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Abstract—All modern steganographic algorithms for
digital images are content adaptive in the sense that
they restrict the embedding modifications to complex
regions of the cover which are difficult to model for the
steganalyst. The probabilities with which the individual
cover elements are modified (the selection channel) are
determined jointly by the size of the embedded payload
and content complexity. The most accurate detection of
content-adaptive steganography is currently achieved
with detectors built as classifiers trained on cover
and stego features that incorporate the knowledge of
the selection channel. While selection-channel-aware
features have been proposed for detection of spatial
domain steganography, an equivalent for the JPEG
domain does not exist. Since modern steganographic al-
gorithms for JPEG images are currently best detected
with features formed by histograms of noise residuals
split by their JPEG phase, we use such feature sets as
a starting point in this paper and extend their design
to incorporate the knowledge of the selection channel.
This is achieved by accumulating in the histograms
a quantity that bounds the expected absolute distortion
of the residual. The proposed features can be com-
puted efficiently and provide a substantial detection
gain across all tested algorithms especially for small
payloads.

Index Terms—Steganalysis, adaptive steganography,
selection channel, JPEG, detection, security.

I. Introduction
Today, the most secure steganographic schemes for

digital images represented either in the spatial or JPEG
domain are content adaptive in the sense that they execute
embedding changes primarily in complex regions of the
cover image capitalizing on the inability of the steganalyst
to detect the traces of embedding in content that is hard
to model [1]–[7]. Today’s detectors of such schemes are
built using machine learning, such as binary classifiers
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trained on examples of cover and stego images represented
with higher-order statistics of noise residuals, the so-
called rich media models. This also applies to modern
steganographic schemes that hide messages in quantized
DCT coefficients from a JPEG file, UED (Uniform Em-
bedding Distortion) [6], [7], and J-UNIWARD [5]. The
most accurate detection of such JPEG steganography is
currently achieved with features that are computed in the
spatial domain [8]–[11] rather than from quantized DCT
coefficients [12].
A potential weakness of content-adaptive schemes is

that the rule that drives the distribution of the embedding
change probabilities among individual elements of the
cover is, by the Kerckhoffs’ principle, also available to
the steganalyst, who can use it to improve the detection.
Recently, the spatial rich model (SRM) [13] has been mod-
ified to incorporate content adaptivity within the feature
design [2], [14]. This was achieved in a heuristic manner
by accumulating some function of the embedding change
probabilities in co-occurrences of noise residuals. Such
selection-channel-aware features improve the detection of
adaptive algorithms to a varying degree depending on how
strong the content adaptivity is. The embedding algorithm
WOW [1] suffered the most from such attacks while the
security of S-UNIWARD [5], HILL [3], and MVG [15]
decreased only marginally.
The way the selection channel is incorporated in SRM

cannot be used for detection of JPEG steganography
because the embedding and the steganalysis domains are
different. In particular, the embedding changes applied to
an 8× 8 block of quantized DCT coefficients affect all 64
pixels and the modifications are no longer limited to ±1
changes but can have a much larger amplitude depending
also on the JPEG quality factor. Pixel change rate thus no
longer properly characterizes the distortion at a pixel. On
the other hand, knowing the embedding change probabili-
ties of quantized DCT coefficients it is possible to compute
the expected value of the distortion at each pixel. In this
paper, we show that by accumulating such a quantity in
histograms of JPEG-phase-aware noise residuals [8]–[10],
it is possible to construct spatial rich features that provide
more accurate detection of current content-adaptive JPEG
algorithms. The improvement appears to be the largest for
small payloads and diminishes for large payloads when the
embedding algorithm loses most of its content adaptivity.
This paper starts in the next section with a summary of

basic concepts and notational conventions. In Section III,
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we review steganalysis features that utilize JPEG phase.
These features are subsequently made aware of the selec-
tion channel in Section IV. Guided by the requirement
of a reasonable computational complexity, we select the
most promising and computationally efficient variant of
the quantity that will be accumulated in the histograms
of residuals forming the feature vector. At the end of this
section, we describe the final form of the selection-channel-
aware features in a pseudo-code. In Section V, we subject
the newly proposed features to tests on three content-
adaptive JPEG algorithms on a wide range of payloads
and two JPEG quality factors. We also investigate the
robustness of the features to imprecisely determined pay-
load and selection channel. The paper is summarized in
Section VI where we also discuss possible extensions of
this work.

II. Notation and basic concepts
Boldface font is reserved for vectors and matrices, the

calligraphic font for sets, and capital letters will be used
to denote random variables with the corresponding lower-
case letter as their realizations. The elements of a matrix
will be denoted with the corresponding italic font with
subscript indices. The cardinality of a finite set B is
denoted |B|. We use the notation [P ] for the Iverson
bracket [P ] = 1 when P is true and [P ] = 0 when P is
false.
For easier technical description, we only consider n1×n2

8-bit grayscale images with n1 and n2 multiples of 8. A
JPEG image will be represented with an array of quan-
tized DCT (discrete cosine transform) coefficients of the
same dimensions as the pixel representation of the image,
c ∈ {−1023, . . . , 1024}n1×n2 . Often, it will be useful to
consider a block representation of c. The (a, b)th 8 × 8
block of DCT coefficients, 1 ≤ a ≤ n1/8, 1 ≤ b ≤ n2/8, is
formed by ckl with k, l restricted to 1 + 8(a−1) ≤ k ≤ 8a,
1 + 8(b − 1) ≤ l ≤ 8b, and will be denoted c(a,b). The
individual elements of c(a,b) are c

(a,b)
kl , this time with

0 ≤ k ≤ 7, 0 ≤ l ≤ 7, hoping that no confusion will be
created by using the indices k, l for two different purposes
– when used in ckl, their range is 1 ≤ k ≤ n1, 1 ≤ l ≤ n2
while in a block, as in c(a,b)

kl , their range is 0, . . . , 7.
The (k, l)th DCT basis, 0 ≤ k, l ≤ 7, is an 8× 8 matrix

f (k,l) = (f (k,l)
ij ), 0 ≤ i, j ≤ 7:

f
(k,l)
ij = wkwl

4 cos πk(2i+ 1)
16 cos πl(2j + 1)

16 , (1)

where w0 = 1/
√

2 and wk = 1 for k > 0. By decom-
pressing the (a, b)th block of DCT coefficients, we obtain
a corresponding block of 8× 8 pixels x(a,b)

ij , 0 ≤ i, j ≤ 7:

x
(a,b)
ij =

7∑
k,l=0

f
(i,j)
kl qklc

(a,b)
kl , (2)

where qkl are the elements of the JPEG luminance quan-
tization matrix. Note that in (2), the pixel values are
not rounded. Putting all blocks into one n1 × n2 matrix,

the decompressed (non-rounded) image is represented with
a matrix x ∈ Rn1×n2 .
Finally, we note that a, b will be strictly used to index

blocks, k, l for DCT coefficients, and i, j for pixels with
the same range and conventions applied to both i, j and
k, l.

III. Features based on JPEG phase
Today, there exist numerous steganalysis features

that are suitable for detection of JPEG steganogra-
phy. Early embedding schemes, such as F5 [16], model-
based steganography [17], Jsteg [18], OutGuess [19], and
Steghide [20], are best detected using statistics formed
from quantized DCT coefficients, such as the JPEG Rich
Model (JRM) [12]. Unfortunately, JRM is far less effective
for detecting modern JPEG steganography, examples of
which are UED [6], [7] and J-UNIWARD [5], which adapt
their embedding changes to cover content. Such schemes
are currently best detected with features assembled as
histograms of noise residuals split by their JPEG phase de-
fined as the location w.r.t. the 8×8 pixel grid: DCT Resid-
uals (DCTR) [8], PHase Aware Rich Model (PHARM) [9],
and Gabor Filter Residuals (GFR) [10]. The splitting by
phase is effective because the impact of the stego signal
on pixels in a decompressed JPEG image depends on the
JPEG phase.
In this section, we provide enough detail about ste-

ganalysis features based on JPEG phase to be able to
explain in the next section their new proposed variant that
incorporates the knowledge of the selection channel.
The DCTR [8], PHARM [9], and GFR [10] features

are formed from noise residuals computed by convolving
the decompressed (non-rounded) JPEG image x (2) with
kernel g ∈ Rk1×k2 ,

r(x,g) = x ? g. (3)

We note that because the convolution uses no padding
(implemented with ’valid’ in Matlab), r ∈ Rn′

1×n′
2 with

n′1 = n1 − k1 + 1 and n′2 = n2 − k2 + 1. Next, the residual
is quantized,

r(x,g, Q) = QQ(r(x,g)/q), (4)

where QQ is a quantizer with centroids Q =
{0, 1, 2, . . . , T}, q is a fixed quantization step and T a trun-
cation threshold. Each residual is used to compute the
following 64 histograms, 0 ≤ m ≤ T , 0 ≤ i, j ≤ 7 :

h(i,j)
m (x,g, Q) =

bn′
1/8c∑

a=1

bn′
2/8c∑

b=1
[|r(a,b)

ij (x,g, Q)| = m]. (5)

All T + 1 values, h(i,j)
0 , . . . , h

(i,j)
T , from each histogram

are concatenated into a vector of 64× (T + 1) values and
these vectors are then concatenated for kernels b from
some filter bank B. To reduce the feature dimensionality,
64 × (T + 1) × |B|, and make the bins better populated,
certain bins in the concatenated histograms are merged
based on symmetries of g and DCT bases. The DCTR
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feature set uses a filter bank with |BDCT R| = 64 kernels
g corresponding to 64 DCT bases f (k,l), 0 ≤ k, l ≤ 7.
In PHARM, the kernels are obtained by convolving nine
small-support pixel predictors with 100 random projection
kernels (a total of |BP HARM | = 900 kernels), while in GFR
|BGF R| = 256 Gabor filters (four support sizes, two Gabor
phases, and 32 orientations) are employed. We note that
the size, k1 × k2, of the kernels in all three feature sets
satisfies 1 ≤ k1, k2 ≤ 15, which means that no kernel
ever intersects more than four 8× 8 pixel blocks. Finally,
we wish to point out that the PHARM feature vector as
described in [9] uses only T = 2 bins as the T + 1st bin is
redundant (the sum of all three bins is equal to the number
of pixels). In our case, however, we will be accumulating
some other quantity in the histogram bins and it will no
longer be true that the sum of the bins is constant. This
increases the dimensionality of the the proposed version
of PHARM (see the next section) from the original 12,600
to 18,900.

IV. Residual distortion measure
To incorporate the selection channel into the feature

design, we inspired ourselves with the selection-channel-
aware version of the SRM [13] called maxSRM [14], where
the co-occurrences of noise residuals accumulated the em-
bedding change probabilities. Porting this concept directly
to the features from the previous section for steganalysis
of JPEG images is, however, not possible because the em-
bedding changes are executed in the DCT domain and the
embedding modifies the pixel values in the decompressed
JPEG image x by a wide range of values rather than by
±1.

Our approach is inspired by the following observation.
In the pixel domain, when the embedding changes by
±1 are equiprobable with probability β, the change rate
is one half of the expected absolute value (or a square)
of the pixel embedding distortion: 1

2 (β |1|+ β |−1|) =
1
2

(
β (1)2 + β (−1)2

)
= β. Thus, an equivalent quantity

for JPEG-domain steganography would be the expected
distortion of the noise residual (3). Because the embedding
changes in the DCT domain by ±1 are again equiprobable,
the expected distortion in the pixel domain is zero due
to the linearity of inverse DCT and the linearity of the
convolution. To measure the distortion, it is thus natural
to use some measure of the statistical spread, such as the
expected value of the square of the residual distortion or its
absolute value. To this end, we first derive the properties of
the random variable representing the embedding distortion
in the residual domain and then investigate several differ-
ent quantities of statistical spread as a distortion measure.
The criterion we use to select the final measure is driven
by computational complexity.
We denote the quantized DCT coefficients in the (a, b)th

block of the cover and stego image by c(a,b)
kl and s

(a,b)
kl =

c
(a,b)
kl + w

(a,b)
kl , respectively, where w(a,b)

kl are the embed-
ding changes, which are independent realizations of ran-
dom variables W (a,b)

kl attaining the values in {−1, 0, 1}

with probabilities {β(a,b)
kl , 1 − 2β(a,b)

kl , β
(a,b)
kl } determined

by the steganographic scheme and the payload size. We
stress that this model of embedding fits all modern
JPEG steganographic algorithms, including both versions
of UED and J-UNIWARD. Recalling (2), the difference
between the non-rounded pixel values in the decompressed
cover and stego images, x(a,b)

ij =
∑7

k,l=0 f
(i,j)
kl qklc

(a,b)
kl and

y
(a,b)
ij =

∑7
k,l=0 f

(i,j)
kl qkls

(a,b)
kl , respectively, is:

z
(a,b)
ij = y

(a,b)
ij − x(a,b)

ij =
7∑

k,l=0
f

(i,j)
kl qklw

(a,b)
kl . (6)

Because the embedding changes are mutually indepen-
dent and because

E[W (a,b)
kl ] = 0, (7)

V ar[W (a,b)
kl ] = 2β(a,b)

kl , (8)

we have

E[Z(a,b)
ij ] = 0, (9)

V ar[Z(a,b)
ij ] = 2

7∑
k,l=0

(f (i,j)
kl )2q2

klβ
(a,b)
kl , (10)

where we remind that, by our convention, Z
(a,b)
ij =∑7

k,l=0 f
(i,j)
kl qklW

(a,b)
kl is the random variable whose real-

ization is z(a,b)
ij .

From (3) and the linearity of convolution, the residual
distortion, the difference between the residuals of stego
and cover images, ρ ∈ Rn′

1×n′
2 , can thus be expressed as

ρ(w) = r(y,g)− r(x,g) = z(w) ? g. (11)

Technically, ρ also depends on the kernel g but, in
order to declutter the notation, we only explicitly write
the dependence on the embedding changes w as these are
the most important. Since the kernels g for the features
discussed in the previous section never intersect more than
four different 8×8 pixel blocks, when computing a specific
value of ρ(a,b)

ij (w) (11), it will generally depend on either
one 8 × 8 block, when the kernel is positioned within
one JPEG block, two blocks when the kernel straddles
two adjacent blocks, or four blocks. Because the inverse
DCT is linear and the residual also depends linearly on
the non-rounded pixel values, each value of ρ(a,b)

ij (w) is
thus a linear combination of 64, 128, or 256 values of
w coming from four 8 × 8 blocks. In order to formalize
this linear relationship, we will associate a given residual
value (and thus a value of ρ(a,b)

ij ) with the position of the
upper left corner of the kernel g when performing the
convolution. Due to this convention, the value of ρ(a,b)

ij (w)
is thus a linear combination of wkl from four blocks with
block indices (a, b), (a+ 1, b), (a, b+ 1), and (a+ 1, b+ 1).
Introducing the pair of indices (u, v) ∈ {0, 1} × {0, 1}, we
can write

ρ
(a,b)
ij (w) =

7∑
k,l=0

1∑
u,v=0

α
(u,v)
kl (i, j,g)w(a+u,b+v)

kl , (12)
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where 0 ≤ u, v ≤ 1 and 0 ≤ i, j, k, l ≤ 7. Following (6) and
(11), the coefficients α(u,v)

kl (i, j,g) depend on the kernel g,
and the phase (i, j). From (6), we see that they also depend
on the coefficients of the inverse DCT and the quantization
steps qkl. They are, however, independent of the content or
the embedding scheme and can be in principle computed.
In this paper, we will not need their explicit form and
will only do with the fact that the distortion ρ(a,b)

ij can be
expressed this way (12).

To better explain the coefficients α(u,v)
kl , we note that,

for example, since the DCTR and GFR features use 8× 8
kernels g, for phase (0,0) only 64 values of α(u,v)

kl (i, j,g)
will generally be non-zero. For phases (0, k), (k, 0), k > 0,
there will be 128 non-zero values, and for the remaining
49 phases there will be 256 non-zero α(u,v)

kl (i, j,g).
Because E[W (a,b)

kl ] = 0 for all (a, b) and k, l, we have
E[ρ(a,b)

ij (W)] = 0 as well. Thus, we will take some measure,
δ, of the statistical spread of the distortion ρ(a,b)

ij (W) as a
quantity that should be accumulated in the histograms of
residuals (5) in a similar fashion as the embedding change
probabilities are accumulated in the selection-channel-
aware maxSRM [14], 0 ≤ m ≤ T , 0 ≤ i, j ≤ 7:

h
(i,j)
m (x,g, Q,β) =
bn′

1/8c∑
a=1

bn′
2/8c∑

b=1
[|r(a,b)

ij (x,g, Q)| = m] · δ(ρ(a,b)
ij (W)). (13)

In (13), h(i,j)
m stands for the selection-channel-aware ver-

sion of the histograms (5) and (i, j) ∈ {0, . . . , 7}2 is
the JPEG phase. Note that since the distribution of W
depends on β (8), so does h(i,j)

m .
The two most fequently used measures of statistical

spread of a random variable are the standard deviation
and the expectation of the absolute value, the latter being
considered as a more robust measure. We thus study
the following measures of statistical spread of ρ(a,b)

ij (W)
(c.f., (12)) :

δstd(β)(a,b)
ij =

√
V ar[ρ(a,b)

ij (W)]

=

√√√√2
7∑

k,l=0

1∑
u,v=0

(α(u,v)
kl (i, j,g))2β

(a+u,b+v)
kl (14)

δEA(β)(a,b)
ij = E[|ρ(a,b)

ij (W)|]. (15)

Note that the distribution of the random variable W is
fully described using β. This is why in (14)–(15), we point
out the dependency of δstd and δEA on the change rates.
To clarify the above expressions, δstd(β)(a,b)

ij stands for
the ijth element in the (a, b)th block in matrix δstd(β) ∈
Rn′

1×n′
2 and the same applies to δEA(β). Note that both

δstd(β) and δEA(β) depend on the change rates β (the
selection channel), which is an n1×n2 array of embedding
change probabilities arranged in the same fashion as the
DCT coefficients, and on the kernel g.

Neither (14) or (15) are, unfortunately, suitable for
practical usage. The standard deviation δstd(β) can be
computed for all (a, b) and a given kernel g using one
convolution A ? β, where A is a 16× 16 matrix with four
8× 8 blocks A(u,v) = ((α(u,v)

kl (i, j,g))2)7
k,l=0

A(i, j,g) =
(

A(0,0) A(0,1)

A(1,0) A(1,1)

)
. (16)

However, because there are 64 phases and |B| kernels,
one thus needs to compute 64×|B| convolutions, which is
rather expensive even for the smallest filter bank of DCTR
and completely prohibitive for PHARM with 900 filters.
The problem with δEA(β) is that it cannot be computed

analytically and Monte Carlo estimation requires at least
200 simulated embeddings to obtain a value accurate
within 10% (determined experimentally for DCTR and
J-UNIWARD at 0.4 bpnzac, bits per non-zero AC DCT
coefficient). This increases the number of required convo-
lutions by a factor of 200. One possibility is to approximate
the sum (over all indices) in ρ(a,b)

ij (w) (12) with a Gaussian
random variable N (0, σ2) for which one can easily verify
that E[|N (0, σ2)|] = 2σ/

√
2π. Unfortunately, this brings

us back to the prohibitive complexity of evaluating the
variance. Also, note that with this approximation δEA(β)
and δstd(β) coincide.
To resolve the complexity issues, we turned our

attention to how the JPEG-phase-aware features are
formed [8]–[10]. They are computed in two steps by first
decompressing the JPEG image to the spatial domain and
then evaluating merely |B| convolutions. To substantially
decrease the complexity, we will strive to keep a similar
two-stage process. To achieve this goal, we switch to an
upper bound of |ρ(a,b)

ij (w)| :

|ρ(w)| ≤ |z| ? |g|, (17)

and then further bound

|z(a,b)
ij | ≤

7∑
k,l=0

|f (i,j)
kl | · qkl · |w(a,b)

kl |. (18)

Because E[|W (a,b)
kl |] = 2β(a,b)

kl , we have for the expecta-
tion

E[|Z(a,b)
ij |] ≤ 2

7∑
k,l=0

|f (i,j)
kl |qklβ

(a,b)
kl , t

(a,b)
ij (β). (19)

Finally, using (17)–(19) δEA(β) can be bounded by

δEA(β) = E[|ρ(W)|] ≤ t(β) ? |g| , δuSA(β), (20)

which can be efficiently evaluated by first computing
t
(a,b)
ij = 2

∑7
k,l=0 |f

(i,j)
kl |qklβ

(a,b)
kl by blocks (this is as com-

putationally demanding as decompressing a JPEG image)
and then convolving t(β) with the absolute value of the
kernel. We used the subscript ’uSA’ (Upper bounded Sum
of Absolute values) for the bounding quantity.
We observed an approximately quadratic dependence

between δuSA and δEA, δuSA ∝ δ2
EA, when used within

the DCTR, PHARM, and GFR features. Thus, to obtain
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Figure 1. Plot of δ1/2
uSA versus δEA for one BOSSbase image for the DCTR filter bank. The first number pair above each scatter plot indicates

the DCTR kernel (the spatial frequency of the DCT mode) while the second pair is the JPEG phase. Note that the square root forces an
approximate linear relationship between both quantities.

a quantity that is more closely related to the expectation
of the residual distortion, we use the square root δ1/2

uSA(β)
meaning that it is applied to the n′1 × n′2 matrix δuSA(β)
elementwise. The above claims are supported by Figure 1,
which shows δ

1/2
uSA(β)(a,b)

ij versus δEA(β)(a,b)
ij across all

blocks (a, b) for sixteen different combinations of DCTR
kernels g and JPEG phases. The values of δEA were
obtained using Monte Carlo simulations by embedding the
image ’1013.pgm’ from BOSSBase 1000-times. The first
ordered pair above each plot shows the spatial frequency of
the DCT kernel while the second ordered pair is the JPEG
phase i, j. Note that with the exception of kernel-phase
combinations (4, 3), (4, 1) and (4, 3), (6, 7), there appears

to be an approximate linear relationship between δ
1/2
uSA

and δEA. Qualitatively similar results were observed for
the PHARM and GFR filter banks. The square root thus
indeed makes δ1/2

uSA(β) a rather good (and much more
computationally efficient!) approximation of δEA(β).

A. Final feature design
We now summarize in pseudo-code and in Figure 2

the final design of the features that will be subjected to
experimental tests in the next section. In the pseudo-code
below, β ∈ Rn1×n2 is the selection channel in the form
of a matrix of embedding change probabilities of DCT
coefficients arranged in the same fashion as unquantized
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DCT coefficients, f (i,j)
kl are the DCT bases (1), and qkl

is the 8 × 8 JPEG luminance quantization matrix of the
investigated image.

1) Select a JPEG-phase-aware feature set, which
is equivalent to selecting the filter bank B ∈
{BDCT R,BP HARM ,BGF R}.

2) Decompress the JPEG image under investigation to
the spatial domain (apply (2) by blocks), denote the
non-rounded pixel values with x.

3) For each filter (kernel) g ∈ B:
a) compute the residual r(x,g) = g ? x and

quantize it r(x,g, Q) = QQ(r(x,g)/q).
b) compute t(β) ∈ Rn1×n2 by blocks, t(a,b)

ij (β) =∑7
k,l=0 |f

(i,j)
kl |qklβ

(a,b)
kl for all blocks (a, b).

c) evaluate δ1/2
uSA(β) =

√
t(β) ? |g| (square root

applied in an elementwise fashion to all ele-
ments of the n′1 × n′2 matrix t(β) ? |g|).

d) Compute the following 64 × (T + 1) values
h

(i,j)
m (x,g, Q,β), 0 ≤ m ≤ T , 0 ≤ i, j ≤ 7:

h
(i,j)
m (x,g, Q,β) =
bn′

1/8c∑
a=1

bn′
2/8c∑

b=1
[|r(a,b)

ij (x,g, Q)| = m] · δ1/2
uSA(β)(a,b)

ij .

(21)

4) Concatenate h(i,j)
m (x,g, Q,β), g ∈ B, 0 ≤ i, j ≤ 7,

0 ≤ m ≤ T , and form the final feature vector
using the same symmetrization rules as those used
for forming the JPEG-phase-aware features from
h

(i,j)
m (x,g, Q) (5).

Note that in the pseudo-code, in contrast to (19) we
removed the multiplicative factor “2” from t

(a,b)
ij (β) as it

does not change the detection performance.

V. Experimental results
In this section, we subject the selection-channel-aware

features described in Section IV to tests on real imagery.
The experiments are conducted on the standard database
BOSSbase 1.01 [21] containing 10,000 grayscale images
with 512 × 512 pixels. We ran the experiments on JPEG
images with quality factors 75 and 95.

The steganographic algorithms tested in this section are
the original version of UED [7] (UED-SC), its improved
version [6] (UED-JC), and J-UNIWARD as described
in [5]. We use three JPEG-phase-aware steganalysis fea-
ture sets: DCTR [8], PHARM [9], and Gabor Filter Bank
(GFR) [10]. We stress that we always compute the quan-
tity δ

1/2
uSA from the image under investigation. Thus, if

the image is a stego image, we used the change rates
β computed from costs obtained from the stego image.
As such, they will generally be slightly different than the
change rates used for embedding because of the effect of
embedding changes themselves. It is necessary to carry
out the experiments this way because this is exactly what
would be happening in practice.

The detection accuracy is evaluated using the min-
imal total error probability under equal priors, PE =
minP FA

1
2 (PFA + PMD), achieved on the test set averaged

over ten 50/50 splits of the database. The symbols PFA
and PMD stand for the false-alarm and missed-detection
rates. The classifier is the FLD ensemble [22]. To inform
the reader about the statistical significance of the im-
provements, we state that the mean absolute deviation
of PE over the ten ensemble runs ranges between 0.0005
and 0.0046, depending on the feature set, embedding
algorithm, payload, and JPEG quality factor (also see
Table II).
Figure 3 shows the average detection error PE as a

function of payload in bits per non-zero AC DCT coef-
ficient (bpnzac) for three steganographic algorithms and
two JPEG quality factors and payloads ranging from 0.05–
0.5 bpnzac. The exact numerical values are in Table II.
For easy comprehension, color is used to highlight the
embedding algorithm. Each combination of the embedding
algorithm, payload, and JPEG quality factor has two
partially overlapping bars with the solid color fill showing
the performance of the selection-channel-aware features
computed with δ1/2

uSA while the original features correspond
to the patterned column.
The GFR feature set always offers the most accurate

detection irrespectively of the feature type, embedding
algorithm, payload, and quality factor. Making the fea-
tures aware of the selection channel generally improves
the detection for payload smaller than 0.3 bpnzac. The
gain is larger for quality factor 75 than for 95. In some
cases, the detection error drops by as much as 8% (UED-
JC for 75 quality factor). With increasing payload, the
gain decreases, which is natural because the embedding
algorithms become less adaptive. For large payloads em-
bedded with UED, the gain may even become negative
(the detection slightly worsens). We verified that this
loss is not due to the fact that the embedding change
probabilities extracted from the stego and cover images
differ as the loss remains unchanged when computing
the features with embedding probabilities of the cover.
This thus points to a small inefficiency associated with
the quantity δ

1/2
uSA accumulated in the histograms. The

significant detection gain for small payloads far outweighs
this small loss as it is more difficult to detect smaller
payloads.

Even though the goal of this paper is not to benchmark
steganography, it is interesting that the order of the three
tested steganographic schemes by their empirical security
does not change when switching to selection-channel-aware
features and does not depend on the feature type either.

A. Robustness study
Making features aware of the selection channel implicitly

assumes that the size of the embedded payload is known or
known at least approximately. A natural question to ask is
whether the lack of knowledge about the payload size has
any negative effect on detection accuracy and how big it
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Figure 2. Diagram describing the proposed algorithm for the extracting of the δ1/2
uSA features.

is when compared with the original version of the features
that do not incorporate the selection channel. Note that
if the payload size is known only approximately, not only
the selection channel will be imprecise but also the stego
images used for training the classifier will be embedded
with a different payload. In other words, the Warden will
be faced with a stego-source mismatch. The problem of
classifier training with unknown payload has previously
been investigated in [23]. Although a detailed study of this
topic is clearly outside of the scope of our work, we believe
that some limited study has its place in the current paper.
In the first experiment in this section, we contrast the
difference in detection loss due to stego-source mismatch
when the original and selection-channel-aware features are
used. We remark that studying only the situation when
the selection channel is imprecise (but the stego images
are created with the correct payload) does not make sense
because, as stated above, the Warden either knows or does
not know the payload.
Additionally, it is also worth investigating how much

the embedding changes themselves affect the selection
channel. When computing the quantity δ1/2

uSA from a stego
image, the change rates are obtained from an image that
has been modified by embedding and will thus generally
be different than the change rates used for embedding
(computed from the cover image). The impact of this
imprecision on selection-channel-aware features is studied
in the second experiment of this section.

Robustness experiment 1. The purpose of this exper-
iment is to assess the loss of detection accuracy when de-
tecting images embedded with relative payload αtst while
training a classifier on payload αtrn. Since we deal with
three features, two quality factors, and three embedding
methods, we selected only two cases that we report on
in detail (the other cases are qualitatively similar). They
correspond to J-UNIWARD with DCTR and δ1/2

uSA-DCTR
features on 75% quality JPEGs (Figure 4 left) and UED-
JC with GFR and δ

1/2
uSA-GFR features on 75% quality

JPEGs (Figure 4 right). Both figures show the detection
error PE as a function of αtrn. Each curve corresponds to

one testing payload αtst (differentiated by markers) and
one feature set (differentiated by line style). To read the
graph, first select a test payload αtst and a feature set (e.g.,
select one curve). To see the detection error when classi-
fying with a detector trained for αtrn, move on the curve
left and right. The increase in PE when moving away from
the point on the curve corresponding to αtrn = αtst thus
informs us about the loss of detection. The figure shows
that the loss of detection due to stego-source mismatch
for DCTR and δ1/2

uSA-DCTR is quite comparable, meaning
that the selection-channel-aware DCTR does not suffer
from the stego-source mismatch any more than the original
DCTR features. Also, the loss is only slowly increasing
with the difference αtst − αtrn, which is comforting to
know for practical applications. The figure also shows that
while δ1/2

uSA-GFR for large αtst does not improve on GFR,
it is much more stable to the stego-source mismatch. For
example, in the case of UED-JC on 75% quality with
αtst = 0.5 bpnzac and αtrn = 0.05 bpnzac the detection
error of δ1/2

uSA-GFR is 14% lower than that of GFR, even
though there is no gain when αtrn = αtst = 0.05 bpnzac.

Robustness experiment 2. In Table I, we provide a
limited scale experiment with J-UNIWARD and UED-JC
on JPEG quality factor 75, reporting PE when the change
rates are always computed from covers (even when we are
extracting a feature from a stego image) and when they are
extracted from the corresponding image. The differences
in detection accuracy are well within the statistical spread
and thus statistically insignificant. This is in agreement
with what was reported in [24], namely that the effect of
the embedding changes on selection-channel estimation,
and subsequent steganalysis, is negligible.

VI. Conclusions
Steganalysis of content-adaptive steganography needs

to take into account the probabilities with which the
embedding modifies individual cover elements. However,
incorporating this prior probabilistic knowledge (the selec-
tion channel) within detectors built as classifiers trained on
examples of cover and stego features is quite challenging.
The main complication stems from the fact that the
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Figure 3. Detection error PE for three steganographic algorithms for DCTR, GFR, and PHARM features (patterns) and their selection-aware
δ

1/2
uSA version (solid fill) versus payload, JPEG quality factors 75 and 95.

quantity from which steganalysis features are formed are
quantized noise residuals extracted in the pixel domain.
When the embedding modifies JPEG DCT coefficients,
the impact of embedding on residuals becomes even more
complicated. Fortunately, if the residuals are obtained in
a linear fashion from pixels, e.g., by convolving the image
with a kernel, because the embedding changes are inde-
pendent, it is possible to derive the impact of embedding
on residuals analytically.

In this paper, we investigate several quantities that
measure the expected embedding distortion in the residual
domain when embedding in the JPEG domain. In order
to obtain a distortion measure that can be evaluated

with acceptable computational complexity, we consider an
upper bound on the mean absolute residual distortion and
transform it in a non-linear manner to make it strongly
correlate with the true mean value. The resulting quantity
can be efficiently computed using convolutions and is
accumulated in residual histograms of three feature sets
that are aware of the JPEG phase: DCTR, PHARM, and
Gabor Filter Residuals (GFR). These feature sets were
selected because they currently provide the most accurate
detection of modern steganography in JPEG domain.
The selection-channel-aware versions of these features pro-
vide further significant detection gain of content-adaptive
JPEG steganography, especially for small payloads.
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Figure 4. Detection error PE when training the detector on stego images embedded with payload αtrn and testing on αtst. One testing
payload corresponds to one curve. Left: J-UNIWARD with DCTR and δ1/2

uSA-DCTR, Right: UED-JC with GFR and δ1/2
uSA-GFR, both for

JPEG quality factor 75.

Table I
Detection error PE for J-UNIWARD and UED-JC with
δ

1/2
uSA-DCTR features with change rates computed always

from the cover (cover) and with change rates computed
from the image under investigation (true); JPEG quality
factor 75. The standard deviation of the results ranges

between 0.0013 and 0.0030.

J-UNIWARD 0.1 0.2 0.3 0.4 0.5

δ
1/2
uSA (cover) 0.4159 0.3083 0.2166 0.1389 0.0836
δ

1/2
uSA (true) 0.4189 0.3084 0.2160 0.1401 0.0833
UED-JC

δ
1/2
uSA (cover) 0.3193 0.2101 0.1343 0.0789 0.0335
δ

1/2
uSA (true) 0.3179 0.2102 0.1336 0.0785 0.0337

We also investigated the loss of detection accuracy due
to imprecise selection channel either due to unknown pay-
load or due to the stego changes themselves. The selection-
channel-aware version of the features does not appear any
more sensitive to stego-source mismatch than the original
feature sets, and for some combinations of mismatched
testing and training payloads, they even appear more
robust to the stego-source mismach. In agreement with
previous art, while the embedding changes themselves
introduce a slight imprecision into the selection channel
(and thus into the quantity accumulated in histograms)
they have a negligible effect on detection accuracy.

The main innovative concept coined in this paper goes
beyond building features for JPEG steganography and
should be adopted for detection of spatial-domain em-
bedding as well. Indeed, the value of a noise residual is
always affected by more than one pixel – by the entire

support of the residual kernel. Thus, considering only the
embedding change probability of one pixel to which the
residual is attributed, as is done in the current state of
the art, the maxSRM, is only an approximation of the
probabilistic impact of embedding on the residual. Since
virtually all embedding schemes modify pixel values by ±1
with equal probabilities, the embedding change probability
is proportional to the expected value of the mean absolute
distortion of the pixel. Thus, in principle the approach
described in this paper can and should be applied to
steganalysis of spatial-domain steganography as well. With
feature sets like the SRM or the projection SRM (PSRM),
however, there is one significant complication due to the
fact that these feature sets utilize non-linear (min-max)
residuals. Since neighboring min-max residuals are depen-
dent, computing the expected absolute distortion of the
residual can be quite involved and becomes intractable for
residuals with a large support. This topic is elaborated in
more detail in [25].
The code for all algorithms (steganographic methods,

feature extractors, and classifiers) is available for download
from http://dde.binghamton.edu/download/.
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