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Abstract
Establishing the pedigree of a digital image, such as

the type of processing applied to it, is important for foren-
sic analysts because processing generally affects the accu-
racy and applicability of other forensic tools used for, e.g.,
identifying the camera (brand) and/or inspecting the image
integrity (detecting regions that were manipulated). Given
the superiority of automatized tools called deep convolu-
tional neural networks to learn complex yet compact im-
age representations for numerous problems in steganalysis
as well as in forensic, in this article we explore this ap-
proach for the task of detecting the processing history of
images. Our goal is to build a scalable detector for practi-
cal situations when an image acquired by a camera is pro-
cessed, downscaled with a wide variety of scaling factors,
and again JPEG compressed since such processing pipeline
is commonly applied for example when uploading images to
social networks, such as Facebook. To allow the network
to perform accurately on a wide range of image sizes, we
investigate a novel CNN architecture with an IP layer ac-
cepting statistical moments of feature maps. The proposed
methodology is benchmarked using confusion matrices for
three JPEG quality factors.

Introduction
Establishing the processing history of an image is im-

portant for an image analyst because forensic tools that
attempt to determine image integrity and origin generally
exhibit varying degree of sensitivity to non-malicious pro-
cessing, such as tonal adjustment, denoising, and filter-
ing. Knowing the history of processing is also useful for
establishing the chain of custody and provenance of digital
evidence in legal cases and for intelligence gathering and
interpretation to reveal deception attempts, such as “laun-
dering” of manipulated images. Moreover, a processing
detector could be applied on smaller image tiles to detect
local inconsistencies due to content replacement (to detect
“digital forgeries”).

A large bulk of prior art focuses on specific processing,
such as median filtering [8, 9, 21, 38], tonal adjustment [31,
32, 2, 12, 37], resizing [11, 13, 16, 19, 22, 20, 24, 27, 28,
29, 35, 36], and multiple JPEG compression [5, 6, 26, 30].
Detection of filtering was investigated in [34]. The problem
of recovering the order of processing has been studied from
the information-theoretical perspective in [10] and in [33].

A detector of processing that seems to work very well
on uncompressed images was recently proposed based on a
compactified spatial rich model in [23]. The authors them-
selves acknowledged that their detector is not robust to

JPEG compression, which is one of the main goals of this
paper. Stamm et al. [4] trained a convolutional neural net-
work (CNN) with constrained front filters [3] to estimate
the parameters of four image processing operations: resam-
pling, JPEG quality, Gaussian blur, and median filtering,
by converting the problem of estimation to multi-class de-
tection. Their network was designed to work on patches
of fixed size with no other post-processing following the
operation whose parameters were to be estimated. Fur-
thermore, the detector was not able to detect tonal adjust-
ment, which is one of the most commonly applied global
adjustments.

The main focus of this paper is to build a detector
that will work in practical application scenarios, which
means for images with a wide range of resolutions, sizes,
and JPEG quality factors. For example, imagery posted
on Facebook may be downscaled to the larger image di-
mension as short as 960 pixels and then compressed with
JPEG quality factors as low as 70. Downscaling followed by
low-quality JPEG is also commonly used for “laundering”
used to cover up traces left after manipulating the content
of the image. It is well recognized that such laundering
significantly decreases the accuracy of the vast majority
of forensic algorithms based on pixel descriptors. Since
we allow the processing to be “laundered,” in this initial
study we only classify the type of processing rather than
estimating its parameters even though we believe that the
detector could probably be extended to estimate the pa-
rameters in a similar fashion as in [4]. We work with four
basic processing classes – low-pass filtering, high-pass filter-
ing (sharpening), denoising, and tonal adjustment, which
includes contrast and gamma adjustment.

This work started with our prior research on this
topic [7], which was a maximum-likelihood (ML) detector
based on modeling the distribution of projections of a rich
feature on eigen-processes determined by binary linear clas-
sifiers trained to distinguish between unprocessed images
and images processed with a fixed class of processing. In
this paper, we propose an alternative detector constructed
using the tools of deep learning as a CNN with softmax
over five output neurons corresponding to four processing
classes and the unprocessed class. The architecture of the
CNN is explained in the next section. In the third section,
we include a preliminary investigation aimed at evaluating
how the CNN detector compares to the previous ML de-
tector on a simple sand-boxed setup. In Section “Practical
detector,” we explain the process consisting of three phases
for training this CNN detector to be able to accurately
handle images of arbitrary size and resolution by feeding



statistical moments to the classifier part of the network.
The results of all our experiments and their discussion ap-
pear in Section “Experiments.” The paper is concluded in
the last section.

CNN architecture
Our research into a CNN-based processing detector

started with an architecture similar to those used in ma-
chine vision and evolved through a series of modifications
into the final design shown in Figure 1. The network archi-
tecture is depicted for a color input image of size 512×512,
which we call in this paper a tile. Later, in Section “Prac-
tical detector” we introduce additional modifications to
this architecture and describe its three-phase training for
a more realistic application scenario and to allow the de-
tector to accurately classify images of arbitrary sizes.

Instead of using larger-support kernels in the first
layer, we split it into two layers, each with 3× 3 kernels
because such designs train more easily. Note that since
there is no non-linearity between the first two convolutional
layers, we are essentially learning larger 5×5 kernels. Ex-
perimenting with fixed, constrained, and randomly initial-
ized kernels lead us to the realization that, for best results,
no constraints of any kind should be imposed on the filters
from the first layer. Fixed high-pass kernels or kernels con-
strained to be high-pass (zero mean) [3], remove informa-
tion about the image luminance, which can be detrimental
for example when trying to detect luminance adjustments,
such as contrast and brightness changes or gamma correc-
tion.

We tested the performance of the network with vari-
ous activation functions and with and without the batch
normalization layer. The investigation clearly showed the
superiority of the ReLU activation function as well as the
benefit of the batch normalization (BN) layer that helped
with speeding up the training and also improved the overall
performance.

Additionally, we found out that the best performance
was obtained when disabling pooling between the first two
layers, after which the standard 2×2 average pooling with
stride is applied with the exception of the last layer, where
average 8× 8 pooling is applied with stride 8 and 0.5
dropout before the fully connected, classification part of
the network. We believe that the front part of the network
is responsible for “extracting noise residuals” and as such it
should be unrestricted as much as possible. Steganalysis as
well as forensic analysis makes heavy use of the fine-grain
structure in images, such as the acquisition noise properties
and short-range dependencies among pixels and the noise
residuals. Average pooling suppresses the valuable noise
structure, which is our signal of interest, while enhancing
the image content, worsening thus the signal to noise ratio.

All filters in the first two layers were initialized ran-
domly using the Xavier initialization with uniform distri-
bution, which was also used for all kernels from all convo-
lutional layers and the weights in the fully-connected IP
(inner product) layer.

For a network designed to identify k different process-
ing classes, there should be k+ 1 output neurons corre-

sponding to the k processing classes and the class of un-
processed images. The fully-connected classifier part of
the network thus consists of k+1 neurons connected to all
1024 features outputted by the last convolutional layer. A
softmax over the k+ 1 neurons is taken as the detector’s
decision. The k+ 1 classes were labeled with integers 0,
. . ., k for training with the cross entropy loss function.

Comparison to ML detector
The purpose of the initial experiment in this section is

to assess the capability of the proposed CNN in compari-
son with our previous work [7] that employed a maximum
likelihood detector operating in projections of rich feature
representations. To this end, we use a rather simple (sand-
boxed) experimental setup, which is exactly the same as
in [7], to limit the distortion applied to the image after
processing and to limit the input source diversity. The
processing is applied to never-compressed images and then
the images are directly saved as JPEGs.

Four types of processing were applied to 10,000 color
512× 512 BOSSbase1 1.01 images [1], which were subse-
quently JPEG compressed with QF 85. The four process-
ing classes included L (low-pass filtering), D (denoising), H
(high-pass filtering), and T (tonal adjustment). Each type
of processing was represented with eight different opera-
tions of varying strength executed in Matlab and Adobe
Lightroom. Table 1 shows all processing operations in
each of the four classes. The abbreviations in the table
stand for: ’Avg’ = average filtering, ’Gau’ = Gaussian fil-
ter, ’KB’ = Ker–Böhme 3× 3 filter [18], ’LR’ = Light-
room, ’Wie’ = Wiener filter, ’Wav’ = wavelet based de-
noising [25], ’Imsh’ = imsharpen in Matlab with a pair of
parameters ’Radius’,σ,’Amount’,α, ’Unsh’ = unsharp
masking, ’Con’ = contrast enhancement by x%, potentially
followed by gamma correction (γ), with ’HistEq’ standing
for histogram equalization.

The network was trained in Tensor Flow and run on
a Titan X GPU. The stochastic gradient descend (SGD)
optimizer was Adam, and the batch size 40 of randomly
selected images (with replacement) from the union of all
unprocessed and all processed images. Augmentation (ro-
tation by 90 degrees and mirroring) was applied randomly
to each image during training. Including the unprocessed
image and all its processed versions in the same minibatch
and applying same augmentation to them decreased the
performance. No weight regularization was applied to the
network. A random portion of 5,000 images was used for
training, 1,000 of which were used for validation, and 5,000
for testing. In particular, for each unprocessed image in the
training set only one processing out of the eight was ap-
plied to create one L, H, D, and T image. In other words,
the total number of images in the training set was 5,000×5
= 25,000 with the same number in the testing set. The

1The images were prepared using the same convert script [1]
by first converting the RAW format to a 24-bit color PPM for-
mat in ’dcraw’, downsampled so that the smaller dimension was
512 using the Lanczos resampling algorithm with antialiasing
turned OFF, and centrally cropped to the final size of 512×512
pixels.



Figure 1. Architecture of the proposed processing detector.

L Avg3 Avg5 Avg7 Gau3,0.5 Gau3,1 Gau5,0.5 Gau5,1 |KB|
D LR20 LR30 LR50 Wie3 Wie5 Wav8 Wav10 Wav12
H Imsh 1, 1.5 1.5, 1.5 2, 1.5 1, 2 1.5, 2 2, 2 Unsh
T Con1% Con2% Con4% Con6% 2%+0.8 4%+0.6 6%+1.2 HistEq.

Table 1. All considered processing operations in each of the four processing classes.



Figure 2. Kernels learned in the first layer. Sand-boxed setup.

network was trained for 250K iterations with learning rate
0.001 and another 100K with learning rate 0.0001. The
snapshot with the maximum accuracy on the validation set
in last 100K iterations was selected as the final detector.

The detection results are displayed via confusion ma-
trices in Table 2 that also contrasts the performance with
the ML detector. The average classification accuracy, the
average over the diagonal elements in the confusion ma-
trix, is 0.893 for the ML detector and 0.952 for the CNN
detector, which indicates a rather significant improvement.

The filters learned in the first layer (Figure 2) can
be clearly interpreted as edge and corner detectors, which
is natural as we expect a processing detector to mainly
use image statistics in textured and generally content-rich
areas.

Practical detector
As already hinted in the introduction and the previous

section, the main focus of this paper is on building a pro-
cessing history detector for realistic situations. This means
that we need to consider the fact that the images before
applying the processing were most likely JPEG compressed
as well as the fact that after the processing was applied, the
image could be downsampled by a great range of scaling
factors, and then finally saved as JPEG again. As men-
tioned above, this chain of processing is commonly applied
to images uploaded to social networks, such as Facebook.
In this specific case, the image after downscaling may only
be 960 wide and may be compressed with quality as low as
70. This is a rather severe distortion that will likely erase
traces of any processing that is too subtle. This is why in
this section, we selected only the stronger settings from the
classes shown in Table 1.

Also, we need to consider a range of final JPEG quality
factors rather than a fixed quality factor. There is no need
to diversify the training set over the final JPEG quality
factor, however, because the quality factor is available to
the analyst. Thus, the diversification can be approached by
training separate detectors for several quality factors and
then analyze images in practice with the detector trained
for the luminance quantization matrix that is closest to
the matrices of those detectors. In this section, we trained
three separate detectors for the final JPEG quality 75, 85,
and 95.

Note that the diversification over the downscaling fac-
tor will inevitably lead to images with a wide range of sizes.
This poses an additional problem for training because im-
ages that are too large would force us to train on very
small mini-batches, which would lead to noisy gradients
and negatively affect the network accuracy as well as the
speed of convergence. Resizing or cropping the images to

a smaller size prior to training would negatively affect the
network performance because it would reduce the amount
of data available to the detector since it is intuitively clear
that the detection accuracy should monotonically increase
with increasing image size. Moreover, downsizing tends
to average out the fine-grain structure in the image that
is undoubtedly leveraged by the CNN detector. Applying
the detector trained on small images on disjoint or over-
lapping tiles from a larger image, however, would lead to
a non-trivial problem of how to fuse these outputs exhibit-
ing complex dependencies. In this paper, we decided to
address the problem of greatly varying input image size
by first training a tile detector and then use it as a “mo-
ment extrator” and retrain just the IP layers on moments
extracted from arbitrarily sized images. This achieved in
three phases described below.

Introducing moments of feature maps
As already explained above, to address the prob-

lem with the input image size, we applied a similar ap-
proach [15] proposed for steganalysis of arbitrarily sized
images. There, established scaling laws [17, 14] have been
used to show that scalability w.r.t. input image size with-
out loss of performance can be achieved by outputting non-
linear moments by the last convolutional layer. The train-
ing of our detector thus proceeds in three separate phases:

Phase I: First, a “tile detector” (a CNN) is trained on
small images (tiles) obtained by cropping the (arbitrarily
downscaled) training images to a fixed size that permits
training the CNN on a given hardware. In our case, we
cropped two 512×512 tiles from the center of every train-
ing image. The CNN architecture was identical to what is
shown in Figure 1 with one modification. Instead of com-
puting just the average of each 8×8 feature map before the
IP layer, we added the minimum, maximum, and variance.
Thus, the dimensionality of the input to the IP layer was
4×1024 instead of 1024.

Phase II: In the second phase of training, the front
part of the tile detector that outputs 4×1024 moments to
the fully-connected layers is used as a “universal feature
extractor” to extract the above four statistical moments
from all training images. This time, they are presented in
their full resolution, i. e., not cropped. Since there is no
training during this second phase, the front part of the tile
detector trained in Phase I is merely used to process the
arbitrarily sized training images, one by one if needed, and
convert each image in the training set to 4×1024 moments.

Phase III: In the final, third phase, a two-layer fully-
connected multi-layered perceptron (MLP) (Figure 3) is
trained to classify the 4096-dimensional vectors of moments
extracted from all training images. The network consists
of two fully connected layers, each with 4096 neurons, and
five output neurons followed by a softmax, each neuron
corresponding to one processing class plus the unprocessed
class. We used a two-layer perceptron in case the classi-
fication problem becomes non-linear when switching from
feature maps to their moments. Since the MLP training



ML detector
T RU \ DET U L D H T

U 0.871 0.041 0.034 0.008 0.047
L 0.059 0.876 0.050 0.005 0.010
D 0.065 0.041 0.879 0.001 0.013
H 0.020 0.022 0.0004 0.959 0.018
T 0.088 0.006 0.004 0.024 0.877

Accuracy = 0.893

CNN detector
T RU \ DET U L D H T

U 0.923 0.031 0.038 0.002 0.005
L 0.023 0.966 0.011 0.000 0.000
D 0.055 0.019 0.926 0.000 0.000
H 0.011 0.001 0.000 0.986 0.001
T 0.032 0.003 0.002 0.003 0.959

Accuracy = 0.9522

Table 2. Classification accuracy of the maximum likelihood detector (ML) and the proposed CNN-based detector for four processing
classes (Low-pass, High-pass, Denoising, and Tonal). Sand-boxed setup.

is on moments, we can afford rather large mini-batches
(mini-batches of 1000 moment vectors were used in all ex-
periments in this section).

Non-linear moments provide information about the
resolution and size of the input image, respectively. Note
that there is a difference between the image size, which we
measure as the number of pixels, and the image resolution,
which relates to the native resolution of the image at acqui-
sition. For instance, a small crop from a high resolution im-
age will keep the smooth nature of a high resolution image
(smaller variance of feature maps) despite being small. On
the other hand, a resized image (with antialiasing turned
off) will have a significantly increased level of detail, which
will translate into a larger variance. The order moments
monotonically decrease with cropping. Consequently, we
believe the four moments provide enough information to
the IP layer to allow the CNN adjust itself to accurately
classify processing applied to images of arbitrary size and
resolution.

Processing in each class
As explained above, due to the severity of the modi-

fications applied to the processed image, we only include
the stronger processing operations for training the detec-
tor. This is to prevent the network to be presented with ex-
amples of images that cannot be in principle distinguished.
Below, we summarize the processing diversification in each
class.

Low-pass class L:
imfilter(X,fspecial(’gaussian’,3,1),’symmetric’)
imfilter(X,fspecial(’gaussian’,5,1.5),’symmetric’)
imfilter(X,fspecial(’average’,3),’symmetric’)

High-pass class H:
imfilter(X,fspecial(’unsharp’,0.5),’symmetric’)
imsharpen(X,’Radius’,1.5,’Amount’,2)
imsharpen(X,’Radius’,2,’Amount’,2)

Denoising class D:
wiener2(X,[3 3])
wiener2(X,[5 5])
Daubechies 12-tap wavelet denoising [25], σ = 8
Tonal adjustment class T :
The processing involved both contrast adjustment
gamma correction, and histogram equalization
imadjust(X,stretchlim(X,2/100),[],0.8)
imadjust(X,stretchlim(X,6/100),[],1.2)
histeq(X)

In the next section, we describe the process used to
prepare the dataset for training.

Dataset preparation
We started with 10,000 RAWBOSSbase full-resolution

color images and develop them using ’dcraw’ to true-color
TIFF images of the same native resolution. Next, all 10,000
images were randomly divided into three disjoint subsets
BT r,BV , and BT s with 7,000, 1,000, and 2,000 images, re-
spectively, to generate the training, validation, and testing
sets. Given the final JPEG quality factor Q2, for each im-
age I∈BT r, the following chain of steps was executed while
initializingMT r = ∅ and CT r = ∅:
1. Uniformly at random, select the first quality factor

Q1 ∈ {85, . . . ,98} and compress I with Q1. Decom-
press to the spatial domain and denote X.

2. Process X with all three processing L∈ L
3. Process X with all three processing H∈H
4. Process X with all three processing D∈ D
5. Process X with all three processing L∈ T
6. Consequently, for each X there will now be 13 images:

the original image U, and its three L, H, D, and T
versions (1 + 4×3 = 13 images).

7. Apply random downscaling to all 13 images so that
the largest size is at least 960 pixels.

8. Centrally crop all 13 images to two 512×512 images.
9. Compress all 13 randomly resized images created in

Step 7 with quality factor Q2 and add to database
MT r.

10. Compress all 26 cropped images from Step 8 with
quality factor Q2 and add to database CT r.

After executing the above ten steps for all images from BT r,
we end up with 13×7,000 = 91,000 randomly resized color
images in MT r and twice as many 26× 7,000 = 182,000
cropped 512×512 color images in CT r. The same ten steps
were executed with images from BV and BT s with one
modification: only one randomly chosen processing out of
three in each class was applied, producing thus 5 images for
each image from BV and BT s instead of 13 or 26. The sets
MV and CV contained 5,000 images while 10,000 images
were inMT s and CT s.

Remark 1: The random downscaling in Step 7 is
carried out so that the number of pixels after resizing, Np,
is an integer uniformly distributed in the range Mmin ×
Nmin ≤Np ≤M ×N , where Mmin =M ×960/max(M,N)
and Nmin = N × 960/max(M,N) to make sure that the
larger size of the downscaled image is at least 960.



Remark 2: In Step 8, it may happen that the two
cropped images have a small overlap if the larger size of
the downscaled image is less than 1024.

Phase I: Training moment extractors
As explained above, the first phase of building the pro-

cessing detector is to train the moment extractor (tile de-
tector) for the secondary quality factor Q2. In particular,
the CNN depicted in Figure 1 with the modification to ex-
tract three additional moments, the minimum, maximum,
and variance, in addition to the average in the last convo-
lutional layer is trained on CT r with the validation and test
sets CV and CT s. The variance was treated as a constant
during back-propagation for better stability of the train-
ing. Note that since all images are 512× 512, there is no
issue with image size for training the CNN. We followed
the same procedure for training the network as described
in the previous section.

Phase II: Extracting moments
In the second phase, the front part of the tile detector

trained in Phase I is used to extract moments of all images
from MT r, MV , and MT s. The moment extraction was
achieved by feeding the images one by one to make sure we
do not run out of memory for the potentially large images
in these three sets. We repeat that 4096 moments were
extracted from each image in this phase. The moments
were saved for training the IP layers of the final processing
detector in Phase III.

Phase III: Training the IP layers
In the third phase, we train only the IP layers – a MLP

with 4096 inputs and two fully-connect layers, each with
4096 neurons, and an output layer with five neurons (see
Figure 3) on MT r, validate on MV , and test on MT s,
obtaining thus the detection performance of the entire de-
tector. The weights were initialized with the normal dis-
tribution with zero mean and standard deviation 0.01. We
note that the final detector of processing for JPEG images
at quality Q2 consists of the front part of the tile detector
trained in Phase I and the IP layers trained in Phase III.

In the next section, we report the classification per-
formance of this detector trained for three JPEG qualities.

Experiments
This section contains the results of all experiments and

their discussion. The detection accuracy is reported using
confusion matrices in Table 3 and the overall correct clas-
sification accuracy (the average of the diagonal elements of
the confusion matrix) corresponding to final JPEG quality
factors 75–95. To find out how the detection accuracy de-
pends on the image size, we split the testing setMT s into
three disjoint sets of equal size containing small (less than
4.5 MP), medium (4.5–9 MP), and large (more than 9 MP)
images, and report the average correct detection accuracy
(the sum of all diagonal elements from the confusion ma-
trix) in Figure 4. Overall, the accuracy degrades rather
gracefully with the JPEG quality factor. It depends more

Figure 3. Two-layer IP trained in Phase III.

sensitively on the image size as Figure 4 shows. For im-
ages with more than 9 megapixels, the detection accuracy
is 99.5% or better.

For a processing detector with a larger scope of appli-
cability, i.e., one than can be applied to an arbitrary JPEG
image as well as uncompressed images, the plan is to train
a family of detectors for selected JPEG qualities Q2 ∈ Q.
To analyze a given image, first the luminance quantization
table T is extracted from the header and then the detector
trained for such Q∈Q whose quantization matrix is closest
to T is applied to the image. This will also cover the case
of non-standard quantization matrices.

To obtain some insight into how fine the granulariza-
tion over the QF needs to be (how large the set Q should
be), we applied the three detectors trained for three final
JPEG qualities to all three test sets and displayed the re-
sults in Table 5. Note that training on a smaller quality
factor Q1 and testing on larger Q2 > Q1 is always better
than vice versa. This suggests that the final detector will
require a fine granularization (large set of quality factors
Q). Moreover when a quantization table is not in Q, it will
be better to apply the closest smaller quality factor from
Q.

As our final test, we applied the three trained de-
tectors to images processed by operations not included
in the training set to assess the ability of the detec-
tor to generalize to previously unseen operations: me-
dian 3× 3 filtering and color saturation adjustment by
50% (H = rgb2hsv(X); H(:,:,2) = 1.5*H(:,:,2); H(H
> 1) = 1;X’ = hsv2rgb(H)). The results are summarized
in Table 4. The detector was correctly able to general-
ize to median filtering, detecting it as either Denoised or
Low-pass filtered with accuracy 94%, 95.3%, and 95.5%
for quality factors 75, 85, and 95. On the other hand,
since the detector was not trained on any manipulation in-
volving separate processing of color channels, a saturation
boost by 50% has been detected as unprocessed. We as-
sume that this behavior is desirable as it is better to not
to detect processing than to return a “false alarm.”



T RU \ DET U L D H T
U 0.9040 0.0365 0.0415 0.0090 0.0090
L 0.0185 0.9530 0.0265 0.0015 0.0005
D 0.0140 0.0365 0.9480 0.0010 0.0005
H 0.0040 0.0005 0.0020 0.9935 0.0000
T 0.0045 0.0010 0.0010 0.0000 0.9935

QF 75, Accuracy = 0.9584

T RU \ DET U L D H T
U 0.9315 0.0270 0.0285 0.0050 0.0080
L 0.0175 0.9595 0.0210 0.0005 0.0015
D 0.0055 0.0195 0.9735 0.0000 0.0015
H 0.0045 0.0005 0.0010 0.9935 0.0005
T 0.0025 0.0000 0.0005 0.0000 0.9970

QF 85, Accuracy = 0.9710

T RU \ DET U L D H T
U 0.9475 0.0205 0.0175 0.0085 0.0060
L 0.0095 0.9750 0.0150 0.0005 0.0000
D 0.0080 0.0115 0.9795 0.0010 0.0000
H 0.0030 0.0000 0.0000 0.9960 0.0010
T 0.0020 0.0005 0.0000 0.0000 0.9975

QF 95, Accuracy = 0.9791
Table 3. Classification accuracy of the proposed detector on the
dataset from Section “Practical detector” for secondary JPEG
quality 75, 85, and 95.
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Figure 4. Correct classification accuracy of the proposed detector for three
JPEG quality factors on the testing set MT s split into small, medium, and
large images generated in Section “Practical detector”. See text for more
details.

Conclusions
This work describes a deep CNN for classifying the

type of global processing applied to an image prior to laun-
dering consisting of a potentially agressive downscaling and
low quality JPEG compression. Four types of processing is
detected: low-pass filtering (blurring), high-pass filtering
(sharpening), denoising (content adaptive low-pass filter-
ing), and tonal adjustment, such as histogram equalization,
gamma correction, and contrast enhancement.

When designing the detector, attention was paid to

Median 3×3
QF U L D H T
75 .051 .214 .726 .004 .005
85 .042 .193 .760 .003 .004
95 .041 .138 .817 .001 .003

Saturation increase by 50%
75 .871 .051 .050 .014 .015
85 .903 .034 .031 .007 .027
95 .936 .024 .017 .006 .019

Table 4. Classification of previously unseen processing.

QT RN\QT ST 75 85 95
75 .9584 .9295 .8015
85 .7719 .9710 .8427
95 .6035 .7480 .9791

Table 5. Correct classification accuracy on 2000 test JPEGs
with quality QT ST with the detector trained for the final JPEG
quality QT RN . The diagonal corresponds to a match between
the training QF and the QF of the tested image.

make sure that the detector classifies images of arbitrary
size with the best possible accuracy (accuracy similar to a
detector that could be trained on large images). To this
end, we trained the detector in three phases. The first
phase involved training a “moment extractor” module on
small images (512×512 tiles) which was then in Phase II
used to extract moments from all (arbitrarily sized) train-
ing images. In the final third phase, just the classification
part, the IP layers, were trained to map the extracted mo-
ments to processing classes.

The detector was trained for three final JPEG quality
factors separately. It was able to generalize to previous
unseen median filtering and correctly classify it as either
low-pass filtering or denoising. It was not, however, able
to recognize color saturation boost as a tonal adjustment
because this type of processing was not included in train-
ing.

As part of our future effort, we intend to build the
final detector that can return reliable processing classifica-
tion for all JPEG quality factors as well as non-standard
JPEG quantization tables. The number of processing op-
erations could also be extended to include color saturation
and vibrance boost to give the detector the ability to iden-
tify this type of adjustment.

All code used to produce the results in this paper,
including the network configuration files are available from
http://dde.binghamton.edu/download/.
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