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ABSTRACT 
 

In lossless watermarking, it is possible to completely remove the embedding distortion from the watermarked image 
and recover an exact copy of the original unwatermarked image. Lossless watermarks found applications in fragile 
authentication, integrity protection, and metadata embedding. It is especially important for medical and military 
images. Frequently, lossless embedding disproportionably increases the file size for image formats that contain 
lossless compression (RLE BMP, GIF, JPEG, PNG, etc…). This partially negates the advantage of embedding 
information as opposed to appending it. In this paper, we introduce lossless watermarking techniques that preserve the 
file size. The formats addressed are RLE encoded bitmaps and sequentially encoded JPEG images. The lossless 
embedding for the RLE BMP format is designed in such a manner to guarantee that the message extraction and 
original image reconstruction is insensitive to different RLE encoders, image palette reshuffling, as well as to 
removing or adding duplicate palette colors. The performance of both methods is demonstrated on test images by 
showing the capacity, distortion, and embedding rate. The proposed methods are the first examples of lossless 
embedding methods that preserve the file size for image formats that use lossless compression. 
 
Keywords: Embedding, lossless, erasable, invertible, removable, distortion, file size preservation, RLE, JPEG 
 

1. INTRODUCTION 
 
Lossless embedding is a term for a class of data hiding techniques that are capable of restoring the embedded image to 
its original state without accessing any side information. One can say that the embedding distortion can be erased or 
removed from the embedded image. This is why some researchers refer to this type of embedding as erasable, 
removable, invertible, or distortion-free. 
 
The idea of lossless embedding was for the first time proposed by Honsinger1 in 1999. This technique, originally 
designed for lossless authentication, suffered from visible distortion (for some images) and limited capacity. Fridrich et 
al.2 introduced a general methodology for lossless embedding in digital images that is based on lossless compression of 
image features. In this method, one first selects a subset X of image features that is losslessly compressible and that can 
be randomized without causing visible degradation to the image. The lossless embedding proceeds by compressing X 
to C(X) and replacing X with C(X) & L

jjm 1}{ = , where mj are the message bits and ‘&’ denotes concatenation. This way, 

one can losslessly embed up to |X|–|C(X)| bits. This embedding paradigm is very general and many schemes can be 
designed by selecting different image features2,3. 
 
Alternative approaches to lossless embedding were later proposed by Macq4, Tian5, and Kalker6. Researchers have 
focused on different aspects of lossless embedding schemes. Increasing the lossless embedding capacity has recently 
been the principle motivation3,5,6. Celik3 described a lossless authentication method with localization. Kalker et al.7 
proposed an approach that minimizes distortion per embedded bit. The first lossless embedding scheme for audio 
signals has been described by Kalker6. 
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So far, little attention has been paid to the increase of the file size introduced by lossless embedding. In lossless 
embedding schemes designed for image formats that use some form of lossless compression, the increase in the file 
size could be many times larger than the actual number of embedded bits L. This inefficiency partially outweighs the 
advantage of embedding the data as opposed to appending it to the cover image. In fact, the sponsors of this research∗ 
have expressed the need for lossless embedding schemes that preserve the file size. 
 
The act of lossless embedding of a random message stream increases the entropy E(I) of the cover image I to 
E(Y)=E(I)+L, where Y is the embedded image. Fortunately, any specific lossless compression algorithm does not 
compress Y to the ideal E(Y) bits but to |C(Y)| bits, where |C(Y)|>E(Y) and C(Y) is the compressed embedded image. 
Consequently, one can theoretically at most |C(Y)|–E(Y) bits losslessly and still preserve the file size+. To design such a 
scheme, however, one will likely have to tailor it to the specific compression scheme as well as the image format. 
 
For example, if the cover image is an RGB encoded BMP file, the embedding does not increase its file size because the 
RGB BMP format does not incorporate any compression. However, the run length encoded (RLE) BMP, GIF, and 
JPEG contain lossless compression8 (runlength, LZ77, and Huffman, respectively). Thus, the embedded file has a 
different, usually larger, size than the original. 
 
This paper is the first step to developing lossless embedding techniques that preserve the file size. We have chosen two 
of the most common formats – the RLE encoded BMP image format and the ubiquitous JPEG format. In the next 
section, we describe the RLE compression algorithm and then, in Section 3, the RS lossless embedding scheme with 
file size preservation is introduced. Experimental results are presented in Section 4. In Section 5, we describe the 
relevant details of the JPEG format and the lossless file-size preserving technique. The algorithm performance is 
discussed in Section 6. Conclusions and future research are included in Section 7. 
 

2. RLE COMPRESSION 
 
Run length encoding (RLE) is a simple lossless compression that assigns short codes to long runs of identical symbols. 
It is used in the BMP format for images with up to 256 colors. The RLE format decoding rules are simple: 
 

n B     decode as byte B repeated n-times, n≥1, 
0 0     EOL; end of row, 
0 1     EOB; end of bitmap, 
0 2 x y  Delta; move x pixels to the right and y pixels down, 
0 n A1…An (0)  n≥3, decode as A1…An , zero is padded when n is odd. 

 
The last decoding rule is called the “absolute mode”. An important observation is that although the decoded image is 
always unique, the encoding can be done in many different ways. For example, some RLE implementations never use 
the code “nB” for n=1 but use the absolute mode instead. Therefore, different RLE encoders may generate files with 
slightly different sizes. 
 

3. LOSSLESS EMBEDDING WITH FILE SIZE PRESERVATION FOR RLE BMPs 
 
3.1 Problem statement 
Because there exist many different RLE encoders, the embedding scheme must also guarantee that the message and the 
original image can be extracted from the embedded and encoded image independently of the RLE encoder. 
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We have decided to use the RS lossless data embedding method2 as our starting point for the design of a lossless file-
size preserving method. This method seemed to be the most amenable to modifications that would enable us such 
construction. 
 
Lossless embedding with file size preservation for RLE compressed images (LE4RLE) should satisfy the following 
requirements: 

 
(R1) The file size of the original and the embedded images must be equal after RLE compression using virtually 

any RLE compressor. 
(R2) The original image can be retrieved from the embedded image exactly. 
(R3) Any image processing that does not modify image content (image renaming, palette reordering, removing or 

introducing duplicate entries in the palette, image lossless compression and/or decompression of any kind) 
must not lead to message extraction failure. 

(R4) The message and the original image can be retrieved from both RLE compressed and decompressed images. 
(R5) Embedded images should be perceptually equivalent to their originals, keeping the embedding distortion as 

low as possible. 
 
3.2 Defining concepts 
In this section, we briefly introduce the concepts needed for the description of the RS embedding method2 and its 
LE4RLE modification that preserves file size (in Section 3.4). 
 
First, all palette colors are divided into disjoint (unordered) pairs {ci, cj} of perceptually similar colors (some colors 
may be paired to themselves). The set of all color pairs is denoted as P. Furthermore, for each color ci , we define its 
flipped color as ic = cj, where {ci, cj} is a color pair from P. 
 
Next, we extend the flipping operation to a group of k pixels with colors (c1, c2, …, ck) and a binary mask M∈{0,1}k : 
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The mask M can be the same for all groups (as it is the case in the original RS embedding) or be individually defined 
for each group (in this paper). We further define the discrimination function f(G)  
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where d is the distance between two colors. The selection of color pairs and the distance d is detailed in Section 3.5. 
Finally, we describe a function that assigns one bit b(G) to each group G: 
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The threshold T can be used to achieve different capacity-distortion rate (see Section 4). Note that for natural images 
the flipped group G will be “noisier” than G and thus Prob{f( G )>f(G)}>1/2. Consequently, b(G) will have more 0’s 
than 1’s. 
 
Because HGHG =⇔= , we have )(1)( GbGb −= , whenever b(G) is defined. Also, b(G) is defined if and only if 

)(Gb is defined. 
 
 
 
 



 
3.3 RS lossless embedding 
Following the original method, the RS lossless embedding starts by dividing the original image X into disjoint groups 
of the same size and shape (e.g., 2×2 blocks). Let Gi, i=1, 2,…, N be all the groups for which bi = b(Gi) is defined. The 
RS algorithm flips some of the groups Gi to Gi′ so that their associated bits bi′ = b(Gi′) encode the message and the 
(compressed) original bits )}({ 1

N
iibC = & L

jjm 1}{ = , where C({bi}) is the losslessly compressed∗ bit-stream {bi} needed for 

reconstruction of the original image. Note that because the bit-stream {bi} contains more 0’s than 1’s, it will be 
losslessly compressible. As a result, this method can embed up to N–|C({bi})| message bits mj. 
 
At the decoder, the compressed bit-stream C({bi}) and the message bits {mj} are extracted. Then, the groups Gi′ are 
flipped as needed to match their associated bits bi with the extracted and decompressed bit-stream {bi} thus obtaining 
an exact copy of the original image. 
 
Next, we explain how this scheme can be modified to guarantee file size preservation for RLE encoded BMP images. 
 
3.4 RS lossless embedding with file size preservation 
In the RLE BMP format, the image data X is represented by indices xi to the image palette, which can have up to 256 
entries. Let c(xi) denote the color of the pixel xi. During embedding, each pixel xi can either stay unmodified or be 
changed to ix , where ix is the index to the color )( ixc . 
 
We start with a simple observation that the size of the RLE compressed image will not be changed by embedding if the 
length of all runs (along image rows) is not changed. This means that any sequence of pixels ‘yxx…xz’ can be changed 
to ‘yww…wz’ by replacing x with w, w≠y and w≠z. 
 
Given the image X ={xi}, i=1, 2,…, Np, represented as a row vector (pixels arranged by rows), we define the invariant 
image R={ri} as 

},min{ iii xxr = , i=1, 2,…, Np . 
 

Thus, the image R does not distinguish between the colors in the pair ∈)}(),({ ii xcxc P. 
 
When scanning a row of pixels in R, transform this image using the RLE code “nB” only, whenever the index B is 
repeated n times, and as “00” for End of Line. The sequence of numbers n determines the length of row segments that 
the embedding algorithm must leave unmodified or modify simultaneously to Bn . Because each segment will carry the 
same amount of hidden information regardless of its length, to keep the distortion low, it is better to limit the length of 
each segment to a small number. In this paper, we use segments consisting of exactly one pixel. The set of all pixels 
that belong to such segments of length 1 will be denoted as Q 
 

xi∈Q ⇔ (ri ≠ ri–1 and ri ≠ ri+1). 
If the embedding algorithm flips only the pixels in Q, the file size of the embedded image will be preserved under any 
RLE encoder. Thus, the lossless method with file size preservation proceeds in the same way as the original RS 
method with one difference – the mask M for each group G is determined by pixels from Q. This mask will reflect 
which pixels can be modified and which cannot. 
 
To obtain the individual masks, we define a binary matrix E=(ei), of the same size as the image, that captures which 
pixels may (1) and must not (0) be modified 
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Each group of k pixels ),...,,(
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Note that the embedding mask can be uniquely determined from both the original and embedded images. 
 
Now, let us summarize all steps of lossless embedding with file size preservation. 
 
Encoder 

1. Determine pairs of close colors P (see Section 3.5) 
2. Calculate the set Q of modifiable pixels. 
3. Divide the image into disjoint groups G. Calculate bi = b(Gi) for all groups of pixels whenever they are 

defined. Use a pseudo-random order for index i of Gi. 
4. Start compressing the bit sequence {bi} to C{bi}. Stop the compression at bk as soon as the inequality 

k ≥ l + L + length(C{bi} k
i 1= ) is satisfied (l is the number of bits that encodes message length). 

5. Form the composite message Message_length & Message_bits & C{bi} spanning l, L, and V bits.  
6. For each i, if (bi ≠ i-th bit of C{bi}&{mj}) then flip Gi to iG . 

Decoder  
1.–2. The same as in Encoder. 
3. Divide the image into disjoint groups G. Calculate b′i = b(Gi) for all groups of pixels whenever they are 
       defined. Use the same pseudo-random order for index i of Gi as during embedding. 
4. Read b1′ b2′… bl′ and message bits b′l+1 b′l+2… b′l+L.  
5. Set j=1. Decompress the segment b′l+L+1 … b′l+L+j and denote the length of the decompressed segment V. 
6. If V < l+L+j then Go to 5, else Stop. The decompressed bits are b1b2 …bl+L+V. 
7. For i =1, …, V, if (bi ≠ b′l+L+i), flip Gi to iG . 

 
Because both the encoder and decoder start from the image decompressed to the spatial domain, the method is 
insensitive to differences between RLE encoders. Also, presorting the palette to a fixed order (e.g., alphabetically) 
before determining color pairs P will make the system work after palette reshuffling. The problem of removing or 
adding duplicate palette entries can be addressed by unifying duplicate entries in the palette to the lowest one from all 
duplicate indices before embedding and returning the occurrences of the duplicate colors after embedding. In 
particular, let c1, c2, …, ck are different palette entries corresponding to one RGB color, c1 < c2 < … < ck. Before 
embedding, we modify all pixels with colors c2, …, ck to c1. After embedding, the pixels with colors c1 are changed 
back to cj if they were equal to cj in the original image, for all j = 2, …, k. The first step guarantees that it will not 
matter whether or not the duplicate entries are removed and the last step guarantees that the file size will not decrease 
during data insertion. 
 
3.5 Color pairing and distance d 
Let D = {dij}, i, j =1, …, n, n ≤ 256, be the matrix of distances between colors i and j after presorting the colors that 
appear in the image. These distances can be measured in any color space, such as RGB, YUV, or CIELAB. After 
subjectively evaluating results of experiments with different spaces, we selected the square of the weighted Euclidean 
RGB distance 

222222 )()()( jibjigjir bbwggwrrwd −+−+−= , 
 

where wr = 0.35, wg = 0.4, and wb = 0.25, and ri, rj, gi, gj, bi, and bj are integers in the range from 0 to 255. 
 



Once an appropriate distance measure d in the RGB color space is established, one can attempt to determine the color 
pairing P that minimizes the distortion with a lower bound on the capacity or maximize the capacity with an upper 
bound on the distortion. 
 
Such problems can be formulated as an optimal incomplete matching problem10 in a weighted graph with three weights 
at each edge and with one constraint. Since the optimal matching can be incomplete, some colors can be paired to 
themselves. There is no known algorithm for solving this task efficiently in a polynomial time. We skip the details here 
due to a limited space. Below, we describe a heuristic algorithm that strives to provide good capacity-distortion trade 
off. 
 
3.5.1 Top-down color matching algorithm 
In our previous work2, we have introduced the color matching algorithm called “Top-down”. In this paper, we use an 
improved version of this approach that gives higher embedding capacity with lower distortion. 
 
The top-down matching algorithm starts with the most isolated color and finds its closest neighbor among all 
remaining colors. If the distance between these two colors is below a fixed threshold t, both colors are removed from 
the set of all colors and declared as a “close pair”. If the distance is larger than the threshold, the most isolated color is 
paired with itself and removed. This step is repeated until all colors are paired. The parameter t regulates the trade-off 
between image distortion and lossless capacity. 
 
Next, we describe a modification of this algorithm that has achieved better results in our experiments.  
 
3.5.2 Improved top-down color matching algorithm 
Instead of the most isolated color, this algorithm finds colors with the least number of colors within the distance t. 
Among them, the pair with its distance closest to t is chosen and removed from the set. This step is repeated until no 
such pair can be found. The pseudo-code for this algorithm follows. 
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Set (a, b) as the k-th pair, k=k+1 ; 
sa = 0 ; sb = 0 ; 
For all si > 0  set  si = si – bia – bib ; 
bia = 0 ; bib = 0 ; i = 1, …, n ;   

until (si = 0 for all i) 
 

4. EXPERIMENTAL RESULTS 
 
In our experiments, we have used “column” groups G consisting of 4×1 pixels. Because the RLE compression 
proceeds by rows, such groups provide better capacity than groups of 2×2 or 1×4 pixels. In the original RS method, the 
threshold T in (2) was set to 0. For color palette images, however, it is advantageous to make T proportional to t to 
improve the capacity without increasing the embedding distortion. A linear dependence T = 0.7t gave us good results 
for a wide range 0 < t ≤ 50. We note that this relation depends on our choice of the distance measure d. 
 



For brevity, we demonstrate the performance of the proposed method for only 5 test images. Four images were 
640×480 true color images (Lenna was 512×512) converted to 256 colors using PaintShop Pro 4.12 with the optimized 
palette and nearest color options. For all test images, we calculated the capacity (in bits per pixel or bpp), distortion 
(PSNR), and rate in bits per unit distortion measured in the L1 norm. Table 1 shows the results for the LE4RLE method 
that preserves the file size and the original RS method. In the last column, the table also shows the file size increase ∆ 
(in bytes) produced by the original RS method when embedding the maximal length message (the compression was 
done in the same version of PaintShop Pro). This file size increase bears almost no relationship to the message size 
(surprisingly) and is mostly influenced by the image content and the efficiency of the RLE compression. The file size 
increase ∆ may become very large if the act of embedding makes the image significantly less compressible using RLE 
(for Image No. 4, ∆ is more than 20 times larger than the message length). Of course, the new LE4RLE method did not 
lead to any file size increase. 
 
Inspecting the rate in Table 1, we can see that the new method achieves slightly better rate than the original RS 
method. The absolute capacity decreases by about 20% but, but this is fairly insignificant because the capacity can be 
adjusted with the parameter t that controls the distortion-capacity trade off (Table 2). Overall, the capacity of the new 
method is large enough for applications, such as authentication or annotation embedding – the main applications for 
which the concept of lossless data embedding was originally introduced.  

LE4RLE RS 
 Image bpp (%) PSNR Rate bpp (%) PSNR Rate    ∆ 

Im_1 
Im_2 
Im_3 
Im_4 
Lenna 

 3.08 
 1.90 
 4.63 
 4.21 
 6.48 

33.3 
33.4 
34.7 
34.6 
30.3 

.0076 

.0050 

.0127 

.0125 

.0148 

  4.28 
  1.89 
  5.51 
  5.41 
  7.70 

31.4 
32.0 
33.3 
32.1 
27.3 

.0065 

.0032 

.0108 

.0103 

.0088 

9172 
7634 
2286 
33440 
3186 

 

Capacity (% of bpp) PSNR (dB) 
Image t=10  t=30  t=40   t=10   t=30   t=40 
Im_1 
Im_2 
Im_3 
Im_4 
Lenna 

 1.44 
 0.81 
 1.68 
 1.82 
 3.97 

3.98 
2.18 
6.05 
6.25 
8.92 

4.01  
4.12    
6.91     
7.52 
10.58 

37.02 
38.20 
39.30 
40.26 
33.14 

31.35 
33.15 
31.25 
31.97 
31.16 

29.50 
31.56 
30.01 
30.53 
29.04 

Table 1. Capacity, distortion, and rate for 5 test images for LE4RLE 
and the original RS method, t = 20. ∆ (Byte) is the difference in file 
size in the original RS embedding. 

Table 2. Capacity and distortion as functions of the 
parameter t for several test images. 

 
Im_1                             Im_2                                 Im_3                                Im_4                              Lenna 

 
5. LOSSLESS EMBEDDING WITH FILE SIZE PRESERVATION FOR THE JPEG FORMAT 

 
The JPEG format9 is the most popular image format in current use. This is because it offers a convenient trade off 
between the file size and the perceptual quality of the encoded image. Our previously developed lossless embedding 
schemes2 for JPEG do not preserve the JPEG file size and in some cases the file size increase can be quite 
disproportional to the embedded message size. This partially negates the advantages of embedding data rather than 
appending. In this section, we address this issue and describe a lossless embedding technique for sequentially encoded 
JPEG images that preserves their file size (within a few bytes). 
 
The JPEG encoder consists of three fundamental components (see Fig. 1): Forward Discrete Cosine Transform 
(FDCT), a scalar quantizer, and an entropy-encoder. After the DCT is applied to an 8×8 block of pixels transforming 
the block from spatial domain to the frequency domain, DCT coefficients are quantized using the quantization table. 
The quantized coefficients are arranged in a zigzag order and pre-compressed using the Differential Pulse Code 
Modulation (DPCM) on DC coefficients and RLE on AC coefficients. Finally, the symbol string is Huffman-coded to 
obtain the final compressed bit-stream. After pre-pending the header, the final JPEG file is obtained. 



 
Our lossless embedding scheme with file size preservation works with the Huffman-decompressed stream of 
intermediate symbols. This bit-stream is modified in a careful manner to make sure that the final file size after 
Huffman compression stays the same within a few bytes. To understand the embedding principles, we need to describe 
the lossless part of JPEG compression in more detail. 

8x8 blocks 

FDCT Quantizer Entropy 
Encoder 

      Table 
specif ications 

      Table 
specif ications 

Message 

JPEG file 

Source 
Image Data Compressed 

Image Data 

 
Fig. 1. Lossless embedding in JPEG files. 

 
 
5.1 The JPEG entropy coder 
The entropy coder consists of two steps: (1) DPCM encoding of the DC term and runlength encoding of the AC 
coefficients into a sequence of intermediate symbols and (2) Huffman coding. The purpose of the DPCM is to 
decorrelate the DC term because DC coefficients from neighboring blocks still exhibit significant local correlations. 
The AC coefficients, on the other hand, contain long runs of zeros due to the quantization. Thus, AC coefficients are 
conveniently encoded using the runlength encoding. The DPCM coding of DC coefficients and the runlength coding of 
AC coefficients produce a sequence of intermediate symbols, which is finally entropy coded (Huffman) to a data 
stream in which the symbols no longer have externally identifiable boundaries. 
 
Our embedding technique works with the sequence of intermediate symbols. We ignore the DC coefficients because 
their modifications usually lead to visible artifacts. To explain how we modify the runlength encoded AC coefficients, 
we need to describe the runlength coding algorithm in more detail. 

5.2 Run length encoding of AC coefficients  
Run length encoding (RLE) is a simple lossless compression that assigns short codes to long runs of identical symbols. 
As mentioned above, majority of AC coefficients in each block are usually zeros. To efficiently utilize this fact, the AC 
coefficients are coded in a special RLE format as pairs of intermediate symbols (S1, S2). The codeword S1 represents 
both the number of zeros before the next nonzero DCT coefficient and the category (number of bits required to 
represent its amplitude). The S2 symbol defines the amplitude and sign of the nonzero coefficient. The symbol S1, 
S1=(Run/Category), is a composite 8-bit value of the form S1 = binary ’RRRRCCCC’. The 4 least significant bits, 
’CCCC’, define a category for the amplitude of the next non-zero coefficient in the block. The 4 most significant bits, 
’RRRR’, give the position of the coefficient in the block relative to the previous non-zero coefficient (i.e., the run-
length of zero coefficients between non-zero coefficients): 
 

• Run (RRRR): the length of the consecutive zero-valued AC coefficients preceding the next nonzero 
AC coefficient, 0≤Run≤15. 

• Category (CCCC): the number of bits needed to represent the amplitude of the next nonzero AC 
coefficient, 0≤Category≤15. 

• S2 (amplitude): S2 represents the amplitude of the next nonzero AC coefficient by a signed integer. 
 
Once the quantized coefficient data from each 8×8 block is represented in the intermediate symbol sequence described 
above, variable-length codes are assigned. Each S1 (Run/Category) is encoded with a variable-length code (VLC) from 
a Huffman table. Each S2 (amplitude) is encoded with a “variable-length integer” (VLI) code, which is an index into 
the amplitude value field whose length in bits is given in the second column of Table 3. 
 



Both VLCs (S1) and VLIs (S2) are codes with variable lengths, but VLIs are not Huffman coded. They are appended 
to the Huffman coded S1 to form the final JPEG bit-stream. So, we can change a particular VLI as long as the 
modified value is from the same category (has the same length) without changing the JPEG file size. Consequently, if 
all the embedding changes have this property, the JPEG file size will be preserved. 
 
 

Amplitude value field Category AC size 
0 0 N/A 

–1, 1 1 1 
–3, –2, 2, 3 2 2 

–7,…,–4, 4,…, 7 3 3 
–15,…,–8, 8,…, 15 4 4 

–31,…, –16, 16,…, 31 5 5 
–63,…,–32, 32,…, 63 6 6 

–127,…, –64, 64,…,127 7 7 
–255,…,–128, 128,…, 255 8 8 
–511,…,–256, 256,…, 511 9 9 

–1023,…,–512, 512,…,1023 10 A 
–2047,…,–1024, 1024,…, 2047 11 B 
–4095,…,–2048, 2048, …, 4095 12 C 
–8191,…,–4096, 4096,…, 8191 13 D 
–16383,…,–8192, 8192, 16383 14 E 

–32767,…,–16384, 16384, 32767 15 N/A 
Table 3. Runlength coding category and amplitude of AC coefficients. 

 
5.3 Lossless embedding with file size preservation 
We build our lossless file size preserving method around the lossless embedding scheme for JPEGs2. As explained in 
the previous paragraph, in order to preserve the file size, a given DCT coefficient d from category C can only be 
changed to another coefficient d ’ from the same category C. To minimize the embedding distortion, we want this 
change to be as small as possible. Also, because changes to DC coefficients usually introduce visible distortion, we 
confine the embedding modifications to AC coefficients, only.  
 
Considering the requirements above, we further limit the embedding changes to the same category, swapping values of 
AC DCT coefficients within the following pairs: (–2,–3), (2,3) from category 2, (–7,–6), (–5,–4), (4,5), (6,7) from 
category 3, etc. During embedding, one value from the pair may be changed to the other value from the same pair. The 
value pairs are called embedding pairs. 
 
If we assign parity 0 to all even valued coefficients and parity 1 to odd valued coefficients, then the parities of the DCT 
coefficients that participate in embedding pairs in the original JPEG file is a binary sequence T that is losslessly 
compressible. This is because in natural images the distribution of DCT coefficients is generalized Gaussian centered 
at 0 and thus the sequence T contains more 0’s in T than 1’s. 
 
The rest of the embedding follows the RS method for JPEGs2. We first losslessly compress the sequence T, obtaining 
the compressed bit-stream C(T), |C(T)|<|T|, append the message bits M to the compressed bit-stream, C(T)&M, and 
embed this composite message as the parities of DCT coefficients participating in embedding pairs (the capacity of this 
scheme is |T|–|C(T)|). In our implementation, we used a context-free arithmetic compression8. 
 
Due to the generalized Gaussian distribution of DCT coefficients, the coefficients occur with highly uneven 
probabilities. Thus, to obtain a more efficient lossless compression of the sequence T, we divide T into several 
subsequences (each subsequence corresponding to one category) and perform the arithmetic compression for 
coefficients from each category separately. 
 
Encoder 

1. Huffman-decode the original JPEG file. 



2. Either sequentially, or along a key-dependent path, read all DCT coefficients di belonging to embedding pairs 
from all Huffman-decoded data. Form the sequence T={ti}, ti=parity(di). 

3. Compress T using the arithmetic encoder as described above to obtain the compressed bit-stream C(T).  
4. Concatenate m message bits M, m<|T|–|C(T)|, to the compressed bit-stream, obtaining T ’=C(T)&M. 
5. For each i, if ti≠ti’, modify di to di’, where (di, di’) is an embedding pair. 
6. Using the same Huffman code table, re-encode the modified Huffman-decoded data to obtain the embedded 

JPEG file. 
 
Decoder 

1. Huffman-decode the JPEG file. 
2. Either sequentially, or along a key-dependent path, read all DCT coefficients di’ belonging to embedding pairs 

from all Huffman-decoded data. Form the sequence T ’={ti’}, ti’=parity(di’). 
3. Read the message M from T ’ and decompress C(T). 
4. Either sequentially, or along a key-dependent path, modify all DCT coefficients di’ belonging to embedding 

pairs so that their parities match the decompressed sequence T: parity(di)=ti. After re-encoding the modified 
Huffman-decompressed coefficients, the original JPEG file is obtained. 

 
6. EXPERIMENTAL RESULTS 

 
We have tested 50 images to see how the capacity, embedding distortion (measured as PSNR), and file size change 
with different images, JPEG quality factors, and categories. We note that including categories higher than 4 does not 
necessarily lead to higher capacity because the bias between coefficient parities for higher categories is very small. The 
overall best performance was obtained for embedding pairs from categories 2, 3, and 4. 
 

Capacity (bits) PSNR File size (bytes) Image (M×N) JPEG 
Quality 2 2,3,4 2 2,3,4 Original 2 2,3,4 

Balcony (578×891) 98 5978 7520 50.3 49.2 314180 314238 314238 
Banoch (1024×768) 90 3265 3333 44.5 43.3 258830 258864 258864 
beacon60 (568×512) 40 1303 1378 40.4 39.4 36787 36787 36787 
Bloom (960×1280) 97 11797 13360 49.5 48.4 586566 586723 586727 
boat80 (512×768) 20 1025 1103 37.9 37.2 27887 27891 27891 
Bridge (1280×960) 90 8290 8564 41.6 40.5 604367 604477 604494 
brook50 (512×768) 50 2132 2485 37.0 35.8 75353 75370 75367 
Bu (960×1280) 97 14110 15892 50.6 49.5 512078 512241 512261 
drift30 (512×768) 70 1867 2214 40.7 39.2 76847 76881 76882 
Falls (960×1280) 93 5905 6396 51.4 50.3 307041 307133 307138 
flight20 (512×768) 80 1084 1207 44.9 43.9 51930 51939 51935 
Fog (960×1280) 93 8938 9391 49.5 48.5 267218 267309 267305 
girl1 (678×512) 98 4946 6119 50.1 48.8 271388 271422 271432 
parrot20 (512×768) 80 1078 1162 46.1 44.9 48757 48772 48777 
Tree (960×1280) 93 7278 8751 44.4 43.1 558636 558737 558764 
windows40 (512×768) 60 2016 2270 39.3 38.2 70556 70581 70579 

   Table 4. Capacity for various test images with different JPEG quality factor for amplitude categories 2, 3, and 4. 
 
In Table 4, the capacity is shown for one category 2 and then for three categories 2, 3, and 4. For most images, the 
capacity difference between one and three categories is about 10%. For some images, however, the gain in using three 
categories as opposed to just one could be quite substantial (e.g., for image “girl1”). The capacity is strongly 
influenced by the image content and size. Quite understandably, higher quality factors lead to higher capacities than 
lower factors. Since the target application of lossless embedding is authentication, possibly combined with metadata 
embedding, the capacities seem to be adequate for this purpose.  
 
The embedding (removable) distortion is measured for the maximal message length using PSNR. The results indicate 
that the embedding distortion is low (and removable, in any case). The last three columns show the file size for the 
original image and the embedded image (using one category and using three categories). The file size changes are quite 
small, usually limited to a few bytes. The difference between the original and embedded file size is not caused by the 



entropy-code change but by JPEG intrinsic byte-alignment structure and zero padding in order to distinguish marker 
segments and entropy-coded segments9. This difference can be eliminated if we read entropy-coded data from the 
JPEG bit-stream and skip the entropy-coded data that may cause byte-alignment and zero padding change. 
 

7. CONCLUSIONS 
 
Virtually all lossless embedding techniques increase the file size of the embedded image. The increase in the file size 
is, however, quite often disproportional to the length of the embedded data. This issue has been brought up to our 
attention by the sponsors of this research (AFOSR and ARFL at Rome, NY). The file size increase is a negative 
property that potentially negates the advantages of lossless embedding schemes. To our best knowledge, this paper is 
the first one that presents lossless data embedding techniques that preserve the size of the watermarked file. We 
describe lossless embedding methods that preserve the file size of images in the RLE encoded BMP and the JPEG 
formats. The performance of the new schemes is evaluated in terms of their capacity, embedding rate, and embedding 
distortion. 
 
The method for RLE BMPs is a modification of the RS embedding method2. The embedded message and the exact 
copy of the original image can be obtained even after the RLE encoded BMP embedded image is decompressed to the 
RGB BMP format, re-encoded using a different RLE encoder, or when its palette is permuted or colors added to it (or 
when duplicate colors are removed from the palette). By using a more sophisticated color-matching algorithm, the 
capacity of this new lossless file size preserving method is in fact slightly higher than for the original method lossless 
method2 for palette images. 
 

In the second part of this paper, we introduce a lossless embedding technique with file size preservation for 
sequentially encoded JPEG images. Again, previously proposed lossless techniques for JPEGs could increase the file 
size of the embedded JPEG files by an amount that was much larger than the size of the embedded message itself. Our 
new method uses a different embedding principle while making sure that the embedded JPEG file size stays the same. 
We work with the sequence of intermediate symbols (after Huffman decompression) and modify the amplitude of 
certain DCT coefficients by at most one. Because the amplitude category is not Huffman coded and because the 
modifications are always confined to the same amplitude category, the embedded file size stays the same. 
 
Lossless data embedding with file size preservation is a useful new technology that emphasizes the advantage of 
lossless embedding of data as opposed to appending. We envision image authentication, image integrity protection, 
and metadata embedding as the main application areas for the new embedding technology. 
 
Future research will be directed towards development of lossless embedding techniques with file size preservation for 
other image formats that include lossless compression, such as GIF, PNG, or JPEG2000. Also, obtaining theoretical 
upper bounds on capacity given the compression method and properties of typical images is an open and interesting 
question that deserves further study. 
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