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ABSTRACT

When available, reference signals may dramatically improve the
accuracy of steganalysis. Particularly powerful reference signals
are embedding invariants that exist when the steganographic al-
gorithm swaps values from small disjoint subsets of the cover el-
ements’ dynamic range, such as, but not limited to, embedding
schemes utilizing least significant bit replacement. This paper de-
scribes a general method how to prepare such reference signals for
a certain type of embedding operations, and incorporate them in
detectors built as convolutional networks to improve their detec-
tion accuracy. The beneficial effect of reference signals is shown
experimentally in both the spatial and especially JPEG domain, on
model-based steganography and a generic LSB flipper with and
without stochastic restoration of the histogram (OutGuess).
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1 INTRODUCTION

Steganography is the art of communicating covertly by hiding the
very existence of the message in a host signal called the cover object.
Modern steganographic methods for covers in the form of digital
images embed the secret by slightly modifying individual pixel val-
ues or the quantized discrete cosine transform (DCT) coefficients
in a JPEG file. While imperceptible to human senses, the modifica-
tions may introduce characteristic statistical anomalies revealing
the presence of the secret. Identifying such anomalies is the subject
of steganalysis, the art of building detectors of steganography.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IHMMSec ’19, July 3-5, 2019, TROYES, France

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6821-6/19/06...$15.00
https://doi.org/10.1145/3335203.3335733

Steganalysis can generally be improved if the detector is supplied
with additional reference information about the cover image. Exam-
ples are calibration signals in the form of a decompressed-cropped-
recompressed image [16, 20], a downsampled image [13, 19], or
an image of a different scene that partially overlaps with the ana-
lyzed image [30]. An especially powerful reference signal becomes
available if the embedding changes can be “erased” in the sense
that an operation exists that does not change the image much but,
when applied to both cover and stego versions of the same image, it
produces the same result. Such embedding invariants exist, for ex-
ample, when the sender overwrites the least significant bits (LSBs)
of cover elements with message bits — the image with all its LSBs
set to zero is an example of an embedding invariant. This refer-
ence signal is fundamentally responsible for the existence of many
powerful attacks on LSB replacement (LSBR), be it the so-called
structural attacks [6, 9, 12, 14] or detectors derived with statistical
signal detection tools [5, 7, 8, 15, 26, 27, 37]. Feature-based detectors
implemented using machine learning can also use embedding in-
variants by augmenting the feature extracted from the image with
the feature extracted from the embedding invariant [11].

The reference signal utilized in this paper exists when the em-
bedding changes are constrained to swaps of small disjoint groups
of cover values. Typical examples are schemes that replace one
or more LSBs of cover elements with message bits or the oper-
ation employed in Model-Based Steganography (MBS) for JPEG
images [23], which is not constrained to flipping LSBs. Although
fundamentally insecure, LSB replacement is the most popular type
of steganography because it is simple and can be applied to virtually
any sampled signal. As of October 2017, out of 2863 tools available
on the Internet capable of hiding data in digital images, 1024 (36%)
of them embed secrets by manipulating LSBs.'

While detection of the early “naive” embedding paradigms has
been studied in the past to a great extent, and while the concensus
among researchers might be that the detection of said embedding
is as good as it can ever be, as this paper shows, there is still much
room for improvement, especially for small secret payloads and for
embedding algorithms that either do not merely flip bits but allow
reference signals, such as MBS. Improved detection of short secret
messages should certainly be of interest to practitioners given the
large number of publicly available software tools that manipulate
LSBs.

Recently, deep learning with convolutional neural networks
(CNNis) has led to great advances in steganalysis by jointly op-
timizing the feature design and the detector [2, 3, 18, 22, 32-36].
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Because the first operation in a CNN is a convolution, such detec-
tors do not explicitly “see” parity of pixels and thus cannot easily
discover the existence of embedding invariants. In this paper, we
show how to prepare the embedding invariant for a more general
class of embedding operations, a generalization of LSB flipping,
and how to incorporate this invariant in detectors built as CNNs.
In JPEG domain, the construction of the reference signal requires
some care because of the properties of first-order statistics of DCT
coefficients and the type of the embedding operation.

In the next section, we describe the process of creating a useful
reference signal for general embedding operations with a swapping
constraint. A previously proposed deep residual network for ste-
ganalysis of digital images called SRNet [2] is modified in Section 3
to make use of the reference signal. The setup of our empirical
study and the common core of all experiments appear in Section 4.
In Section 5, we report the results of experiments with LSBR in the
spatial domain when steganalyzing with both single-channel and
two-channel SRNet and YeNet [34], and contrast their performance
to previous art — rich models utilizing the same reference signal
and the weighted stego-image detector. The filters learned in the
first convolutional layer of both network detectors are analyzed to
obtain some insight into how CNNs utilize the reference channel.
Detection of JPEG domain steganographic algorithms with refer-
ence channels is investigated in Section 6. We take a look at two
types of reference channels and analyze the filters learned in the
first layer. The performance of the two-channel SRNet is contrasted
with rich models (JRM [17] and GFR [25]) augmented with fea-
tures extracted from the same reference signal as well as detectors
built using statistical signal detection tools [26, 27]. The paper is
concluded in Section 7.

2 REFERENCE SIGNALS

While our study is restricted to 8-bit grayscale images, the proposed
methodology is applicable to a much wider range of cover objects
and formats. A cover image will be represented with an Ni X Nj
matrix x = (xj;) € TNXN2 while reserving y = (yij) € T NN,
for the corresponding stego image, where 1 is the dynamic range.
For 8-bit grayscale images in the spatial domain, 7 = {0, ..., 255},
while for a JPEG image, 7 = {-1024, ..., 1023}.

2.1 Swapping constraint

An embedding invariant (reference signal) is obtained using a map-
ping R : TNXN2 5 7NiXN2 gych that R(x) = R(y) for any cover
image x and all its possible stego versions y. For an embedding
invariant to be useful for steganalysis, however, R(y) needs to be
close to x. For example, one can always obtain trivial (and useless)
invariants with R(x) = r € 7N1*Nz_ ¢ chosen arbitrarily but fixed.

The type of the reference signal investigated in this paper gener-
ally exists when the steganographic algorithm restricts the embed-
ding modifications to swapping values within M mutually disjoint
subsets 11,..., Iy of I, 7 =1 U---Ulpy, . NI =0,k # 12
In this case, the embedding modifications satisfy the following
swapping constraint

xjj € I —= Yij € I, forall i, j. (1)

2Technically, the subsets may not necessarily be all of the same cardinality.

For example, LSBR overwrites the LSBs of selected pixels with
message bits, which means that the dynamic range of pixels is
split into disjoint pairs 7 = {2k,2k + 1}, k = 0,...,127. If the
embedding overwrites two LSBs with message bits, e.g., for in-
creased embedding capacity, the changes are restricted to disjoint
quadruples of values I = {4k, 4k + 1,4k + 2,4k +3},k =0,...,63.

As another example, we point out the embedding operation of
model-based steganography (MBS) [23], which restricts its modifi-
cations to pairs of values that do not differ only in their LSBs:

(k- 1,2k} k>1
k= (2)
{2k, 2k +1} k< -1.

In fact, MBS has been conceived to be more general and the code
supplied by its author allows swapping within larger groups of, e.g.,
three values {3k — 2,3k — 1,3k}, k > 1, etc.

2.2 Embedding invariant

For embedding schemes satisfying the swapping constraint (1) with
small subsets J, one can construct a useful embedding invariant
by replacing all pixel values y;; in y that lie in 7} with a fixed value
e € Ii.. Formally, the mapping R is thus captured with a parameter
r € 7M and acts on each pixel y; j separately

R(yij) = ri whenever y;; € I, ®

where we reused the symbol for the invariant mapping for an
elementwise mapping on pixel values.

The most useful reference signal is the one with a small
[|R(y) — x||, where ||-|| is a suitable norm, such as the Frobenius
norm. In the most ideal but rarely achievable case, R(y) = x, for
all x,y, perfect steganalysis would become possible. In general, if
some a priori information about the distribution of cover values
in each set I} is available, it could (and should) be used to obtain
reference signals with a smaller ||R(y) — x||. For example, due to the
characteristic shape of the histogram of quantized DCT coefficients
in a JPEG file, there will be more DCT coeflicients equal to 2k than
2k + 1 for k > 0 and vice versa when k < 0. Thus, for algorithms
that use LSBR in JPEG domain, examples of which are Jsteg (or
in general any algorithm that flips LSBs of DCT coefficients) and
OutGuess, we opt for the following reference values r :

2k k>1 (4)
r =
72k +1 k<o,

Because neither Jsteg (generic LSB flipper in JPEG domain) nor
OutGuess modify cover values from Iy = {0, 1}, the mapping R
needs to preserve such values, too :

R(yij) = Yij when Yij € 1. (5)

For MBS with swapping sets (2), we use

k-1 k>1 ©
r =
FTlzk+1 k<1

and
R(yij) = yij when y;; = 0. (7)
Note that modern content-adaptive embedding schemes, such
as UNIWARD (in both domains), HILL, WOW, MiPOD, or UED use



embedding operations that do not allow construction of the same
embedding invariant (reference channel).

3 DETECTION WITH REFERENCE SIGNALS

The use of reference signals in feature based steganalysis was pre-
viously investigated in [11]. We wish to stress that this work was
limited to the spatial domain only and only one type of embed-
ding operation — LSB replacement. There, the authors proposed to
concatenate rich feature vectors extracted from the image and its
reference. In particular, the operation of zeroing-out the LSBs :

R(yij) = 2% |yij/2] ®)

was identified as the best way to prepare the reference signal for
steganalysis of LSB replacement in the spatial domain. The authors
also investigated an alternative approach for forming the feature
vector by making the noise residual “aware of pixels’ parity” before
forming the co-occurrences in the rich model. This was achieved
by multiplying the residual extracted at pixel i, j by 1 — LSB(x;;).
This approach avoided doubling the dimensionality of the parity-
aware feature vector. Note that it is not clear, however, how the
parity-aware residuals should be implemented within a CNN type
of detector because the formation of the residual in a network is
not a simple convolution but a cascade of stacked convolutions on
non-linearly transformed “residuals.” In the rest of this section, we
reason about other natural possibilities to incorporate a reference
signal within a detector built as a CNN.

One possibility would be to first train a CNN for LSBR and
then isolate its front part as a “feature extractor” — the part of
the architecture before the classifier, which is typically an Inner-
Product (IP) layer or a Multi-Layered Perceptron (MLP). Viewing
the network as a feature extractor, the methods described in [11] can
be readily applied. This approach, however, merges the reference
channel “too late” — in the classifier part of the net — and is thus
unlikely to perform well also because the feature extractor cannot
distinguish between LSBR and LSB matching (LSBM).

The network could and should learn the convolutional kernels
(filters) for the right task from the beginning and in the least con-
strained manner, following the golden rule of deep learning to let as
much as possible to be learned in an end-to-end fashion. An obvious
idea to incorporate the reference signal in a CNN is to supply the
reference as a second channel. This way, the network can use the
reference throughout the entire architecture in a way that is com-
pletely driven by the learning algorithm. Many previously proposed
deep architectures for steganalysis [3, 22, 32-34, 36], however, ini-
tialize the filters in the first layer heuristically, such as setting them
to the kernels used in the Spatial Rich Model (SRM) [10], the design
choice of the YeNet [34], or DCT bases in J-XuNet [32]. While there
is some heuristics reasoning behind these choices for grayscale
images, it is not clear how to initialize the kernels for an archi-
tecture that accepts an image and its reference on its input. This
is one of the reasons why we selected for our study the recently
proposed SRNet [2] as its kernels are all initialized randomly as
this gives the most freedom to the learning algorithm to determine
the most effective combination of kernels. Moreover, based on the
results reported in the original paper, it provides state-of-the-art
performance in both spatial and JPEG domain.

Here, we only provide a brief summary of the main design
choices of the SRNet while referring the reader to the original
publication for more details. The SRNet is a residual network with
12 layers employing 3 x 3 kernels, ReLU activations, and batch
normalization. The first eight layers accept unpooled feature maps
on their input. This segment of the network learns noise residuals
effective for separating the classes of cover and stego images. The
first convolutional layer has 64 3 X 3 kernels, which we modify
to 64 2 X 3 X 3 kernels for a two-channel input as the only modi-
fication to incorporate the reference signal. We further note that
the selection-channel aware version of the SRNet [2] has not been
used because the type of embedding schemes that allow the refer-
ence channel introduced in the previous section are not adaptive
to cover image content. To be more precise, we are not aware of
any competitive, widely studied steganographic algorithms that
use LSBR in combination with content adaptivity as this would
unnecessarily compromise security.?

Network detectors that utilize the reference channel will be
abbreviated with an “R-” in front of the detector acronym, such as
R-SRNet and R-YeNet.

4 SETUP OF EXPERIMENTS

This section contains the description of the common core of all
experiments, the datasets used in our experiments, and the perfor-
mance evaluation metric.

4.1 Datasets and training

The performance of all detectors was evaluated and contrasted with
selected relevant prior art on a dataset created from the union of
BOSSbase 1.01 [1] and BOWS2, each containing 10,000 grayscale
images resized from their original size 512 X 512 to 256 X 256 using
’imresize’ with default setting in Matlab. For JPEG experiments, this
source was additionally compressed with quality factors 75 and 95.

Randomly chosen 4,000 images from BOSSbase and the entire
BOWS?2 dataset were used for training with 1,000 BOSSbase images
set aside for validation. The remaining 5,000 BOSSbase images were
used for testing. In summary, 2 X 14, 000 cover and stego images
were used for training, 2 X 1,000 for validation, and 2 X 5,000
for testing. This applies to both the spatial and JPEG domain and
all detectors. For classifiers trained on rich models, the validation
set was added to the training set. Network detectors and the GFR
feature set [25] were fed with decompressed JPEG images without
rounding to integers.

4.2 Evaluation metric

The detection performance was measured with the total empirical
detection accuracy defined as Pp = 1-Pg, where Pg = minp,, %(PFA
+Pymp) is the total classification error probability on the testing set
under equal priors with Ppa and Pyp standing for the false-alarm
and missed-detection probabilities. It is worth noting that the de-
fault cross entropy loss function used in training neural network
detectors maximizes the empirical accuracy since all cover images
presented to the network are paired up with the corresponding
stego image.

3NUGO [24] (Not so Undetectable steGO) was introduced solely for the purpose of
studying the effects of content adaptivity known to the detector.



The results reported in Section 5 and 6 are for one random 50/50
split of BOSSbase because it would not be computationally feasible
to train all networks on multiple different splits to obtain more
statistically robust results. Based on the results reported in [2], the
statistical spread of the detection error (scaled to [0,1]) in terms of
the mean absolute deviation is 0.002-0.003, which is comparable to
what has typically been reported for detectors implemented with
rich models and low-complexity classifiers.

5 LSBRIN SPATIAL DOMAIN

This section contains the details of all experiments in the spatial
domain, comparison to prior art, and analysis of the results. In
particular, we take a closer look at how the R-SRNet adapts the
2 % 3 X 3 filters in the first layer to make use of the reference signal
and contrast this with R-YeNet.

As in [11], the stego images for LSBR in spatial domain were
prepared by fixing the relative number of flipped bits in the cover
— the so-called change rate . This way, it will be easier for prac-
titioners to relate the reported detectability to a specific payload
based on the syndrome coding employed in the specific implemen-
tation of this embedding paradigm. In particular, optimal codes®
would incur an expected change rate f when embedding rela-
tive payload of R = hy(p) bits per pixel (bpp), where hy(x) =
—xlog, x — (1 — x)log,(1 — x) is the binary entropy function. On
the other hand, naive LSBR with no coding would embed only
R = 2f bpp. In this paper, we focus on small change rates f§ €
{0.003,0.005,0.01,0.02,0.03}, which correspond to relative pay-
loads 0.03, 0.045, 0.081, 0.14, and 0.19 bpp with optimal coding.

5.1 Detector training

Both the two-channel R-SRNet and SRNet were trained from ran-
domly initialized weights only for the largest change rate § = 0.03
for 200k iterations with learning rate (LR) 0.001, which was followed
by 100k iterations with LR 0.0001. All smaller payloads were ob-
tained by cascade curriculum training from the largest to the small-
est by seeding the network with the detector trained for the next
larger change rate. Both the single-channel and the two-channel
SRNets were curriculum trained for 100k with LR 0.001 followed
by 50k with LR 0.0001. The optimizer Adamax was used with mini-
batches of 16 cover-stego pairs. The training database was shuffled
after each epoch. Images in each batch were subjected to data aug-
mentation with random mirroring and rotation of images by 90
degrees. The batch normalization parameters were learned via an
exponential moving average with decay rate 0.9. The filter weights
were initialized with the He initializer’ and 2 x 10~* L2 regulariza-
tion. Filter biases were set to 0.2 and no regularization. The weights
in the fully connected classifier layer were initialized with a zero
mean Gaussian with standard deviation 0.01 and no bias.

SRNet was compared with YeNet [34] as one of the leading
steganalysis detectors in the spatial domain. For the two-channel
R-YeNet, the filters in the first layer were initialized with SRM filters
in both channels. The network was trained in the same fashion

4Codes operating on the rate-distortion bound when measuring the distortion as the
Hamming distance.
Shttps://arxiv.org/pdf/1502.01852v1.pdf

as SRNet, starting with the largest change rate of 0.03 and then
cascade-curriculum trained for all other change rates. Initially, we
trained for 800k iterations with LR 0.4 and then for an additional
300k iterations with LR 0.08. Curriculum training was carried out
for 300k iterations with LR 0.4 and 100k iterations with LR 0.08.
The two-channel YeNet was initially trained for the largest payload
with 800k iterations with LR 0.4 and 300k iterations with LR 0.08.
Curriculum training was carried out for 300k iterations with LR 0.4
and 100k iterations with LR 0.08.

The reference channel for both R-SRNet and R-YeNet was ob-
tained by zeroing-out the LSBs (8). For comparison with prior art,
we used exactly the same setup as in [11] - the ensemble classifier
with parity-aware 50,856-dimensional rich model (PA-RM). We also
implemented the Weighted Stego-image method with bias correc-
tion (WSb) [15] as the most accurate detector of this type based on
the results reported in Table 5 in [11], where the authors extensively
tested the performance of other detectors, such as [5, 7] on both
uncompressed images and decompressed JPEGs.

5.2 Performance

The detection accuracy of all detectors appears in Table 1 with Fig-
ure 1 contrasting the R-SRNet with previous art. The improvement
of R-SRNet w.r.t. prior art (PA-RM as well as R-YeNet) is observed
especially for the two smallest change rates (6-9%). The addition
of the reference channel helped increase the detection accuracy
of R-SRNet Pp by up to 6% with Pp > 0.98 for the largest tested
change rate 0.03. While the reference channel boosted the accu-
racy of SRNet by 5-7%, YeNet benefited to a much lesser degree
(0.5-2.5%). We hypothesize that this is because both channels were
initialized with the same SRM filters, which likely prevented it
from learning a more efficient way to incorporate the reference
signal. It is worth noting that flipping mere 197 LSBs in 256 X 256
grayscale images is still detectable with 84% accuracy. Also note
that since single-channel networks are blind to pixel parity and
thus do not see the difference between LSBR and LSB matching,
we can interpret their detection accuracy as that of a non-adaptive
LSB matching.

The disadvantage of detectors built with machine learning over
WSb is that they need a training set. A mismatch between the
training and testing sets may negatively affect their accuracy. On the
other hand, if the source of cover images is known, such detectors
provide a clear performance advantage over structural detectors.

Figure 2 shows the progress of the training and validation accu-
racy for LSBR at change rate 0.03 for both tested networks and their
versions with the reference channel. The SRNet generally trains
faster than YeNet in terms of the number of iterations. Another
aspect in which both networks differ is that R-SRNet trains faster
than SRNet but R-YeNet trains slower than YeNet.

5.3 Filter analysis

In this section, we analyze the first-layer filters in both channels
learned by R-SRNet and R-YeNet and conduct additional experi-
ments to obtain more insight into how the networks use the refer-
ence channel.

Most filters learned in R-SRNet trained for the largest change rate
of 0.03 are approximately of high-pass nature. The average values
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Table 1: Detection accuracy Pp for LSBR at different change rates § with SRNet, YeNet, and its two-channel versions “R-”,
parity-aware rich models, and weighted stego-image with bias correction (WSb).

B Flips | R-SRNet

SRNet | R-YeNet

YeNet | PA-rich | WSb

0.03 1966 98.32 93.12 94.97 92.90 97.60 95.74
0.02 1311 97.35 91.46 93.46 91.09 95.89 91.22
0.01 655 94.04 87.22 88.64 87.12 90.36 79.21
0.005 328 88.30 83.40 82.31 81.58 82.08 67.13
0.003 197 84.16 78.31 77.59 77.08 75.26 60.69
L | ] | architectures for the best use of the reference channel a topic that
is outside of the scope of this paper.
Anti-correlated filters (between the two channels) correspond
0.9 I to subtracting the noise residuals extracted from the input image
o and the reference image. This is intuitively logical and can be in-
E 0.8 - N terpreted as an operation that further suppresses image content
2 and increases the SNR between the signal of interest, the stegano-
< graphic embedding changes, and the noise — what is left of the
0.71 —a—R-SRNet | | image content. However, perfectly anti-correlated filters (with cor-
—+— SRNet relation —1) essentially correspond to convolving just the LSBs of
0.6 |- —x—PA-rich 1 the input image due to the linearity of convolution. It would not
—5— WSb be desirable to suppress the content to this degree for all filters
0.5 n)x | \’1 q)x %1 pecause it would limit the det.ector to information contained only
Q@ QQ QQ QQ in the LSB plane of the input image.

Change rate

Figure 1: Detection accuracy Pp of LSBR in the spatial do-
main on the testing set as a function of the change rate
for R-SRNet, parity-aware rich model, and weighted stego-
image with bias correction.

of L1-normalized filters were all within [—0.1, 0.1] with the majority
symmetrically clustered around zero with a standard deviation of
0.06. This is consistent with interpreting the filters as “noise residual
extractors.”

To see how the network makes use of the second channel, we
inspected the relationship between the two 3 x 3 filters in each
2x3x3 filter from the first layer. The learned filters in R-SRNet were
mostly anti-correlated with a mean (median) normalized correlation
—0.2 (—0.173). The two most anti-correlated filters are shown in
Figure 3 with correlations —0.9986 and —0.9677, while the two most
positively correlated filters were at 0.53 and 0.85.

In contrast to R-SRNet, the filters learned in R-YeNet stayed
largely unchanged w.r.t. their initial values: a total of 20 out of 30
3%3 filters exhibited correlations with their initial values larger than
0.95 with only four filters with correlation less than 0.5. Likewise, we
observed strong positive correlations between the filters from both
channels: 20 with correlation larger than 0.95 and only two with
correlation less than 0.5. We hypothesize that the SRM initialization
in YeNet is near a local minimum that is difficult for the optimizer
to get out of, a problem that may be further exacerbated by the
Thresholded Linear Unit (TLU) that nullifies the gradients outside of
its threshold. We acknowledge that this a mere hypothesis that we
did not further investigate as we consider studying other network

To obtain further insight, we executed additional experiments in
which we forced the filters in the first layer of R-SRNet to be fully
anticorrelated with each other and we also initialized the filters
in the second channel of R-YeNet as negatives of the SRM filters
from the first channel (perfectly anti-correlated). Forcing of the
same kernels in both channels of R-SRNet was executed simply
by feeding the network with the LSBs of the input image, i.e., in
this case, R-SRNet was essentially single-channel. Also note that
even when initialized with perfectly anti-correlated filters, during
training YeNet will generally learn different filters in both channels
because they are independently updated in each iteration — their
gradients are generally different.

To better see the impact on the detection accuracy, we ran ex-
periments with a smaller change rate of 0.02. R-YeNet initialized
with anti-correlated filters in both channels trained faster and in-
deed performed slightly better (increase of Pp from 93.46 to 93.95,
c.f. Table 1) than when initializing both channels with the same
SRM filters. On the other hand, forcing perfectly anti-correlated
filters in R-SRNet lead to a markedly worse accuracy of 75.14. As
already pointed out above, since perfectly anti-correlated filters
imply that the network makes its decision solely based on the LSB
plane, the network can detect the embedding only when the LSB
plane exhibits learnable structures.

As our final note, we would like to point out that the reference
channel allows R-SRNet to better reject content when forming the
“noise residuals” in the first seven unpooled layers. In Figure 4, we
show the variance of all 16 256 X 256 feature maps outputted by
the last unpooled layer in R-SRNet (black) and in SRNet (white)
for the image shown on the right. A larger variance indicates that
the feature map contains more “content leftover,” which lowers the
SNR between the signal of interest — the steganographic embedding
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Figure 2: Training (left) and validation (right) accuracy of SRNet, YeNet, and their versions with the reference channel for

LSBR in spatial domain at change rate 0.03.

Figure 3: Two examples of 3x3 filters from the first layer
of SRNet learned for LSBR at change rate 0.03 that exhib-
ited the largest anticorrelation between both channels. The
filters approximately correspond to a diagonal residual and
a horizontal second-order residual. Darker / brighter colors
correspond to negative / positive values.

changes — and the content of the cover image. While suppression
of the content seems necessary for better detection, content sup-
pression in the form of retaining only the LSBs significantly lowers
the detection accuracy.

6 JPEG DOMAIN

In this section, we focus on steganographic schemes for JPEG im-
ages that allow the type of embedding invariant described in Sec-
tion 2: a generic LSB flipper (LSBF), OutGuess [21], and model-based
steganography [23]. We intentionally opted for the term “generic
LSB flipper” (LSBF) for an algorithm whose embedding impact
amounts to flipping LSBs of pseudo-randomly selected quantized
DCT coefficients while skipping 0’s and 1’s. This was done to avoid
confusion with a specific implementation of LSBR in JPEG domain
called Jsteg [28], which uses the same embedding operation but
hides the message bits in pixels sequentially selected from the JPEG
file, which opens up numerous other possibilities for steganalysis,
including the histogram attack [29] or simply analyzing the header.
For the same reasons as explained in the beginning of Section 5,
the stego images for LSBF were thus created by fixing the change
rate §§ and flipped the LSBs of pseudo-randomly selected fNy; DCT

coefficients not equal to 0 or 1, where Ny is the total number of
coefficients not equal to 0 or 1.

Instead of using the OutGuess implementation provided by its
creator, Neils Provos, we used its simulator that first embeds the
secret payload using (uncoded) LSBR in coefficients not equal to 0
or 1 and then changes some of the unused coefficients, also selected
in a pseudo-random fashion, to adjust the histogram of coefficients
to its original (cover) form.

The stego images for MBS were obtained with the code supplied
by its author, Phil Sallee. For OutGuess and MBS, we fixed the
relative payload R in bits per non-zero AC DCT coefficient (bpnzac)
because the relationship between R and f for either algorithm
depends on the particular cover image. For repeatability of our
results, we intend to make the OutGuess and LSBF simulators as
well as the embedding algorithm for MBS available for download.

We begin this section with a short study of the effect of the
type of the reference channel for the generic LSB flipper. Then,
all experiments for the LSBF, OutGuess, and MBS are listed and
interpreted. The section is closed with an analysis of the relationship
between filters from the two input channels learned in the first
layer of the trained R-SRNet.

6.1 Effect of the reference channel

As explained in Section 2, for LSB replacement in the JPEG domain
the reference channel prepared with the mapping (4) should intu-
itively lead to better results because the reference signal R(x) is
closer to the input image x than R(x) obtained by zeroing out the
LSBs (8). To verify this hypothesis, we executed an experiment with
R-SRNet on our dataset (Section 4.1) for JPEG quality 75 and the
OutGuess algorithm on a range of payloads (see the next section
for the training details). The black bars in Figure 5 show the gain
in detection accuracy Pp when using the reference (4) instead of
zeroing out the LSBs of quantized DCT coefficients. The white bars
in Figure 5 show the gain of R-SRNet with reference (4) w.r.t. the
single-channel SRNet. We would like to point out that this gain
is in the absolute value of the accuracy and not relative. In other



words, a gain of 2.46% means that the values of Pp increased by
0.0246. Having established the superior performance of the refer-
ence signal (4), it was selected for all experiments with LSBF and
OutGuess.

6.2 Detector training

In JPEG domain, both the single-channel SRNet and R-SRNet were
trained from scratch for the largest payload for 200k iterations
with LR 0.001 followed by 100k iterations with LR 0.0001, while
the cascade curriculum training was run for 100k iterations with
LR 0.001 followed by 50k iterations with LR 0.0001. This training
procedure was the same for all three steganographic algorithms.
The reference image was prepared using (4) for LSBF and OutGuess
and using (5) for MBS.

The performance of R-SRNet was contrasted with classifiers
implemented using the low-complexity linear classifier [4] with
the JPEG Rich Model (JRM) [17] and the Gabor Filter Residual
(GFR) [25] model as well as their versions in which the feature was
augmented with a feature extracted from the same reference sig-
nal (4), essentially doubling the dimensionality of each rich model
(R-JRM and R-GFR). The GFR model was selected as one of the most
effective JPEG-phase-aware feature set for detection of modern em-
bedding algorithms® while JRM is typically effective against old
embedding algorithms, such as the three schemes studied in this
paper.

We also included in our tests the results obtained with the Gener-
alized Likelihood Ratio (GLR) test proposed for Jsteg (LSBF) in [26]
and for OutGuess in [27]. Similar to the machine-learning detectors,
these GLR detectors need to be informed by the suspected payload
embedded in the analyzed image. Also, a payload correction needs
to be added for OutGuess to adjust for the increased change rate
(equivalent payload) due to the histogram correction step.

6.3 Performance

First, we take a look at how R-SRNet benefits from the second
channel. Table 2 contrasts the accuracy of R-SRNet with the single-
channel SRNet for all three embedding algorithms and two JPEG
quality factors. Two more payloads (0.1 and 0.05 bpnzac) were added
for MBS to show how the accuracy saturates with increasing mes-
sage length. For LSBF, the second channel increases the accuracy
of R-SRNet by up to 7.4% for small change rates. As expected, for
easier detection cases when the accuracy approaches 100%, the gain
is smaller. For OutGuess, we observed an even stronger effect of the
reference channel, boosting the accuracy by up to 12.4% for small
payloads and JPEG quality 95. Finally, for MBS the largest observed
gain was almost 6% again, generally, for smaller payloads.

Similar to the spatial domain, the reference signal helps not
only the performance but also speeds up the convergence. This was
observed for all three JPEG steganographic algorithms and all tested
payloads / change rates. Figure 6 contrasts the detection accuracy
of R-SRNet with classifiers trained on R-JRM and R-GFR models
for JPEG quality 75. While low-complexity linear classifiers trained
with JRM features detect all three algorithms better than with GFR
features, the latter benefits significantly more from the reference

6 A slightly better detection may be obtained with the correctly symmetrized GFR
feature [31].

Table 2: Detection accuracy with SRNet with reference chan-
nel (R-SRNet) and a single-channel for LSBR in JPEG do-
main (LSBF) at different change rates § and for OutGuess
and MBS for a range of relative payloads R in bpnzac.

LSBF QF 75 LSBF QF 95
B R-SRNet SRNet R-SRNet SRNet

0.03 99.96 99.13 99.87 99.50
0.02 99.65 98.42 99.64 98.54
0.01 96.93 92.98 97.95 94.07
0.005 89.10 83.16 91.90 85.74
0.003 80.84 74.42 84.75 77.37

OutGuess QF 75  OutGuess QF 95
R R-SRNet SRNet R-SRNet SRNet

0.03 99.11 96.08 99.50 97.21
0.02 97.18 90.36 98.71 94.79
0.01 90.14 81.44 94.75 84.94
0.005 79.39 71.00 84.83 74.20
0.003 72.86 64.50 79.37 66.95

MBS QF 75 MBS QF 95
R R-SRNet SRNet R-SRNet SRNet
01 9976 9881  99.86  99.52
0.05 9690  93.84 9899  96.70

0.03 91.09 85.76 95.85 90.93
0.02 84.79 80.06 91.44 85.74
0.01 73.48 68.88 81.25 75.59
0.005 64.29 60.65 69.37 65.77
0.003 59.08 57.37 62.61 59.99

channel (4) and is clearly the better detector for MBS (see Figure 6
right). For OutGuess, R-JRM is better than R-GFR for all payloads
except for the largest payload, and for LSBF both features with
reference channels exhibit approximately the same performance.
The figures for LSBF and OutGuess (left and middle) also show the
performance of the GLR [26, 27]. Overall, the two-channel R-SRNet
as well as the single-channel SRNet clearly outperform all tested
previous art.

6.4 Filter analysis

We now take a closer look at the filters learned in the first convolu-
tional layer of R-SRNet and their relationship measured by normal-
ized correlation between the two 3 X3 filters from each 2x3 X3 filter.
While in the spatial domain, the filters were largely anti-correlated,
in JPEG domain the corresponding filters in R-SRNet exhibit more
positive correlations. This is documented in Table 3 that shows the
minimum, average, and maximum correlations across all 64 filters.
The correlations tend to increase with decreasing payload R and
are more positive for OutGuess than for LSBF, and exhibit even
more positive correlations for MBS.

As in the spatial domain, most filters in either channel of the
R-SRNet trained for all three embedding algorithms were observed
to be of high-pass nature. Compared to the filters learned for LSBR
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Figure 4: Variance of feature maps outputted by the last unpooled layer in SRNet (black) and R-SRNet on the input image
shown on the right for LSBR in the spatial domain for change rate 0.02.
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Figure 5: Black: Gain in detection accuracy (%) on the test-
ing set with R-SRNet when using the reference (4) instead
of zeroing out the LSBs of quantized DCT coefficients as a
function of relative payload in bpnzac for OutGuess at JPEG
quality 75. White: Gain of R-SRNet with reference (4) w.r.t.
single-channel SRNet for the same setup.

in the spatial domain, the means of L1-normalized filters are more
tightly clustered around zero with standard deviation of 0.03-0.04.

6.5 Stego source mismatch

The three embedding algorithms in JPEG domain studied above
share certain similarities. OutGuess and LSBF use the same embed-
ding operation but OutGuess makes additional changes of the same
nature to the image to restore its histogram to the original form.
In contrast, while the embedding operation of MBS is identical
to that of OutGuess or LSBF for negative DCT coefficients, it is
different for positive coefficients. Because of these similarities and
differences, in this section we test how well a detector trained on
one embedding algorithm can detect stego images outputted by the
other two algorithms. In other words, we study a specific form of a
stego-source mismatch.

Table 4 shows the detection accuracy of R-SRNet trained on
one algorithm and tested on another. The payloads / change rates
for each scheme were selected to force the same level of detection
accuracy for each individual algorithm (around 90%). As expected,

the mismatch in the stego source between LSBF and OutGuess is
negligible. The detector of MBS, however, exhibits a large missed
detection rate on LSBF and OutGuess, which is again to be expected
because the reference channel is not prepared correctly and also
because the embedding scheme is different.

Table 3: Minimum, average, and maximum correlation be-
tween 3 X 3 filters from the first layer from both channels
in R-SRNet trained for two payloads R and three embedding
algorithms. JPEG quality 75.

R 0.003 0.001
min avg max | min avg max
LSBF | -0.74 —0.12 0.83 | —=0.90 0.03 0.98
oG -0.88 005 093 | -0.90 0.14 0.99
MBS | —0.83 0.29 097 | -0.86 0.39 1.00

Table 4: Detection accuracy of R-SRNet when training on
one embedding algorithm and testing on another (JPEG
quality 75). The generic LSB flipper (LSBF) was trained for
change rate f§ = 0.005, OutGuess for payload R = 0.01 bpnzac,
and MBS for payload R = 0.03 bpnzac.

Tested on
Trained LSBF OG MBS
LSBF 89.10 89.64 56.34
OG 89.37 90.14 58.17
MBS 68.33 68.75 91.09

7 CONCLUSIONS

This paper revisits an old topic — detection of the early stegano-
graphic schemes with embedding operations that swap values from
small disjoint subsets of the cover dynamic range, an example of
which is the LSB replacement. Steganography that uses such em-
bedding operations allows construction of reference signals that



Accuracy

Change rate

Payload (bpnzac)

Payload (bpnzac)

Figure 6: Detection accuracy as a function of change rate / payload for R-SRNet, R-JRM, and R-GFR for LSBF (left), OutGuess
(middle), and MBS (right), for JPEG quality 75. For LSBF and OutGuess, we also include the detection performance of the

GLR [26, 27]. The legend is common across all three charts.

are close to the input image but are not sensitive to embedding
modifications. As shown in the past, augmenting a rich feature with
a feature computed from the reference signal (parity-aware rich
models) can significantly improve detection of LSB replacement
with feature-based classifiers.

This paper extends the prior art in two ways. First, we consider
more general type of embedding operations than replacement of
LSBs in the spatial domain by showing how the reference signal
should be prepared for a generic LSB flipper in the JPEG domain
(LSBF), example of which is Jsteg. Second, we study how this refer-
ence should be used within the novel detection paradigm — deep
convolutional neural networks. Since the network learns the im-
age representation as well as the steganalysis classification jointly,
we present the reference image as a second input channel to the
network. We work with the recently proposed SRNet because all
its filters are randomly initialized, which allows the network to
discover a way to incorporate the second channel via data driven
end-to-end training. Further research seems to be needed on how
to incorporate reference channels in network architectures with
heuristically initialized or fixed filters in the first layer, such as the
YeNet.

The merit of the proposed ideas is shown on experiments with
LSBR in spatial domain, OutGuess, MBS, and LSBF. The detection
accuracy of the two-channel SRNet (R-SRNet) is compared with
classifiers trained on rich models as well as rich models augmented
with features computed from the same reference signal presented
to the network. Additionally, we report the results for other types
of detectors, including structural attacks, the weighted stego-image
detector, and detectors for LSBF and OutGuess constructed with
statistical signal detection tools from models of DCT coefficients.

Steganalysis with reference images is a special case of a more
general, modern topic of detection with side-information at the
detector. While most recent work focused on side-information in the
form of the selection channel (the embedding change probabilities)
to improve detection of content-adaptive steganography, there are

many other types of potentially useful reference signals that could
be formed from the input image, such as alternative color space
representations or reference signals obtained by filtering the input
image. Investigating these directions will be a part of our future
effort.

Finally, we stress that our study focused only on embedding
schemes with a swapping constraint (see Section 2.1) that permit
the type of reference signals investigated in this paper. Modern
content-adaptive embedding schemes, such as UNIWARD (in both
domains), HILL, WOW, MiPOD, or UED use embedding operations
that do not allow construction of the same embedding invariant
(reference channel).
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