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Abstract
It is widely recognized that steganography with side-

information in the form of a precover at the sender en-
joys significantly higher empirical security than other em-
bedding schemes. Despite the success of side-informed ste-
ganography, current designs are purely heuristic and lit-
tle has been done to develop the embedding rule from first
principles. Building upon the recently proposed MiPOD
steganography, in this paper we impose multivariate Gaus-
sian model on acquisition noise and estimate its parame-
ters from the available precover. The embedding is then
designed to minimize the KL divergence between cover and
stego distributions. In contrast to existing heuristic algo-
rithms that modulate the embedding costs by 1–2|e|, where
e is the rounding error, in our model-based approach the
sender should modulate the steganographic Fisher infor-
mation, which is a loose equivalent of embedding costs,
by (1–2|e|)^2. Experiments with uncompressed and JPEG
images show promise of this theoretically well-founded ap-
proach.

Introduction
Steganography is a privacy tool in which messages are

embedded in inconspicuous cover objects to hide the very
presence of the communicated secret. Digital media, such
as images, video, and audio are particularly suitable cover
sources because of their ubiquity and the fact that they
contain random components, the acquisition noise. On
the other hand, digital media files are extremely complex
objects that are notoriously hard to describe with suffi-
ciently accurate and estimable statistical models. This is
the main reason for why current steganography in such em-
pirical sources [3] lacks perfect security and heavily relies
on heuristics, such as embedding “costs” and intuitive mod-
ulation factors. Similarly, practical steganalysis resorts
to increasingly more complex high-dimensional descriptors
(rich models) and advanced machine learning paradigms,
including ensemble classifiers and deep learning.

Often, a digital media object is subjected to process-
ing and/or format conversion prior to embedding the se-
cret. The last step in the processing pipeline is typically
quantization. In side-informed steganography with pre-
cover [21], the sender makes use of the unquantized cover
values during embedding to hide data in a more secure
manner. The first embedding scheme of this type described
in the literature is the embedding-while-dithering [14] in
which the secret message was embedded by perturbing the
process of color quantization and dithering when convert-
ing a true-color image to a palette format. Perturbed quan-
tization [15] started another direction in which rounding
errors of DCT coefficients during JPEG compression were

used to modify the embedding algorithm. This method has
been advanced through a series of papers [23, 24, 29, 20],
culminating with approaches based on advanced coding
techniques with a high level of empirical security [19, 18, 6].

Side-information can have many other forms. Instead
of one precover, the sender may have access to the acqui-
sition oracle (a camera) and take multiple images of the
same scene. These multiple exposures can be used to es-
timate the acquisition noise and also incorporated during
embedding. This research direction has been developed to
a lesser degree compared to steganography with precover
most likely due to the difficulty of acquiring the required
imagery and modeling the differences between acquisitions.
In a series of papers [10, 12, 11], Franz et al. proposed
a method in which multiple scans of the same printed im-
age on a flat-bed scanner were used to estimate the model
of the acquisition noise at every pixel. This requires ac-
quiring a potentially large number of scans, which makes
this approach rather labor intensive. Moreover, differences
in the movement of the scanner head between individual
scans lead to slight spatial misalignment that complicates
using this type of side-information properly. Recently, the
authors of [7] showed how multiple JPEG images of the
same scene can be used to infer the preferred direction of
embedding changes. By working with quantized DCT co-
efficients instead of pixels, the embedding is less sensitive
to small differences between multiple acquisitions.

Despite the success of side-informed schemes, there ap-
pears to be an alarming lack of theoretical analysis that
would either justify the heuristics or suggest a well-founded
(and hopefully more powerful) approach. In [13], the au-
thor has shown that the precover compensates for the lack
of the cover model. In particular, for a Gaussian model of
acquisition noise, precover-informed rounding is more se-
cure than embedding designed to preserve the cover model
estimated from the precover image assuming the cover
is “sufficiently non-stationary.” Another direction worth
mentioning in this context is the bottom-up model-based
approach recently proposed by Bas [2]. The author showed
that a high-capacity steganographic scheme with a rather
low empirical detectability can be constructed when the
process of digitally developing a RAW sensor capture is
sufficiently simplified. The impact of embedding is masked
as an increased level of photonic noise, e.g., due to a higher
ISO setting. It will likely be rather difficult, however, to
extend this approach to realistic processing pipelines.

Inspired by the success of the multivariate Gaussian
model in steganography for digital images [25, 17, 26], in
this paper we adopt the same model for the precover and
then derive the embedding rule to minimize the KL di-
vergence between cover and stego distributions. The side-



information is used to estimate the parameters of the ac-
quisition noise and the noise-free scene. In the next section,
we review current state of the art in heuristic side-informed
steganography with precover. In the following section, we
introduce a formal model of image acquisition. In Sec-
tion “Side-informed steganography with MVG acquisition
noise”, we describe the proposed model-based embedding
method, which is related to heuristic approaches in Sec-
tion “Connection to heuristic schemes.” The main bulk of
results from experiments on images represented in the spa-
tial and JPEG domain appear in Section “Experiments.”
In the subsequent section, we investigate whether the pub-
lic part of the selection channel, the content adaptivity,
can be incorporated in selection-channel-aware variants of
steganalysis features to improve detection of side-informed
schemes. The paper is then closed with Conclusions.

The following notation is adopted for technical argu-
ments. Matrices and vectors will be typeset in boldface,
while capital letters are reserved for random variables with
the corresponding lower case symbols used for their real-
izations. In this paper, we only work with grayscale cover
images. Precover values will be denoted with xij ∈ R,
while cover and stego values will be integer arrays cij
and sij , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, respectively. The sym-
bols [x], dxe, and bxc are used for rounding and rounding
up and down the value of x. By N (µ,σ2), we understand
Gaussian distribution with mean µ and variance σ2. The
complementary cumulative distribution function of a stan-
dard normal variable (the tail probability) will be denoted
Q(x) =

∫∞
x

(2π)−1/2 exp
(
−z2/2

)
dz. Finally, we say that

f(x)≈ g(x) when limx→∞ f(x)/g(x) = 1.

Prior art in side-informed steganography with
precover

All modern steganographic schemes, including those
that use side-information, are implemented within the
paradigm of distortion minimization. First, each cover ele-
ment cij is assigned a “cost” ρij that measures the impact
on detectability should that element be modified during
embedding. The payload is then embedded while min-
imizing the sum of costs of all changed cover elements,∑
cij 6=sij

ρij . A steganographic scheme that embeds with
the minimal expected cost changes each cover element with
probability

βij =
exp(−λρij)

1 +exp(−λρij)
, (1)

if the embedding operation is constrained to be binary, and

βij =
exp(−λρij)

1 +2exp(−λρij)
, (2)

for a ternary scheme with equal costs of changing cij
to cij ± 1. Syndrome-trellis codes [8] can be used to
build practical embedding schemes that operate near the
rate–distortion bound.

For steganography designed to minimize costs (em-
bedding distortion), a popular heuristic to incorporate

a precover value xij during embedding is to modulate
the costs based on the rounding error eij = cij − xij ,
−1/2≤ eij ≤ 1/2 [23, 29, 20, 18, 19, 6, 24]. A binary embed-
ding scheme modulates the cost of changing cij = [xij ] to
[xij ] + sign(eij) by 1−2|eij |, while prohibiting the change
to [xij ]− sign(eij):

ρ′ij(sign(eij)) = (1−2|eij |)ρij (3)

ρ′ij(−sign(eij)) = Ω, (4)

where ρij(u) is the cost of modifying the cover value by u∈
{−1,1}, ρij are costs of some additive embedding scheme,
and Ω is a large constant. This modulation can be justified
heuristically because when |eij | ≈ 1/2, a small perturbation
of xij could cause cij to be rounded to the other side. Such
coefficients are thus assigned a proportionally smaller cost
because 1− 2|eij | ≈ 0. On the other hand, the costs are
unchanged when eij ≈ 0, as it takes a larger perturbation
of the precover to change the rounded value.

A ternary version of this embedding strategy [6] allows
modifications both ways with costs:

ρ′ij(sign(eij)) = (1−2|eij |)ρij (5)

ρ′ij(−sign(eij)) = ρij . (6)

Some embedding schemes do not use costs and, in-
stead, minimize statistical detectability. In MiPOD [25],
the embedding probabilities βij are derived from their im-
pact on the cover multivariate Gaussian model by solving
the following equation for each pixel ij:

βijIij = λ ln
1−2βij
βij

, (7)

where Iij = 2/σ̂4
ij is the Fisher information with σ̂2

ij an es-
timated variance of the acquisition noise at pixel ij, and
λ is a Lagrange multiplier determined by the payload size.
To incorporate the side-information, the sender first con-
verts the embedding probabilities into costs and then mod-
ulates them as in (3) or (5). This can be done by reversing
the formula for optimal embedding probabilities for ternary
cost-based schemes (2):

ρij = ln
(
1/βij −2

)
. (8)

When reversing (2) λ can be set to 1 because multi-
plying costs by a positive scalar does not change the em-
bedding scheme.

Modeling acquisition
An image x acquired using an imaging sensor has two

components – the true scene t and acquisition imperfec-
tions (noise) n:

x = t + n(t,θ). (9)

While the scene t is deterministic, the acquisition noise
n is stochastic in nature. It depends on t because, for ex-
ample, the variance of the photonic (shot) noise linearly



depends on light intensity (the so-called heteroscedastic
noise model [9]). Other random components of n, includ-
ing readout and electronic noise depend on the particular
sensor. We exclude from n imperfections that are con-
sistent from picture to picture (of the same scene under
the same conditions and camera settings), which include
the photo-response non-uniformity and dark current. De-
mosaicking, color correction, and additional filtering ap-
plied to the acquired image either in the camera or dur-
ing post-production introduce dependencies into spatially
neighboring samples of n, turning it into a random field
parametrized by θ, a vector encompassing the properties
of the imaging hardware, camera settings, as well as the
processing pipeline.

Fundamentally, the steganographic capacity of x is the
entropy H(n). However, embedding a payload of this size
undetectably is generally possible only in very special cases
when the processing pipeline is drastically simplified. Re-
cently, Bas [2] has showed that RAW images acquired using
a monochrome sensor (a sensor not equipped with a color
filter array) with no spatial filtering applied to them can
carry a rather large payload with a very low level of em-
pirical detectability. The method is called “steganography
by cover source switching” because the stego image statisti-
cally resembles an image acquired with a higher sensor gain
setting (ISO). In general, however, constructing a stegano-
graphic method capable of embedding H(n) bits is likely
infeasible in virtually all practical situations because of
the daunting complexity and non-stationarity of the ran-
dom field n. More seriously, many elements of the pro-
cessing pipeline are unknown to the sender as most digital
camera manufacturers use proprietary demosaicking algo-
rithms with local content-dependent rules for interpolating
the missing colors as well as proprietary content-adaptive
algorithms for denoising and sharpening.

Side-informed steganography with MVG acqui-
sition noise

It is intuitively clear that incorporating even partial
information about the noise-free scene t and the statisti-
cal properties of n at the sender should improve security.
Indeed, the sender has a fundamental advantage because,
in contrast to the Warden, she may have access to the ac-
quisition oracle (the digital camera) as well as the scene
being imaged. For example, she can utilize the RAW sen-
sor capture or multiple acquisitions of the same scene or
even “manufacture” the side-information prior to embed-
ding by subjecting the precover image to an information-
reducing operation, such as quantization, downsampling,
format conversion, and/or reduction of the dynamic range.

In this section, we adopt a tractable model of
the acquisition noise estimated from the available side-
information and derive the embedding rule by minimizing
the KL divergence between cover and stego images. The
precover is modeled as an array of n= n1×n2 independent
but not necessarily identically distributed random variables
Xij , i = 1, . . . ,n1, j = 1 . . . ,n2. The error introduced by
color interpolation is also included in the acquisition noise
since we view demosaicking as part of acquisition. There-

fore, Xij will naturally have a larger variance in textured
and noisy regions where color interpolation algorithms are
less accurate. Since a commonly adopted model of acqui-
sition noise inherent to the sensor is the Gaussian distri-
bution (the heteroscedastic model [9, 28]), we adopt this
model in this paper as well:

Xij ∼N (tij ,σ2
ij), (10)

where tij is the precover value that would be registered
by the sensor in the absence of acquisition noise. Finally,
we assume that the ijth cover element cij is obtained by
rounding a specific realization of Xij . This is a simplifica-
tion because in practice Xij will be constrained to a finite
dynamic range. Note that the rounding encompasses more
general uniform scalar quantizers.

We constrain ourselves to the simplest case when the
sender has one precover xij , which will be used to obtain
an estimate of the true scene, t̂ij , as well as the acquisi-
tion noise variance, σ̂ij . We note that the methodology
proposed here can be extended to more general types of
side-information, such as multiple precovers / covers. This
possibility to postponed to our future work.

The embedding operation considered in this paper is
binary, meaning that each precover element xij will be ei-
ther rounded to cij = [xij ] or to c̄ij = [xij ]+sign(xij− [xij ])
with the convention that when xij is an integer, c̄ij ∈
{cij −1, cij + 1} is chosen uniformly randomly.

Denoting the stego image elements with sij , the em-
bedding will change cij to c̄ij with probability β′ij :

Pr{sij = cij}= 1−β′ij (11)

Pr{sij = c̄ij}= β′ij , (12)

effectively embedding h2(β′ij) nats, where h2(x) =−x lnx−
(1−x) ln(1−x) is the binary entropy function.

Denoting the closed interval Iij = [cij , c̄ij ] when c̄ij >
cij and Iij = [c̄ij , cij ] when c̄ij ≤ cij , the embedding is
designed to minimize the KL divergence between cover and
stego distributions conditioned on precover values Xij ∈
Iij . WLOG, in what follows we will assume that c̄ij > cij .
This conditional probability for the cover cij = [Xij ] is

Pr{[Xij ] = cij |Xij ∈ Iij}=
pij(cij)

pij(cij) +pij(c̄ij)
(13)

Pr{[Xij ] = c̄ij |Xij ∈ Iij}=
pij(c̄ij)

pij(cij) +pij(c̄ij)
(14)

where

pij(cij) =Q

(
cij − t̂ij
σ̂ij

)
−Q

(
cij + 1/2− t̂ij

σ̂ij

)
(15)

pij(c̄ij) =Q

(
cij + 1/2− t̂ij

σ̂ij

)
−Q

(
cij + 1− t̂ij

σ̂ij

)
(16)

with Q(x) the tail probability of a standard normal random
variable N (0,1).



The ijth pixel in the stego image is modeled as a dis-
crete random variable Sij with range {cij , c̄ij} with pmf

Pr{Sij = cij |Xij ∈ Iij}=
qij(cij)

qij(cij) + qij(c̄ij)
, (17)

Pr{Sij = c̄ij |Xij ∈ Iij}=
qij(c̄ij)

qij(cij) + qij(c̄ij)
, (18)

where

qij(cij) = (1−β′ij)pij(cij) +β′ijpij(c̄ij) (19)

qij(c̄ij) = β′ijpij(cij) +(1−β′ij)pij(c̄ij). (20)

Denoting for compactness rL
ij = pij(cij) and rR

ij =
pij(c̄ij), a straightforward derivation gives the following
KL divergence between ijth cover and stego elements con-
ditioned on Xij ∈ Iij :

dij =DKL

(
Cij

∥∥∥Sij∣∣∣Xij ∈ Iij) (21)

=
rL
ij

rL
ij + rR

ij

log
rL
ij

(1−β′ij)r
L
ij +β′ijr

R
ij

(22)

+
rR
ij

rL
ij + rR

ij

log
rR
ij

β′ijr
L
ij + (1−β′ij)r

R
ij

(23)

=−
rL
ij

rL
ij + rR

ij

log

(
1−β′ij +β′ij

rR
ij

rL
ij

)
(24)

−
rR
ij

rL
ij + rR

ij

log

(
1−β′ij +β′ij

rL
ij

rR
ij

)
(25)

.=
β′ij

2

2(rL
ij + rR

ij)

×

rL
ij

(
1−

rR
ij

rL
ij

)2

+ rR
ij

(
1−

rL
ij

rR
ij

)2
 (26)

=
β′ij

2

2
(rL
ij − r

R
ij)

2

rL
ij + rR

ij

(
1
rL
ij

+ 1
rR
ij

)
(27)

.= 1
2β
′
ij

2I ′ij , (28)

where

I ′ij =
(rL
ij − r

R
ij)

2

rL
ijr

R
ij

(29)

is the Fisher information obtained by expanding the loga-
rithms using Taylor series w.r.t. β′ at β′ = 0 and keeping
only the leading term.

The total KL divergence between the cover and stego
objects C = (Cij), S = (Sij), i = 1, . . . ,n1, j = 1 . . . ,n2, is
the sum

DKL(C||S) =
n1∑
i=1

n2∑
j=1

dij
.=
n1∑
i=1

n2∑
j=1

1
2β
′
ij

2I ′ij . (30)

The actual embedding change rates β′ij are determined
by minimizing DKL(C||S) under the payload constraint

n1∑
i=1

n2∑
j=1

h2(β′ij) = αn, (31)

where α is expressed in nats per pixel. Similar to
MiPOD [25], the proposed scheme minimizes the sum
of pixels’ Fisher information weighted by squared change
rates as in this case the embedding “cost” relates to sta-
tistical detectability. Note that minimizing the KL diver-
gence makes the design optimal only against an omniscient
Warden who knows the exact actions of the embedder,
including the rounding errors eij . When the problem of
embedding and detection are formulated withing a game-
theoretical framework when both the sender and the War-
den randomize their strategies of how to distribute (detect)
the payload, the sender should also minimize a weighted
sum of squared change rates to operate at the Nash equi-
librium of a zero-sum game when the payoff is defined as
Warden’s test power for a bounded false alarm [22].

The optimization problem can be approached in
a standard manner using the method of Lagrange multi-
pliers by solving the equations ∂L/∂β′ij = 0, where

L=
n1∑
i=1

n2∑
j=1

1
2β
′
ij

2I ′ij −λ
′ (h2(β′ij)−αn

)
. (32)

This leads to n non-linear equations for β′ij

β′ijI
′
ij = λ′ log

1−β′ij
β′ij

, (33)

for each ij, which can be solved numerically, for example,
by a binary search over λ′ ∈ [0,∞] in a similar manner as
described in [17]. This embedding algorithm will be called
side-informed MiPOD (SI-MiPOD).

Extension to JPEG domain
The proposed scheme is extended to work with JPEG

images in a straightforward manner. The independence im-
posed on the noise n and linearity of the DCT allows us to
easily compute the variance of each non-rounded DCT co-
efficient given the estimated variances of pixels σ̂ij . Thus,
the same MVG model of acquisition noise can be applied
to non-rounded DCT coefficients.

Given an 8×8 block of pixel values zij ∈ {0, . . . ,255},
0 ≤ i, j ≤ 7, in an uncompressed image z, the klth DCT
coefficient dkl, 0≤ k, l≤ 7, before rounding is a linear com-
bination of pixel values

dkl = 1/qkl
7∑

i,j=0
f

(k,l)
ij zij , (34)

or in matrix form symbolically d = DCT(z), where

f
(k,l)
ij = wkwl

4 cos πk(2i+ 1)
16 cos πl(2j+ 1)

16 , (35)



w0 = 1/
√

2, wk = 1 for k > 0, and qkl is the JPEG quan-
tization matrix. With the adopted acquisition model (10),
the precover DCT coefficients dkl are independent samples
from an array of Gaussian variables N (µkl,σ2

kl). The pa-
rameters of the Gaussian acquisition noise can be estimated
as

σ̂2
kl = 1/q2

kl

7∑
i,j=0

(
f

(k,l)
ij

)2
σ̂2
ij , (36)

where σ̂2
ij are pixel variances estimated in the spatial do-

main using, e.g., the variance estimator used in MiPOD.
With a single precover, the mean is estimated as

µ̂kl = dkl. (37)

Having estimated the MVG parameters, the pro-
posed side-informed embedding rounds dkl to either [dkl]
or [dkl] + sign(ekl), ekl = dkl − [dkl] as described above.
This embedding algorithm will be called side-informed
J-MiPOD (SI-J-MiPOD).

Connection to heuristic schemes
We now contrast the derived embedding rule with

heuristic binary side-informed embedding with precover
(see Eq. (3)). When only the precover value xij is avail-
able as side-information, t̂ij = xij is a minimum variance
unbiased estimate under our acquisition model. To obtain
a closed-form expression, we work in the limit of small and
large values of σ̂ij for both schemes.

Model-based SI-MiPOD
Without loss on generality, we will assume that eij ≥ 0.

Recalling the formula for pij (15) and Taylor expansion of
Q(x)≈ 1

2 −
1√
2π
x+ 1

6
√

2π
x3 +O(x5) at x= 0, for large σ̂ij

rL
ij =Q

(
[xij ]−xij

σ̂ij

)
−Q

(
[xij ] +1/2−xij

σ̂ij

)
,

=Q

(
−eij
σ̂ij

)
−Q

(
−eij + 1/2

σ̂ij

)
(38)

.= 1
2σ̂ij
√

2π
− 1

6σ̂3
ij

√
2π

(3
2e

2
ij −

3
4eij + 1

8

)
(39)

and

rR
ij =Q

(
[xij ] + 1/2−xij

σ̂ij

)
−Q

(
[xij ] + 1−xij

σ̂ij

)
,

=Q

(
−eij + 1/2

σ̂ij

)
−Q

(
−eij + 1
σ̂ij

)
(40)

.= 1
2σ̂ij
√

2π
− 1

6σ̂3
ij

√
2π

(3
2e

2
ij −

9
4eij + 7

8

)
. (41)

Thus,

(rL
ij − r

R
ij)

2 .=
(1/2−eij)2

16σ̂6
ij2π

(42)

and

1/rL
ij
.= 1/rR

ij
.= 2σ̂ij

√
2π (43)

for large σ̂ij . Finally, the Fisher information (29) becomes

I ′ij
.= 1

4σ̂4
ij

(
1/2−|eij |

)2
. (44)

This expression for the FI (44) has been written for the
general case when eij can be both negative and positive. It
informs us that, for large noise variance, the rounding error
should modulate the Fisher information by (1/2−|eij |)2,
which achieves a similar effect as multiplying the costs by
1− 2|eij | in heuristic cost-based side-informed embedding
schemes. We remark that the approximation (44) is fairly
accurate as long as σ̂ij & 2 for all values of eij .

For a small σ̂ij , the terms rLij and rRij in (29) can
be simplified using the asymptotic expression for Q(x) ≈

1√
2πx

e−x
2/2 for large x:

rL
ij =Q

(
[xij ]−xij

σ̂ij

)
−Q

(
[xij ] +1/2−xij

σ̂ij

)
,

.= 1−
exp
(
−(−eij)2/(2σ̂2

ij)
)

√
2π
(
eij/σ̂ij

)
−

exp
(
−(1/2−eij)2/(2σ̂2

ij)
)

√
2π
(
(1/2−eij)/σ̂ij

) (45)

.= 1. (46)

Following the same steps,

rR
ij
.=

exp
(
−(1/2−eij)2/(2σ̂2

ij)
)

√
2π(1/2−eij)/σ̂ij

, (47)

and finally

I ′ij =
(
rR
ij − r

L
ij

)2

rL
ijr

R
ij

.= 1
rR
ij

(48)

.=
√

2π
1/2−eij
σ̂ij

exp
(
(1/2−eij)2/(2σ̂2

ij)
)
. (49)

For small σ̂ij , we will derive an approximate solution
to (33) by taking its logarithm

lnβ′ij + lnI ′ij
.= lnλ′+ ln

(
− ln

(
β′ij
))
, (50)

from which β′ij
.= λ′/I ′ij and thus

β′ij
.= λ′

I ′ij
= 1√

2π
σ̂ij

1/2−eij
exp
(
−(1/2−eij)2/(2σ̂2

ij)
)
.

(51)

When σ̂ij � 1/2− eij , the value of β′ij will rapidly
approach zero.



Heuristic SI-MiPOD
To obtain closed-form expressions, we will again con-

sider the case of a small σ̂ij and large σ̂ij . As described in
the above section on prior art, the heuristic side-informed
MiPOD starts with MiPOD’s embedding costs ρij derived
in (8), which are then modulated by the rounding error
ρ′ij = ρij

(
1−2

∣∣eij∣∣). The side-informed embedding prob-
abilities are

β′ij = e−λ
′ρ′

ij

1 +2e−λ
′ρ′

ij

= 1
2 +eλ

′ρ′
ij

, (52)

where λ′ is a Lagrange multiplier determined from the pay-
load constraint

∑
ij h2(β′ij) = αn. The embedding can be

reinterpreted as MiPOD with Fisher information

I ′ij = λ′

β′ij
ln
(
1/β′ij −2

)
= λ′(2 +eλ

′ρ′
ij )λ′ρ′ij . (53)

First, we carry out the analysis for large σ̂ij . To this
end, we rewrite Eq. (7) determining MiPOD’s embedding
change rates as

exp(βijIij/λ) = 1/βij −2. (54)

Recalling that Iij = 2/σ̂4
ij� 1 for large σ̂ij , the left

side can be approximated using Taylor expansion as

1 +
βijIij
λ

+
β2
ijI

2
ij

2λ2 = 1/βij −2 (55)

which is equivalent to
1

2λ2 y
3
ij + 1

λ
y2
ij + 3yij = Iij (56)

where yij = Iijβij . For small Iij , the first-order solution
to this cubic equation is y(1)

ij
.= Iij

3 and the second-order
solution

y
(2)
ij =

Iij
3 −

1
3λ

(
Iij
3

)2
, (57)

which gives us βij
.= 1

3 −
Iij

27λ . Substituting this approxi-
mation to Eq. (8) and keeping only the leading term gives
ρij

.= Iij

3λ and for the Fisher information (53)

I ′ij ∝ ρ
′
ij = ρij(1−2|eij |)

∝ Iij(1−2|eij |). (58)

For small σ̂ij , Iij will be large and βij
.= λ/Iij small,

as derived in the previous section, and therefore, ρij ≈
ln(Iij/λ−2). Substituting this result into (52) and recalling
that Iij = 2σ̂−4

ij :

β′ij = 1
2 +exp(λ′ρ′ij)

.= exp(−λ′ρ′ij) = exp(−λ′ρij(1−2|eij |))

.= exp
(
−λ′ ln(Iij/λ−2)(1−2|eij |)

)
= C(λ,eij)σ̂

4λ′(1−2|eij |)
ij , (59)

where C(λ,eij) does not depend on σ̂ij .

Comparison of model-based and heuristic MiPOD
In this section, we compare the properties of heuristic

SI-MiPOD and model-based SI-MiPOD using the above
approximations and experimentally.

For σ̂ij & 2, the Fisher information in model-based
SI-MiPOD is modulated by

(
1−2

∣∣eij∣∣)2 (44) while in
the heuristic SI-MiPOD by

(
1−2

∣∣eij∣∣) (58). Therefore,
model-based SI-MiPOD embeds a higher payload in pixels
with large noise variance.

For small σ̂ij , the embedding probabilities β′ij for
model-based SI-MiPOD rapidly approach zero for all val-
ues of eij (51), while for the heuristic SI-MiPOD the be-
havior of the probabilities β′ij(σ̂ij) depends on the expo-
nent 4λ′

(
1−2

∣∣eij∣∣) (59). As eij → 1/2, the exponent ap-
proaches zero and the embedding probability as a function
of σ̂ij should become concave. Summarizing both obser-
vations, we conclude that the model-based SI-MiPOD is
more adaptive to the acquisition noise variance σ̂2

ij than
heuristic SI-MiPOD.

All quantitative conclusions reached above are now
confirmed on an artificial precover xij with 5× 64 pixels
with all 5×64 combinations of values of five rounding er-
rors ei ∈ {0,0.125,0.25,0.375,0.495} and 64 variances lin-
early spaced between 0.01 and 64. WLOG, we set the
precover values to xij = t̂ij = ei.

First, the embedding change rates βij were computed
for payload α nats as explained in the section on prior art
(also, see [25, 17]), converted to costs ρij using Eq. (8), and
modulated ρ′ij = (1−2ei)ρij as in Eq. (3). The modulated
costs were then used to obtain the change rates via β′ij =
exp(−λ′ρ′ij)/(1 + exp(−λ′ρ′ij)) with λ′ determined by the
same payload α.

Figure 1 shows the embedding change probability β′ij
for α = 0.3 nats as a function of the variance σ2

j for each
ei with the five curves corresponding to five values of ei,
i = 1, . . . ,5. The image on the left is for the heuristic
binary SI-MiPOD (see [6] and Eq. (3)) while the image
on the right corresponds to the model-based SI-MiPOD.
The lines positioned lower correspond to lower ei. Note
that both schemes embed maximum possible entropy when
e→ 1/2. In agreement with our analysis, for small vari-
ance, model-based SI-MiPOD is more conservative (em-
beds with smaller change rates) than heuristic SI-MiPOD.
On the other hand, for large variance, the model-based
version embeds with larger change rates. In other words,
model-based SI-MiPOD is more content adaptive than its
heuristic counterpart. While this may make the model-
based approach more vulnerable to attacks utilizing the
selection channel, such attacks are much more difficult to
implement for the Warden because she does not have ac-
cess to the rounding errors. More on this topic appears in
Section “Public vs. private side-information and adaptiv-
ity.”

Experiments
In this section, we provide the results and interpreta-

tion of all experiments in both spatial and JPEG domains.
We start with the description of our image sources. To con-
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Figure 1. Embedding change probability β′ as a function of variance σ2 on a synthetic cover for α = 0.3 nats using heuristic side-informed binary MiPOD
(left) and model-based binary MiPOD (right).
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Figure 2. Security of MiPOD and its heuristic and model-based SI ver-
sions with side-information in the form of precover obtained by converting
BOSSColor images to grayscale.

trast the performance of heuristic side-informed schemes
with the model-based versions, we include experiments on
uncompressed as well as JPEG images.

Image sources
Two primary data sources will be used: BOSSbase

1.01 with 10,000 512×512 color images, called BOSSColor,
and the same database of grayscale images, which will be
addressed as BOSSbase. All images were all taken in the
RAW format by seven different cameras, downsampled and
cropped to the final size of 512× 512 pixels. The script
used for the conversion and processing is also available from
the same web site as the database itself [1]. To create
BOSSColor, we modified the script to skip the conversion
from RGB to grayscale applied when creating BOSSbase.

Spatial domain (BOSSColor)
Figure 2 shows the results of our first experiment

on real imagery. BOSSColor images were converted
to grayscale using the formula x = 0.2989R+ 0.5870G+
0.1140B, producing non-rounded precover values xij ,
which would then be rounded to 8bit integers cij = [xij ]

to obtain the cover source of 8-bit grayscale 512×512 im-
ages. Estimates of pixels’ noise variance σ̂2

ij were obtained
from precover grayscale values xij using the same vari-
ance estimator as in MiPOD (Section V in [25]). Because
the selection channel depends on the rounding error eij ,
it is not clear how to utilize selection-channel-aware fea-
ture sets. Thus, we carry out steganalysis using the spa-
tial rich model (SRM) [16] with the low-complexity lin-
ear classifier [4] as a classifier. The empirical detectability
was measured using the minimal total probability of er-
ror, PE = minPFA (PMD +PFA)/2, where PMD and PFA are
missed-detection and false-alarm rates.

Alongside the above proposed side-informed technique
with t̂ij = xij and σ̂2

ij , we also tested the (non side-
informed) MiPOD itself on grayscale cover images with
pixel values cij = [xij ] and variances σ̂2

ij , and its binary
side-informed version with costs modulated as described
in (3). We note that all three embedding schemes were
simulated using an embedding simulator.

The model-based binary SI-MiPOD improves the
(ternary) MiPOD by 3–5% and the heuristic SI-MiPOD
by up to 2%. No improvement over the heuristic method
was observed for payloads larger than 0.3 bpp. We expect
that further gain may be obtained by searching for the best
parameters of the variance estimator in our model.

JPEG domain
We start with a note that with the introduc-

tion of model-based side-informed JPEG steganography
(SI-J-MiPOD) as described at the end of the previous
section, there now exists an equivalent embedding algo-
rithm that does not employ side-information, which we
call J-MiPOD. It starts from a JPEG cover image that
is decompressed to the spatial domain (without rounding
or clipping), pixel variances are estimated in the spatial
domain using MiPOD’s variance estimator, and the corre-
sponding variances of DCT coefficients are computed us-
ing (36). MiPOD is then directly applied as described
in [25] to quantized DCT coefficients of the cover JPEG.
That is, the coefficients are changed by ±1 with equal prob-
abilities that are computed to minimize the KL divergence
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between cover and stego DCT coefficients under a payload
constraint.

In this section, we thus compare the empirical
security of five embedding algorithms: two that do
not use side-information and start with a JPEG cover
(J-UNIWARD and J-MiPOD) and three side-informed
schemes, SI-UNIWARD, heuristic SI-J-MiPOD and model-
based SI-J-MiPOD as described at the end of the previ-
ous section. The detector was built with the Gabor Filter
Residuals (GFR) [27] features and the low-complexity lin-
ear classifier.

Figure 3 shows the detection error PE as a function of
payload in bits per non-zero AC DCT coefficient (bpnzac)
for four JPEG quality factors while Figure 4 shows the
same detection error but as a function of JPEG quality
factor for two payloads. Neither figure contains error bars
for better readability. The average statistical spread of
the results in terms of the standard deviation across ten
database splits was 0.0029 with 91% of all spreads falling
into the range 0.0010–0.0040.

It is comforting to confirm that the model-
based SI-J-MiPOD is more secure than the heuristic
SI-J-MiPOD, which supports the proposed theoretical ap-
proach to side-informed embedding. The gain increases
with increased JPEG quality factor and becomes up to al-
most 7% for QF 95 and payload 0.5 bpnzac. For small
payloads, all three side-informed schemes are nearly un-
detectable across all quality factors as evidenced in the
left graph of Figure 4. For larger payloads, the Model-
based SI-J-MiPOD clearly becomes the most secure tested
scheme, outperforming SI-UNIWARD as well. It is also in-
teresting to point out that the non side-informed J-MiPOD
is on par with J-UNIWARD for lower quality factors (up to
75) but then J-MiPOD starts losing w.r.t. J-UNIWARD.
We attribute this to the effect of compression on estima-
tion of pixel variance because when both algorithms are fed
costs and variances estimated from the precover, J-MiPOD
is more secure than J-UNIWARD across all tested payloads
and quality factors. We thus hypothesize that J-MiPOD
might benefit from fine-tuning the variance estimator to de-
compressed JPEG images. Since this topic does not con-
cern side-informed steganography, it is left to our future
effort.

Public vs. private side-information and adap-
tivity

The selection channel in side-informed steganography
is determined by both content complexity via the pixel
variance σ̂2

ij and by the side-information, the rounding er-
ror eij . The pixel variance is only slightly changed by
the embedding itself and thus constitutes a public side-
information available to the Warden. On the other hand,
the rounding error eij is extremely difficult to estimate
from the cover/stego image even for images with simple
content, such as blue sky images. Although we cannot cite
a source for this claim, this finding is based on our previous
unpublished effort and should be entirely plausible consid-
ering the fact that, for example, it is generally impossible to
obtain an accurate estimate of unquantized values of DCT

coefficients in a JPEG file. The only publications related
to improving the quality of JPEG decompressed images
relate to visually suppressing blockiness artifacts, which
is a task that is already difficult and much less demand-
ing than estimating the unquantized DCT coefficients. In
short, it is a reasonable assumption that the rounding error
is a private side-information unavailable to the Warden.

Thus, ideally an embedding scheme should be less
adaptive to content (σ̂2

ij) and more strongly adaptive to
the rounding error eij . Since we designed the model-
based SI-MiPOD to minimize the KL divergence between
cover and stego distributions, we are essentially assum-
ing an omniscient Warden who knows both σ̂2

ij and eij .
Based on the analysis in the above section on compar-
ison between heuristic and model-based SI-MiPOD, the
latter is more strongly adaptive to content (the acquisi-
tion noise variance) than the former. While the experi-
ments in the previous section show that the model-based
approach is less detectable when steganalyzed with the
selection-channel-unaware SRM (GFR) features (an igno-
rant Warden), the situation reverses when the stegana-
lyst utilizes the public selection channel (content). How-
ever, the model-based approach is indeed by design much
less detectable w.r.t. the hypothetical omniscient War-
den as long as the adopted model is good enough. Ta-
ble 1 summarizes the results for side-informed embedding
in the spatial domain (when converting an RGB image
to grayscale) and in JPEG domain when steganalyzing
with SRM (GFR) features, which corresponds to an ig-
norant Warden, maxSRMd2 and selection-channel-aware
GFR features (SCA-GFR) [5], which simulates Warden
aware of the public side-information, the content, and the
omniscient Warden fully informed by both content (σ̂2

ij)
and the private side-information, the rounding error eij .

In the spatial domain, strangely enough maxSRMd2
detects worse than SRM. On the other hand, in the JPEG
domain the GFR seems to detect the embedding as reliably
as the SCA variant of the features.

We note that there are really no other options for any
realistic Warden who does not know the rounding errors
eij . Fixing eij at some medium value is virtually the same
as fixing it at any other value. This is because the rounding
error is only in a multiplicative factor that modulates the
costs (Eq. (3) and (5)) in the heuristic schemes as well as
the Fisher information (44) in the model-based scheme.

Conclusions
Steganography with precover at the sender has come

a long way. The main progress has been due to advanced
coding techniques coupled with a heuristic incorporation
of the precover in the embedding algorithm. The typi-
cal heuristic calls for modulating costs by 1− 2|e|, where
−1/2< e≤ 1/2 is the rounding error. Despite the success
of side-informed schemes, such as SI-UNIWARD or UED,
little has been done to design the embedding algorithm
from general principles. This paper attempts to rectify
this situation.

We start by adopting a multivariate Gaussian model
for the precover, modeling thus the process of acquiring



Experiment Payload Scheme Ignorant Aware of σ Aware of σ,e

RGB
0.2 bpp Heu SI-MiPOD 0.4104±0.0031 0.4402±0.0033 0.2306±0.0020

MB SI-MiPOD 0.4203±0.0024 0.3951±0.0072 0.3466±0.0029

0.4 bpp Heu SI-MiPOD 0.3002±0.0022 0.3317±0.0025 0.2065±0.0026
MB SI-MiPOD 0.3012±0.0029 0.2696±0.0031 0.2572±0.0031

JPEG
0.2 bpnzac Heu SI-J-MiPOD 0.4740±0.0034 0.4761±0.0029 0.4529±0.0031

MB SI-J-MiPOD 0.4787±0.0022 0.4751±0.0023 0.4630±0.0020

0.4 bpnzac Heu SI-J-MiPOD 0.3868±0.0040 0.3953±0.0031 0.3618±0.0015
MB SI-J-MiPOD 0.4182±0.0022 0.4210±0.0018 0.4038±0.0026

Table 1. Detection error when steganalyzing heuristic SI-MiPOD and model-based (MB) SI-MiPOD with SRM and maxSRMd2
and their JPEG counterparts with SRM/GFR (ignorant Warden), selection-channel-aware maxSRMd2/GFR (Warden aware of content,
σ̂2

ij), and omniscient Warden aware of both of content σ̂2
ij and rounding error eij .

a digital image using an imaging sensor. By constraining
the embedding rule to be binary, the embedding change
rates are derived to minimize the total KL divergence be-
tween cover and stego models estimated from the available
precover while enforcing the payload constraint. In con-
trast to heuristic schemes, in our model-based approach
the rounding error e modulates the Fisher information
by multiplying it by (1− 2|e|)2. The resulting embed-
ding is shown to be more adaptive to content than heuris-
tic side-informed embedding schemes. On experiments
with images represented in the spatial and JPEG domain,
we demonstrate that the newly derived model-based side-
informed steganography enjoys a higher level of empirical
security than heuristic embedding schemes when detect-
ing with selection-channel-unaware features (ignorant War-
den). The same holds when steganalyzing with selection-
channel-aware features fully informed by the rounding er-
ror (omniscient Warden). This is because the model-based
schemes were designed to minimize the KL divergence,
which implicitly assumes an omniscient Warden. With
features that incorporate the knowledge of the content
adaptivity, however, the model-based approach is more de-
tectable than heuristic schemes at least in the spatial do-
main. Optimal embedding should thus be designed within
a game-theoretic framework in which both the sender and
the Warden randomize their strategies.

The framework introduced in this paper lends itself
to more general forms of side-information, such as multi-
ple acquisitions of the same cover. Also, an extension to
ternary side-informed schemes is necessary. Both topics
are postponed to our future effort.

The code for the proposed model-based side-informed
steganographic scheme is available from http://dde.
binghamton.edu/download/feature_extractors/.
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