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Payload Scaling for Adaptive Steganography:
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Abstract—Payload-scaling laws of imperfect steganography
inform the steganographer about how the size of secret payload
should grow with cover size for constant statistical detectability.
In this paper, we carry out an empirical study for the case
when the steganographer and the steganalyst operate at a game-
theoretic equilibrium. We first explore the possibility to leverage
a generalization of the square root law to content-adaptive
steganography due to Ker. Since this result does not appear to
be tight enough for realistic cover sizes, we instead work with a
detectability limited sender in image sources with a forced model
as well as real images in both spatial and JPEG domain. The
scaling is observed in practice when the images are carefully
cropped to preserve the distribution of costs across scales.

Index Terms—Steganography, steganalysis, square root law,
payload scaling, adaptive embedding

I. INTRODUCTION

Payload-scaling laws of imperfect steganography [7], [12],
[4], [8], [9], [10], example of which is the square root law [9],
relate the statistical detectability of embedding changes with
the size of the embedded payload as the number of cover
elements, n, tends to infinity. In particular, they often specify
a critical payload size, sublinear in n, at which constant
statistical detectability is observed. These theoretical results
assume that the steganography is imperfect – it fails to preserve
the statistical properties of the cover source – since the secure
payload of perfect steganography [2] increases linearly with
n [16].

Scaling laws are typically derived for a specific cover model
and embedding operation. Early forms of the law [7], [4], [8]
assumed independent and identically distributed (i.i.d.) cover
elements and 1st-order Markov chains. Recent extensions
include models with dependent cover elements – Markov
random fields, kth-order Markov chains, Ising models, and
hidden-layer models [9].

As for the embedding process, it has traditionally been
assumed that the same stochastic operation is applied in-
dependently to each cover element, which inherently limits
such results to non-adaptive steganographic schemes that do
not use source coding. It has been conjectured in [9] that
source coding makes the critical payload size asymptotically
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proportional to
√
n log n instead of

√
n. This conjecture was

formulated in an adversarial setting when the detector has
the knowledge of the embedding change probabilities πi at
each cover element i. Considering steganography as a zero-
sum game between the steganographer and the steganalyst,
at equilibrium the sender should select πi that minimize the
statistical detectability, which is asymptotically directly linked
to the so-called deflection coefficient

δ2 ∝
n∑
i=1

π2
i ci, (1)

where ci is the cost of applying the embedding operation at
cover element i [11] (the steganographic Fisher information).
A payload scaling law in this setting of equilibrium embedding
and source coding was derived in [10].

The square root law was for the first time experimentally
validated in 2008 [12]. It was shown to hold robustly for
both the spatial and JPEG domain with the steganographic
schemes of the time, which were not content adaptive and
the source coding (for nsF5) was only simulated. Continuing
the spirit of these experiments, the goal of this paper is to
investigate whether payload-scaling laws for modern content-
adaptive steganography are observed in practice when the
steganographer is not guaranteed to embed at equilibrium due
to adoption of idealized models, images at different scales are
prepared with heuristic rules, and when the steganalyst uses
empirical detectors.

II. PAYLOAD SCALING FOR CONTENT-ADAPTIVE
STEGANOGRAPHY

Given a cover with n elements and costs ci, a Payload Lim-
ited Sender (PLS) minimizes (1) under the payload constraint

M =

n∑
i=1

H(πi), H being the binary entropy function. This

minimum is achieved when λci = H’(πi)
πi

for all i, where λ is
a Lagrange multiplier determined from the payload constraint.
The solution to the PLS has no closed form and must be either
approximated or computed numerically. This means that there
is no simple relationship between δ and M .1 To study the
critical payload size in practice, we need to fix δ for different
values of n. This leaves two possible approaches :

1) Use an asymptotic relationship between δ and M [10].
2) Use a Detectability Limited Sender (DLS)2 to fix the

detectability (1) across different scales (values of n).

1This is due to the use of optimal coding in the PLS; when no coding is
used, M = 2

∑
i
πi, and it is routine to show that M = 2δ

√
n.

2A DLS is the dual problem to the PLS in which the sender maximizes M
given a bound on δ.
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The advantage of the second approach is that it is non-
asymptotic but it prevents us from working with “cost-based”
steganography that minimizes a heuristically defined distortion

D =

n∑
i=1

πici instead of deflection. The first approach gives

flexibility in this regard at the cost of having to rely on
asymptotic approximations, which may not be sufficiently
accurate for realistic image sizes as will become apparent in
the next section.

In [10], the author derived the following asymptotic formula
for the deflection as n→∞:

δ2asymp ≈
r2

1

n

n∑
i=1

ci

(2)

as long as the payload size M = r
√
n log2(

√
n), where r

is the equivalent of the concept of relative payload, the root
rate. This result was formally established under the assumption
that the costs are ergodic and satisfy the “no free bits” and “no
deterministic pixels” conditions. The reader is referred to [10]
for more details.

In practice, we need to know how fast the approximation (2)
converges to the true deflection (1) as n → ∞. Furthermore,
the “no free bits” and “no determinism” conditions, while
not very restrictive in practice since free bits are somewhat
rare in natural images and the number of deterministic pixels
can be controlled (e.g., by choosing an appropriate crop of
the image), their presence indicates that the accuracy of the
approximation will depend on the distribution from which the
costs are sampled. Finally, it should be noted that the proof
relies on a few approximations that might not be accurate
enough for typical image sizes n and root rates r of practical
interest.

To test the impact of n and r on the approximation (2), we
sampled n costs from a fixed cost distribution and computed
the probabilities πi associated with this sequence of costs ci
by solving the PLS problem given M = r

√
n log2(

√
n). We

then compared (2) with the true deflection (1).
Several distributions of costs were tested: the Poisson, Beta,

and distributions with only two possible costs. Similar trends
were observed as long as the dynamic range of the costs
(the ratio of the largest finite cost to the smallest non-zero
cost Ω(c) = max(ci)/min(ci)) was not too large, e. g.,
Ω < 30, for distributions with two costs, and Ω < 150
for a scaled Poisson(5) distribution. Figure 1 (top) shows an
example of the ratio of the asymptotic approximation (2) and
the true deflection (1) for Poisson(5) + 1. The approxima-
tion is accurate irrespective of the scale for r ≈ 2.5; the
approximation overestimates the deflection for larger r and
underestimates it for smaller r. As n→∞, nevertheless, the
curves are guaranteed to approach a flat line at 1 for any r.
This convergence is, however, very slow and depends on the
dynamic range of costs. This makes the approximation (2)
impractical for typical image sizes as the range of usable
values of r is quite narrow. For 512 × 512 images, r ≈ 2.5
corresponds to payloads close to 0.05 bits per pixels (bpp),

which is relatively small when compared to values usually
selected in steganographic benchmarks.

If these deviations did not depend on the distributions
of costs, they could be easily rectified, if only empirically,
for example by adding a correction term polynomial in r.
However, as hinted above, these deviations depend heavily on
the distribution of the costs themselves, the major factor being
their dynamic range. To illustrate this impact, we repeated
the simulations by sampling ci from a uniform distribution
U(1,Ω) (with no free bits, the costs can always be scaled to
have the smallest cost equal to 1) and gradually increasing
the dynamic range Ω. The results are summarized in Figure 1
(bottom) showing a clear relationship between Ω and the slope
of the deviation: the larger the dynamic range, the larger the
slope. For Ω < 10, the curves look like the one observed in
Figure 1 (bottom), however, the deviation quickly increases as
soon as Ω > 10. We would like to emphasize that encountering
Ω > 100 in a natural image is quite common, especially
when using MiPOD [14] where the Fisher information (the
reciprocal square of local pixel variance) often ranges from
10−4 to 104. Thus, one cannot dismiss such cases as rare or
pathological. Similar behavior can be observed irrespectively
of the distribution used, the only difference being the minimum
dynamic range when the deviation from the curves in Figure 1
(top) is observed.

It should be noted that (2) is but a corrolary of a more
general relationship in [10], which in its more precise form
can be written as δ2 ≈ M/K−1(

∑n
i=1 ci/M), K(x) =

x/(log2(x))2. However, even when computing the exact in-
verse of K, this approximation was far from being satisfied
in our tests with the above cost distributions.

This short study shows that the asymptotic result (2) is
not tight enough for typical image sizes and current adaptive
embedding schemes. Instead, we follow the second option and
rely on a DLS to fix the deflection for each image across the
scales in our experiments.

III. EXPERIMENTAL INVESTIGATION

We investigate whether constant empirical detectability is
observed when one embeds for constant detectability of the
optimal detector and when

1) embedding is executed at an equilibrium,
2) using empirical detectors instead of the optimal ones,
3) heuristically adding or removing pixels (empirical source

preservation).
To fulfill Condition 1 and use a DLS as argued in Section II,
we use MiPOD as our embedding scheme. Schemes minimiz-
ing a heuristic distortion, such as the UNIWARD family [6] or
HILL [13], cannot be used because a meaningful DLS is not
available for them – there is no general approach that would
link a heuristically derived distortion to detectability (in terms,
for example of PE).

Even with MiPOD, however, we still rely on a model,
namely that the deflection based on this model accurately
captures the statistical impact of embedding, which hinges
upon a modeling assumption that each pixel is an independent
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Figure 1: Top: Ratio of the asymptotic approximation of the
deflection and the true deflection when sampling the costs from
Poisson(5)+1 for different n with Ω = 21. The behavior is
almost identical for other cost distributions as long as Ω is
not too large. Bottom: The ratio when sampling n = 512 ×
512 costs from U(1,Ω). Each curve corresponds to a different
value of Ω.

realization of a Gaussian random variable with a known mean
and variance that depends on local content complexity. There
is no reason to believe that this model holds everywhere in
natural images, especially in textured regions. To solve this
difficulty, we first use artificial sources that follow MiPOD’s
model exactly. This will ensure that the only possible dis-
crepancy between theoretical and empirical detectability will
necessarily come from Conditions 2 and 3.

The rest of this section describes our datasets, including the
the algorithm for “source-preserving” cropping, the embedding
across scales, and the classifiers used for detection.

A. Dataset construction

Our datasets were constructed from RAW BOSSbase images
converted to grayscale without downscaling or cropping. To
force MiPOD’s model, we used the methodology from [1].
First, MiPOD’s variance estimator was used to estimate the
variance σ2

i,j of each each pixel. The image was then de-
noised and its dynamic range linearly scaled (and rounded)
to [15, 240] (this is the “pixel mean” µi,j). The variance σ2

i,j

was further adjusted to σ2
i,j so that, after adding to µi,j a

sample from N (0, σ2
i,j), the probability of getting out of the

8-bit dynamic range is equal to the probability of a one-sided

5σ Gaussian outlier. The cost (Fisher information) at pixel
(i, j) is Ii,j = σ−4i,j .

In JPEG domain, the dataset was constructed using a
similar method. The denoised image was JPEG compressed
to obtain the means in the JPEG domain. The (k, l)th DCT
coefficient was noisified by adding to it a Gaussian sample
from N (0, (σ

(a,b)
k,l )2), where (σ

(a,b)
k,l )2 =

∑7
i,j=0(fk,li,j )2 ·

(σ
(a,b)
i,j )2/q2l,k, where (a, b) denotes the (a, b)th DCT block,

(i, j) the indices of the (i, j)th pixel in that block, (k, l)
the indices of the (k, l)th DCT coefficient in that block,
qk,l is the quantization step for the (k, l)th DCT mode,
fk,li,j = 1

4wkwl cos πk(2i+1)
16 cos πl(2j+1)

16 , and w0 = 1√
2

,
wk = 1 for k > 0. The variance was clipped at 0.01,
(σ

(a,b)
l,k )2 = max

{
0.01, (σ

(a,b)
l,k )2

}
to allow us to compute

the Fisher information for MiPOD in the fine quantization

limit I(a,b)k,l =
(
σ
(a,b)
k,l

)−4
. Each DCT coefficient is thus an

independent realization of a Gaussian random variable with a
known mean and variance.

Once the full size datasets were produced, we generated
five datasets by cropping the images to 256× 256, 512× 512,
1024× 1024, and 2000× 2000 in both the spatial and JPEG
domain. To approximately preserve the cover source across
scales, for each scale we selected the crop that minimized
the L1 norm between the normalized histogram of the Fisher
information of the crop and of the full size image. Histograms
are first constructed using the image in its original size using
50 bins of equal size, the same binning is then used accross
other scales.

B. Embedding

Each image was embedded using MiPOD modified to use
binary instead of ternary embedding. First, a fixed relative
(base) payload α in bpp was embedded into each image of
the 512× 512 datasets using a PLS. These images then serve
as a baseline to which we match the deflection for other scales

using the DLS δ2MiPOD =

n∑
i=1

π2
i σ
−4
i . For other scales, a DLS

was used to determine the payload size to be embedded in
each image in such a way that each crop coming from the
same full size image has the same deflection across all scales.
This ensures that each embedded dataset has exactly the same
distribution of deflections.

C. Classification

The Low Complexity Linear Classifier (LCLC) [3] trained
on the Spatial Rich Model (SRM) [5] and Gabor Filter
Residual [15] was used as the empirical detector for the spa-
tial and JPEG domain, respectively. While selection-channel
aware versions of both features would follow the equilibrium
condition more closely, our experiments showed that this did
not impact the results. We used 5000 images for training,
5000 for testing, and five-fold cross-validation to select the
tolerance parameter in LCLC. The performance is measured
using PE = minPFA

1
2 (PMD +PFA), where PFA and PMD are

the false-alarm and missed-detection rates.
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α / Size 256×256 512×512 1024×1024 2000×2000

0.2 36.19 35.64 36.48 36.88

0.3 30.86 29.12 31.52 31.41

0.4 28.08 25.61 25.98 26.15

0.6 24.97 20.98 20.41 20.25

(a) Spatial domain.

α / Size 256×256 512×512 1024×1024 1920×1920

0.1 29.19 29.14 30.48 31.20

0.2 15.34 14.66 15.34 16.05

0.4 7.60 6.69 6.21 6.06

(b) JPEG domain quality 98.

Table I: PE when forcing MiPOD’s model on images. α
corresponds to the base relative payload used on 512×512
images which is then scaled accordingly for other scales to
match the deflection of 512×512 images using a DLS.

IV. RESULTS

For a forced MiPOD’s model in the spatial domain
s(Table Ia), PE is approximately constant accross scales except
for 256 × 256 images where it is by ≈ 3% larger than the
512 × 512 baseline when the base payload exceeds 0.3bpp.
These discrepancies are likely due to the fact that MiPOD’s
deflection δ2MiPOD has been derived for small payloads, while
in our experiments, due to the scaling across image sizes, the
relative payload embedded in 256× 256 images is close to 1
bpp as soon as the base payload reaches 0.4bpp.

For the forced MiPOD’s model in the JPEG domain (Ta-
ble Ib), PE similarly stays approximately constant (±1.5%)
across the scales. This indicates that matching histograms
of the Fisher Information is a viable strategy for source-
preserving cropping for empirical detectors as long as the
histograms are matched almost exactly across all scales and
the relative payload is not too large.

A natural question to ask is how effective this strategy fairs
on natural images, when the deflection is computed from a
model that does not necessarily capture real images well. To
this end, we repeated our experiments on full size grayscale
BOSSbase images, with no further processing or model forcing
applied. The results are summarized in Table II. In the spatial
domain, PE increases with the number of pixels despite the
deflection being constant across scales. On the other hand, in
the JPEG domain PE never deviates more than 2% from the
512×512 baseline across all tested payloads. We hypothesize
that this is due to the multi-variate Gaussian model of DCT
coefficients being closer to reality in the JPEG domain thanks
to the central limit theorem while the Gaussianity assumption
imposed on pixels is comparatively less accurate in the spatial
domain..

V. CONCLUSION

This work investigates payload scaling for constant sta-
tistical detectability with content-adaptive steganography that
embeds at an equilibrium of a zero-sum game played by the

α / Size 256×256 512×512 1024×1024 1920×1920

0.10 25.46 28.97 32.61 35.18

0.20 11.88 13.26 17.37 21.12

(a) Spatial domain.

α / Size 256×256 512×512 1024×1024 2000×2000

0.15 22.34 22.74 22.85 24.26

0.25 11.15 11.88 9.55 13.22

(b) JPEG domain quality 98.

Table II: PE on natural images.

steganographer and the steganalyst. In this setting, both players
optimize their activity for the same objective function, which
is the detectability or deflection coefficient determined by the
steganographic Fisher information at each cover element and
the payload / detectability, depending on the type of the sender.
It is far from obvious that the theoretically derived scaling is
observed in practice because practical embedding algorithms
are not guaranteed to embed at equilibrium, the steganalyst
does not use optimal detectors but empirical ones, and finally,
heuristic rules need to be used to prepare datasets at different
scales. To address the first concern, we use MiPOD rather than
cost-based steganography and scale the payload to guarantee
the same deflection (the detectability-limited sender) across
datasets of different image scales prepared to approximately
match the histogram of cover elements’ Fisher information.
Using detectors built as classifiers with rich models, the
expected scaling is observed in sources with a forced cover
model in both spatial and JPEG domains. For real images, the
scaling was observed for JPEG images but not in the spatial
domain, possibly due to modeling mismatch.

We also considered using the asymptotic relationship be-
tween deflection and payload derived by Ker for this work but
concluded that the result is not tight enough for cover sizes
of practical significance.
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