to
themselves. There is no known algorithm for solving this task efficiently in a polynomial time. We skip the details here
due to a limited space. Below, we describe a heuristic algorithm that strives to provide good capacity-distortion trade
off.

3.5.1 Top-down color matching algorithm
In our previous work2, we have introduced the color matching algorithm called “Top-down”. In this paper, we use an
improved version of this approach that gives higher embedding capacity with lower distortion.

The top-down matching algorithm starts with the most isolated color and finds its closest neighbor among all
remaining colors. If the distance between these two colors is below a fixed threshold t, both colors are removed from
the set of all colors and declared as a “close pair”. If the distance is larger than the threshold, the most isolated color is
paired with itself and removed. This step is repeated until all colors are paired. The parameter t regulates the trade-off
between image distortion and lossless capacity.

Next, we describe a modification of this algorithm that has achieved better results in our experiments.

3.5.2 Improved top-down color matching algorithm
Instead of the most isolated color, this algorithm finds colors with the least number of colors within the distance t.
Among them, the pair with its distance closest to t is chosen and removed from the set. This step is repeated until no
such pair can be found. The pseudo-code for this algorithm follows.

k = 1;





≤<
>=

=
)0(otherwise ,1

or 0 when ,0
td

tdd
b

ij

ijij
ij

∑=
j

iji bs , }{min
0 , ijtdji dn

ij ≤<
= ; for all i

Repeat
}{min

0 is
sm

i >
= ;

}{maxarg
 ,

i
msi

na
i =

= ; }{minarg
1 ,

aj
bj

db
aj =

= ;

Set (a, b) as the k-th pair, k=k+1 ;
sa = 0 ; sb = 0 ;
For all si > 0 set si = si – bia – bib ;
bia = 0 ; bib = 0 ; i = 1, …, n ;

until (si = 0 for all i)

4. EXPERIMENTAL RESULTS

In our experiments, we have used “column” groups G consisting of 4×1 pixels. Because the RLE compression
proceeds by rows, such groups provide better capacity than groups of 2×2 or 1×4 pixels. In the original RS method, the
threshold T in (2) was set to 0. For color palette images, however, it is advantageous to make T proportional to t to
improve the capacity without increasing the embedding distortion. A linear dependence T = 0.7t gave us good results
for a wide range 0 < t ≤ 50. We note that this relation depends on our choice of the distance measure d.

For brevity, we demonstrate the performance of the proposed method for only 5 test images. Four images were
640×480 true color images (Lenna was 512×512) converted to 256 colors using PaintShop Pro 4.12 with the optimized
palette and nearest color options. For all test images, we calculated the capacity (in bits per pixel or bpp), distortion
(PSNR), and rate in bits per unit distortion measured in the L1 norm. Table 1 shows the results for the LE4RLE method
that preserves the file size and the original RS method. In the last column, the table also shows the file size increase ∆
(in bytes) produced by the original RS method when embedding the maximal length message (the compression was
done in the same version of PaintShop Pro). This file size increase bears almost no relationship to the message size
(surprisingly) and is mostly influenced by the image content and the efficiency of the RLE compression. The file size
increase ∆ may become very large if the act of embedding makes the image significantly less compressible using RLE
(for Image No. 4, ∆ is more than 20 times larger than the message length). Of course, the new LE4RLE method did not
lead to any file size increase.

Inspecting the rate in Table 1, we can see that the new method achieves slightly better rate than the original RS
method. The absolute capacity decreases by about 20% but, but this is fairly insignificant because the capacity can be
adjusted with the parameter t that controls the distortion-capacity trade off (Table 2). Overall, the capacity of the new
method is large enough for applications, such as authentication or annotation embedding – the main applications for
which the concept of lossless data embedding was originally introduced.

LE4RLE RS
 Image bpp (%) PSNR Rate bpp (%) PSNR Rate ∆

Im_1
Im_2
Im_3
Im_4
Lenna

 3.08
 1.90
 4.63
 4.21
 6.48

33.3
33.4
34.7
34.6
30.3

.0076

.0050

.0127

.0125

.0148

 4.28
 1.89
 5.51
 5.41
 7.70

31.4
32.0
33.3
32.1
27.3

.0065

.0032

.0108

.0103

.0088

9172
7634
2286
33440
3186

Capacity (% of bpp) PSNR (dB)
Image t=10 t=30 t=40 t=10 t=30 t=40
Im_1
Im_2
Im_3
Im_4
Lenna

 1.44
 0.81
 1.68
 1.82
 3.97

3.98
2.18
6.05
6.25
8.92

4.01
4.12
6.91
7.52
10.58

37.02
38.20
39.30
40.26
33.14

31.35
33.15
31.25
31.97
31.16

29.50
31.56
30.01
30.53
29.04

Table 1. Capacity, distortion, and rate for 5 test images for LE4RLE
and the original RS method, t = 20. ∆ (Byte) is the difference in file
size in the original RS embedding.

Table 2. Capacity and distortion as functions of the
parameter t for several test images.

Im_1 Im_2 Im_3 Im_4 Lenna

5. LOSSLESS EMBEDDING WITH FILE SIZE PRESERVATION FOR THE JPEG FORMAT

The JPEG format9 is the most popular image format in current use. This is because it offers a convenient trade off
between the file size and the perceptual quality of the encoded image. Our previously developed lossless embedding
schemes2 for JPEG do not preserve the JPEG file size and in some cases the file size increase can be quite
disproportional to the embedded message size. This partially negates the advantages of embedding data rather than
appending. In this section, we address this issue and describe a lossless embedding technique for sequentially encoded
JPEG images that preserves their file size (within a few bytes).

The JPEG encoder consists of three fundamental components (see Fig. 1): Forward Discrete Cosine Transform
(FDCT), a scalar quantizer, and an entropy-encoder. After the DCT is applied to an 8×8 block of pixels transforming
the block from spatial domain to the frequency domain, DCT coefficients are quantized using the quantization table.
The quantized coefficients are arranged in a zigzag order and pre-compressed using the Differential Pulse Code
Modulation (DPCM) on DC coefficients and RLE on AC coefficients. Finally, the symbol string is Huffman-coded to
obtain the final compressed bit-stream. After pre-pending the header, the final JPEG file is obtained.

Our lossless embedding scheme with file size preservation works with the Huffman-decompressed stream of
intermediate symbols. This bit-stream is modified in a careful manner to make sure that the final file size after
Huffman compression stays the same within a few bytes. To understand the embedding principles, we need to describe
the lossless part of JPEG compression in more detail.

8x8 blocks

FDCT Quantizer Entropy
Encoder

 Table
specif ications

 Table
specif ications

Message

JPEG file

Source
Image Data Compressed

Image Data

Fig. 1. Lossless embedding in JPEG files.

5.1 The JPEG entropy coder
The entropy coder consists of two steps: (1) DPCM encoding of the DC term and runlength encoding of the AC
coefficients into a sequence of intermediate symbols and (2) Huffman coding. The purpose of the DPCM is to
decorrelate the DC term because DC coefficients from neighboring blocks still exhibit significant local correlations.
The AC coefficients, on the other hand, contain long runs of zeros due to the quantization. Thus, AC coefficients are
conveniently encoded using the runlength encoding. The DPCM coding of DC coefficients and the runlength coding of
AC coefficients produce a sequence of intermediate symbols, which is finally entropy coded (Huffman) to a data
stream in which the symbols no longer have externally identifiable boundaries.

Our embedding technique works with the sequence of intermediate symbols. We ignore the DC coefficients because
their modifications usually lead to visible artifacts. To explain how we modify the runlength encoded AC coefficients,
we need to describe the runlength coding algorithm in more detail.

5.2 Run length encoding of AC coefficients
Run length encoding (RLE) is a simple lossless compression that assigns short codes to long runs of identical symbols.
As mentioned above, majority of AC coefficients in each block are usually zeros. To efficiently utilize this fact, the AC
coefficients are coded in a special RLE format as pairs of intermediate symbols (S1, S2). The codeword S1 represents
both the number of zeros before the next nonzero DCT coefficient and the category (number of bits required to
represent its amplitude). The S2 symbol defines the amplitude and sign of the nonzero coefficient. The symbol S1,
S1=(Run/Category), is a composite 8-bit value of the form S1 = binary ’RRRRCCCC’. The 4 least significant bits,
’CCCC’, define a category for the amplitude of the next non-zero coefficient in the block. The 4 most significant bits,
’RRRR’, give the position of the coefficient in the block relative to the previous non-zero coefficient (i.e., the run-
length of zero coefficients between non-zero coefficients):

• Run (RRRR): the length of the consecutive zero-valued AC coefficients preceding the next nonzero
AC coefficient, 0≤Run≤15.

• Category (CCCC): the number of bits needed to represent the amplitude of the next nonzero AC
coefficient, 0≤Category≤15.

• S2 (amplitude): S2 represents the amplitude of the next nonzero AC coefficient by a signed integer.

Once the quantized coefficient data from each 8×8 block is represented in the intermediate symbol sequence described
above, variable-length codes are assigned. Each S1 (Run/Category) is encoded with a variable-length code (VLC) from
a Huffman table. Each S2 (amplitude) is encoded with a “variable-length integer” (VLI) code, which is an index into
the amplitude value field whose length in bits is given in the second column of Table 3.

Both VLCs (S1) and VLIs (S2) are codes with variable lengths, but VLIs are not Huffman coded. They are appended
to the Huffman coded S1 to form the final JPEG bit-stream. So, we can change a particular VLI as long as the
modified value is from the same category (has the same length) without changing the JPEG file size. Consequently, if
all the embedding changes have this property, the JPEG file size will be preserved.

Amplitude value field Category AC size
0 0 N/A

–1, 1 1 1
–3, –2, 2, 3 2 2

–7,…,–4, 4,…, 7 3 3
–15,…,–8, 8,…, 15 4 4

–31,…, –16, 16,…, 31 5 5
–63,…,–32, 32,…, 63 6 6

–127,…, –64, 64,…,127 7 7
–255,…,–128, 128,…, 255 8 8
–511,…,–256, 256,…, 511 9 9

–1023,…,–512, 512,…,1023 10 A
–2047,…,–1024, 1024,…, 2047 11 B
–4095,…,–2048, 2048, …, 4095 12 C
–8191,…,–4096, 4096,…, 8191 13 D
–16383,…,–8192, 8192, 16383 14 E

–32767,…,–16384, 16384, 32767 15 N/A
Table 3. Runlength coding category and amplitude of AC coefficients.

5.3 Lossless embedding with file size preservation
We build our lossless file size preserving method around the lossless embedding scheme for JPEGs2. As explained in
the previous paragraph, in order to preserve the file size, a given DCT coefficient d from category C can only be
changed to another coefficient d ’ from the same category C. To minimize the embedding distortion, we want this
change to be as small as possible. Also, because changes to DC coefficients usually introduce visible distortion, we
confine the embedding modifications to AC coefficients, only.

Considering the requirements above, we further limit the embedding changes to the same category, swapping values of
AC DCT coefficients within the following pairs: (–2,–3), (2,3) from category 2, (–7,–6), (–5,–4), (4,5), (6,7) from
category 3, etc. During embedding, one value from the pair may be changed to the other value from the same pair. The
value pairs are called embedding pairs.

If we assign parity 0 to all even valued coefficients and parity 1 to odd valued coefficients, then the parities of the DCT
coefficients that participate in embedding pairs in the original JPEG file is a binary sequence T that is losslessly
compressible. This is because in natural images the distribution of DCT coefficients is generalized Gaussian centered
at 0 and thus the sequence T contains more 0’s in T than 1’s.

The rest of the embedding follows the RS method for JPEGs2. We first losslessly compress the sequence T, obtaining
the compressed bit-stream C(T), |C(T)|<|T|, append the message bits M to the compressed bit-stream, C(T)&M, and
embed this composite message as the parities of DCT coefficients participating in embedding pairs (the capacity of this
scheme is |T|–|C(T)|). In our implementation, we used a context-free arithmetic compression8.

Due to the generalized Gaussian distribution of DCT coefficients, the coefficients occur with highly uneven
probabilities. Thus, to obtain a more efficient lossless compression of the sequence T, we divide T into several
subsequences (each subsequence corresponding to one category) and perform the arithmetic compression for
coefficients from each category separately.

Encoder

1. Huffman-decode the original JPEG file.

2. Either sequentially, or along a key-dependent path, read all DCT coefficients di belonging to embedding pairs
from all Huffman-decoded data. Form the sequence T={ti}, ti=parity(di).

3. Compress T using the arithmetic encoder as described above to obtain the compressed bit-stream C(T).
4. Concatenate m message bits M, m<|T|–|C(T)|, to the compressed bit-stream, obtaining T ’=C(T)&M.
5. For each i, if ti≠ti’, modify di to di’, where (di, di’) is an embedding pair.
6. Using the same Huffman code table, re-encode the modified Huffman-decoded data to obtain the embedded

JPEG file.

Decoder

1. Huffman-decode the JPEG file.
2. Either sequentially, or along a key-dependent path, read all DCT coefficients di’ belonging to embedding pairs

from all Huffman-decoded data. Form the sequence T ’={ti’}, ti’=parity(di’).
3. Read the message M from T ’ and decompress C(T).
4. Either sequentially, or along a key-dependent path, modify all DCT coefficients di’ belonging to embedding

pairs so that their parities match the decompressed sequence T: parity(di)=ti. After re-encoding the modified
Huffman-decompressed coefficients, the original JPEG file is obtained.

6. EXPERIMENTAL RESULTS

We have tested 50 images to see how the capacity, embedding distortion (measured as PSNR), and file size change
with different images, JPEG quality factors, and categories. We note that including categories higher than 4 does not
necessarily lead to higher capacity because the bias between coefficient parities for higher categories is very small. The
overall best performance was obtained for embedding pairs from categories 2, 3, and 4.

Capacity (bits) PSNR File size (bytes) Image (M×N) JPEG
Quality 2 2,3,4 2 2,3,4 Original 2 2,3,4

Balcony (578×891) 98 5978 7520 50.3 49.2 314180 314238 314238
Banoch (1024×768) 90 3265 3333 44.5 43.3 258830 258864 258864
beacon60 (568×512) 40 1303 1378 40.4 39.4 36787 36787 36787
Bloom (960×1280) 97 11797 13360 49.5 48.4 586566 586723 586727
boat80 (512×768) 20 1025 1103 37.9 37.2 27887 27891 27891
Bridge (1280×960) 90 8290 8564 41.6 40.5 604367 604477 604494
brook50 (512×768) 50 2132 2485 37.0 35.8 75353 75370 75367
Bu (960×1280) 97 14110 15892 50.6 49.5 512078 512241 512261
drift30 (512×768) 70 1867 2214 40.7 39.2 76847 76881 76882
Falls (960×1280) 93 5905 6396 51.4 50.3 307041 307133 307138
flight20 (512×768) 80 1084 1207 44.9 43.9 51930 51939 51935
Fog (960×1280) 93 8938 9391 49.5 48.5 267218 267309 267305
girl1 (678×512) 98 4946 6119 50.1 48.8 271388 271422 271432
parrot20 (512×768) 80 1078 1162 46.1 44.9 48757 48772 48777
Tree (960×1280) 93 7278 8751 44.4 43.1 558636 558737 558764
windows40 (512×768) 60 2016 2270 39.3 38.2 70556 70581 70579

 Table 4. Capacity for various test images with different JPEG quality factor for amplitude categories 2, 3, and 4.

In Table 4, the capacity is shown for one category 2 and then for three categories 2, 3, and 4. For most images, the
capacity difference between one and three categories is about 10%. For some images, however, the gain in using three
categories as opposed to just one could be quite substantial (e.g., for image “girl1”). The capacity is strongly
influenced by the image content and size. Quite understandably, higher quality factors lead to higher capacities than
lower factors. Since the target application of lossless embedding is authentication, possibly combined with metadata
embedding, the capacities seem to be adequate for this purpose.

The embedding (removable) distortion is measured for the maximal message length using PSNR. The results indicate
that the embedding distortion is low (and removable, in any case). The last three columns show the file size for the
original image and the embedded image (using one category and using three categories). The file size changes are quite
small, usually limited to a few bytes. The difference between the original and embedded file size is not caused by the

entropy-code change but by JPEG intrinsic byte-alignment structure and zero padding in order to distinguish marker
segments and entropy-coded segments9. This difference can be eliminated if we read entropy-coded data from the
JPEG bit-stream and skip the entropy-coded data that may cause byte-alignment and zero padding change.

7. CONCLUSIONS

Virtually all lossless embedding techniques increase the file size of the embedded image. The increase in the file size
is, however, quite often disproportional to the length of the embedded data. This issue has been brought up to our
attention by the sponsors of this research (AFOSR and ARFL at Rome, NY). The file size increase is a negative
property that potentially negates the advantages of lossless embedding schemes. To our best knowledge, this paper is
the first one that presents lossless data embedding techniques that preserve the size of the watermarked file. We
describe lossless embedding methods that preserve the file size of images in the RLE encoded BMP and the JPEG
formats. The performance of the new schemes is evaluated in terms of their capacity, embedding rate, and embedding
distortion.

The method for RLE BMPs is a modification of the RS embedding method2. The embedded message and the exact
copy of the original image can be obtained even after the RLE encoded BMP embedded image is decompressed to the
RGB BMP format, re-encoded using a different RLE encoder, or when its palette is permuted or colors added to it (or
when duplicate colors are removed from the palette). By using a more sophisticated color-matching algorithm, the
capacity of this new lossless file size preserving method is in fact slightly higher than for the original method lossless
method2 for palette images.

In the second part of this paper, we introduce a lossless embedding technique with file size preservation for
sequentially encoded JPEG images. Again, previously proposed lossless techniques for JPEGs could increase the file
size of the embedded JPEG files by an amount that was much larger than the size of the embedded message itself. Our
new method uses a different embedding principle while making sure that the embedded JPEG file size stays the same.
We work with the sequence of intermediate symbols (after Huffman decompression) and modify the amplitude of
certain DCT coefficients by at most one. Because the amplitude category is not Huffman coded and because the
modifications are always confined to the same amplitude category, the embedded file size stays the same.

Lossless data embedding with file size preservation is a useful new technology that emphasizes the advantage of
lossless embedding of data as opposed to appending. We envision image authentication, image integrity protection,
and metadata embedding as the main application areas for the new embedding technology.

Future research will be directed towards development of lossless embedding techniques with file size preservation for
other image formats that include lossless compression, such as GIF, PNG, or JPEG2000. Also, obtaining theoretical
upper bounds on capacity given the compression method and properties of typical images is an open and interesting
question that deserves further study.

ACKNOWLEDGEMENTS

The work on this paper was partially supported by Air Force Research Laboratory, Air Force Material Command,
USAF, under a research grant number F30602-02-2-0093 and partially by the AFOSR grant F49620-01-1-0123. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation the on. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of Air Force Research
Laboratory, the Air Force Office of Scientific Research, or the U. S. Government.

REFERENCES

1. C.W. Honsinger, P. Jones, M. Rabbani, and J.C. Stoffel, “Lossless Recovery of an Original Image Containing

Embedded Data”, US Patent application, Docket No: 77102/E−D, 1999.
2. J. Fridrich and M. Goljan, “Lossless Data Embedding for all Image Formats”, Proc. of EI SPIE, Security and

Watermarking of Multimedia Contents IV, vol. 4675, San Jose, pp. 572–583, 2002.

3. M. Celik, G. Sharma, A.M. Tekalp, and E. Saber, “Localized Lossless Authentication Watermark (LAW)”, Proc.
of EI SPIE, Security and Watermarking of Multimedia Contents V, vol. 5020, Santa Clara, pp. 689–698, 2003.

4. C. De Vleeschouwer, J.-F. Delaigle, and B. Macq, “Circular Interpretation of Histogram for Reversible
Watermarking”, IEEE 4th Workshop on Multimedia Signal Processing, pp. 345–350, 2001.

5. Y. Tian, “Wavelet-Based Reversible Watermarking for Authentication”, Proc. of EI SPIE, Security and
Watermarking of Multimedia Contents V, vol. 4675, San Jose, pp. 679–690, 2002.

6. T. Kalker and F.M. Willems, “Capacity Bounds and Code Constructions for Reversible Data-Hiding”, Proc. of EI
SPIE, Security and Watermarking of Multimedia Contents V, vol. 5020, Santa Clara, pp. 604–611, 2003.

7. D. Maas, T. Kalker, and F.M. Willems, “A Code Construction for Recursive Reversible Data-Hiding”, Proc.
Multimedia and Security Workshop at ACM Multimedia, Juan-les-Pins, France, December 6, 2002.

8. K. Sayood, Introduction to Data Compression, Morgan Kaufmann Publishers, San Francisco, California, pp.
87−94, 1996.

9. ITU/CCITT, “Information technology-digital compression and coding of continuous-tone still images-requirements
and guidelines”.

10. L. Lovasz, M.D. Plummer, Matching Theory, Ann. Disc. Math. 29, North-Holland, Amsterdam, 1986, ISBN: 0-
444-87916-1, pp. 369−382.

