
1

Rich Models for Steganalysis of Digital Images
Jessica Fridrich, Member, IEEE and Jan Kodovský

Abstract—We describe a novel general strategy for
building steganography detectors for digital images.
The process starts with assembling a rich model of the
noise component as a union of many diverse submodels
formed by joint distributions of neighboring samples
from quantized image noise residuals obtained using
linear and non-linear high-pass filters. In contrast to
previous approaches, we make the model assembly a
part of the training process driven by samples drawn
from the corresponding cover- and stego-sources. En-
semble classifiers are used to assemble the model as
well as the final steganalyzer due to their low com-
putational complexity and ability to efficiently work
with high-dimensional feature spaces and large training
sets. We demonstrate the proposed framework on three
steganographic algorithms designed to hide messages in
images represented in the spatial domain: HUGO, edge-
adaptive algorithm by Luo et al. [32], and optimally-
coded ternary ±1 embedding. For each algorithm, we
apply a simple submodel-selection technique to in-
crease the detection accuracy per model dimensionality
and show how the detection saturates with increasing
complexity of the rich model. By observing the differ-
ences between how different submodels engage in detec-
tion, an interesting interplay between the embedding
and detection is revealed. Steganalysis built around rich
image models combined with ensemble classifiers is a
promising direction towards automatizing steganalysis
for a wide spectrum of steganographic schemes.

I. Introduction
Modern feature-based steganalysis starts with adopting

an image model (a low-dimensional representation) within
which steganalyzers are built using machine learning tools.
The model is usually determined not only by the char-
acteristics of the cover source but also by the effects of
embedding [4], [6], [14], [18], [21], [33], [35], [38]. For ex-
ample, the SPAM feature vector [33], which was seemingly
proposed from a pure cover model, is in reality, too, driven
by a specific case of steganography. The choice of the order
of the Markov process as well as the threshold T and the

The work on this paper was supported by the Air Force Office of
Scientific Research under the research grant FA9550-09-1-0147. The
U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation
there on. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied of AFOSR or the U.S.
Government.

The authors would like to thank Vojtěch Holub for useful discus-
sions.

The authors are with the Department of Electrical and Com-
puter Engineering, Binghamton University, NY, 13902, USA. Email:
fridrich@binghamton.edu, jan.kodovsky@binghamton.edu.

Copyright (c) 2012 IEEE. Personal use of this material is permit-
ted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org.

local predictor were “tuned” by observing the detection
performance on ±1 embedding. Had the authors used
HUGO [34] instead of ±1 embedding, the SPAM model
might have looked quite different. In particular, in light of
the recent work [17], [16], [19], the predictor would have
probably employed higher-order pixel differences.

In this paper, we propose a general methodology for
steganalysis of digital images based on the concept of a rich
model consisting of a large number of diverse submodels.
The submodels consider various types of relationships
among neighboring samples of noise residuals obtained by
linear and non-linear filters with compact supports. The
rich model is assembled as part of the training process
and is driven by the available examples of cover and stego
images. Our design was inspired by the recent methods
developed for attacking HUGO [17], [16], [19]. The key
element of these attacks is a complex model consisting
of multiple submodels, each capturing slightly different
embedding artifacts. Here, we bring this philosophy to the
next level by designing the submodels in a more systematic
and exhaustive manner and we let the training data select
such a combination of submodels that achieves a good
trade-off between model dimensionality and detection ac-
curacy.

Since our approach requires fast machine learning, we
use the ensemble classifier as described in [30], [28] due to
its low computational complexity and ability to efficiently
work with high dimensional features and large training
data sets. The rich model is assembled by selecting each
submodel based on its detection error estimate in the form
of the out-of-bag estimate calculated from the training
set. The final steganalyzer for each stego method is con-
structed again as an ensemble classifier.

Besides the obvious goal to improve upon the state-
of-the-art in steganalysis, the proposed approach can be
viewed as a step towards automatizing steganalysis to
facilitate fast development of accurate detectors for new
steganographic schemes. We demonstrate the proposed
framework on three steganographic algorithms operating
on a fixed cover source. The edge-adaptive algorithm by
Luo et al. [32] was included intentionally as an example
of a stegosystem that, according to the best knowledge of
the authors, has not yet been successfully attacked.

Another promising aspect of rich models is their poten-
tial to provide a good general-purpose model for various
applications in forensics and in universal blind steganal-
ysis. While the latter may rightfully seem rather out-of-
reach due to the fact that steganography can be designed
to minimize the disturbance in a fixed model space using
the Feature-Correction Method (FCM) [8], [26] or the
framework described in [12], [10], model preservation will

2

likely become increasingly more difficult for rich (high-
dimensional and diverse) models. Indeed, as shown in
Section V, when sufficiently many diverse submodels built
from differences between neighboring pixels are combined
in the rich model, HUGO becomes quite detectable despite
the fact that it was designed to minimize distortion to
high-dimensional multivariate statistics computed from
the same pixel differences.

The paper is structured as follows. In Section II, we
describe the individual submodels built as symmetrized
joint probability distributions of adjacent residual sam-
ples. The steganalyzer and the experimental setup used
in this paper are detailed in Section III. The method-
ology for assembling the rich model from a sample of
cover and stego images while considering the performance–
dimensionality trade-off appears in Section IV. The three
tested stego methods are described in Section V together
with two investigative experiments aimed at analyzing the
performance of individual submodels and how it is affected
by quantization and steganographic payload. Section VI
contains the results of the main experiment in which the
full proposed framework is applied to three steganographic
methods. Finally, the paper is concluded in Section VII
where we elaborate on how the proposed strategy affects
future development of steganography and discuss potential
applications of rich models outside the field of steganalysis.

Everywhere in this article, lower-case boldface symbols
are used for vectors and capital-case boldface symbols
for matrices and higher-dimensional arrays. The symbols
X = (Xij) ∈ {0, . . . , 255}n1×n2 and X̄ = (X̄ij) always
represent pixel values of an 8-bit grayscale cover image
with n = n1×n2 pixels and its corresponding stego image.
By slightly abusing the language, for compactness we will
sometimes say “pixel Xij” meaning pixel located at (i, j)
whose grayscale isXij . A model representation of an image
using a feature will always be denoted with the same lower-
case letter. For example, image X is represented with x
and X̄ with x̄. For any vector x with index set I, xJ ,
J ⊂ I, stands for the vector x from which all xi, i /∈ J ,
were removed. We use the symbols R and N to represent
the set of all real numbers and integers. For any x ∈ R, the
largest integer smaller than or equal to x is bxc, while the
operation of rounding to an integer is denoted round(x).
The truncation function with threshold T > 0 is defined
for any x ∈ R as truncT (x) = x for x ∈ [−T, T] and
truncT (x) = T sign(x) otherwise. For a finite set X , |X |
denotes the number of its elements.

II. Rich model of noise residual
A good source model is crucial not only for steganog-

raphy but also, e.g., for source coding and forensic anal-
ysis. Indeed, image representations originally designed for
steganalysis have found applications in digital forensic to
solve difficult problems of a very different nature [24], [7].
However, digital images acquired using a sensor constitute
a quite complex source. This is not only due to the richness
of natural scenes but also due to the intricate network of
dependencies among pixels introduced at the acquisition

and during in-camera processing. Model building is further
complicated by the enormous diversity among cameras as
manufacturers implement more sophisticated processing
algorithms as well as specialized hardware components.
Since the focus of this paper is on spatial-domain

steganography, our rich model will be constructed in
the spatial domain because the best detection is usually
achieved by building the model directly in the domain
where the embedding changes are localized and thus most
pronounced. Since steganography by cover modification
makes only small changes to the pixels, we model only
the noise component (noise residual) of images rather
than their content. This philosophy has been adopted
by steganalysts early on (Chapter 2.4 in [22]) and then
perfected through a long series of papers examples of which
are [2], [1], [9], [18], [33], [38].

A. Submodels

Our overall goal is to capture a large number of different
types of dependencies among neighboring pixels to give the
model the ability to detect a wide spectrum of embedding
algorithms. However, enlarging a single model is unlikely
to produce good results as the enlarged model will have
too many underpopulated bins (e.g., think of the second-
order SPAM model with a large truncation threshold T
employed by HUGO [34]). Instead, we form the model
by merging many smaller submodels avoiding thus the
problem with underpopulated bins.

1) Computing residuals: The submodels are formed
from noise residuals, R = (Rij) ∈ Rn1×n2 , computed using
high-pass filters of the following form:

Rij = X̂ij(Nij)− cXij , (1)

where c ∈ N is the residual order, Nij is a local neighbor-
hood of pixel Xij , Xij /∈ Nij , and X̂ij(.) is a predictor
of cXij defined on Nij . The set {Xij + Nij} is called
the support of the residual. The advantage of modeling
the residual instead of the pixel values is that the image
content is largely suppressed in R, which has a much
narrower dynamic range allowing thus a more compact and
robust statistical description. Many steganalysis features
were formed in this manner in the past, e.g., [9], [18], [33],
[38].

2) Truncation and quantization: Each submodel is
formed from a quantized and truncated version of the
residual:

Rij ← truncT
(

round
(
Rij
q

))
, (2)

where q > 0 is a quantization step. The purpose of
truncation is to curb the residual’s dynamic range to allow
their description using co-occurrence matrices with a small
T . The quantization makes the residual more sensitive to
embedding changes at spatial discontinuities in the image
(at edges and textures).

3

1 2 3 4 5 6
0.86

0.88

0.9

0.92

0.94

0.96

0.98

Pixel distance

C
or
re
la
ti
on

hor/ver neighboring

diag/m-diag neighboring

Figure 1. Correlation between pixels based on their distance. The
distance of diagonally neighboring pixels is in the multiples of the
diagonal of two neighboring pixels. The results were averaged over
100 randomly selected images from BOSSbase ver. 0.92.

3) Co-occurrences: The construction of each submodel
continues with computing one or more co-occurrence ma-
trices of neighboring samples from the truncated and
quantized residual (2). Forming models in this manner is
well-established in the steganalysis literature. The trunca-
tion of noise residuals and formation of joint or Markov
transition probability matrices as features has appeared
for the first time in [38] and in [36]. The key question is
how to choose the model parameters – the threshold T , the
co-occurrence order, and the spatial positions of the neigh-
boring residual samples. To this end, we analyzed our cover
source, which is the BOSSbase ver. 0.92 database [13],
and computed the average correlation between neighbor-
ing pixels in the horizontal/vertical and diagonal/minor
diagonal directions (see Fig. 1). The correlations fall off
gradually with increasing distance between pixels and
they do so faster for diagonally-neighboring pixels. Thus,
we form co-occurrences of pixels only along the horizon-
tal and vertical directions and avoid using groups with
diagonally-neighboring pixels.1 We chose four-dimensional
co-occurrences because co-occurrences of larger dimen-
sions had numerous underpopulated bins, which compro-
mised their statistical significance. For a fixed dimension,
better results are generally obtained by using a lower value
of T and including other types of residuals to increase
the model diversity. To compensate for loss of information
due to truncating all residual values larger than T , for
each residual type we consider several submodels with
different values of q, allowing thus our model to “see”
dependencies among residual samples whose values lie
beyond the threshold.

In summary, our submodels will be constructed from
horizontal and vertical co-occurrences of four consecutive

1A few sample tests confirmed that co-occurrences formed from
groups in which pixels do not lie on a straight line have a substantially
weaker detection performance across various stego methods and
payloads.

residual samples processed using (2) with T = 2. Formally,
each co-occurrence matrix C is a four-dimensional array
indexed with d = (d1, d2, d3, d4) ∈ T4 , {−T, . . . , T}4,
which gives the array (2T + 1)4 = 625 elements. The dth
element of the horizontal co-occurrence for residual R =
(Rij) is formally defined as the (normalized) number of
groups of four neighboring residual samples with values
equal to d1, d2, d3, d4:

C(h)
d = 1

Z

∣∣∣{(Rij,Ri,j+1, Ri,j+2, Ri,j+3)|

Ri,j+k−1 = dk, k = 1, . . . , 4}
∣∣∣, (3)

where Z is the normalization factor ensuring that∑
d∈T4

C(h)
d = 1. The vertical co-occurrence, C(v), is

defined analogically.
Having fixed T and the co-occurrence order, deter-

mining the rest of the rich model involves selecting the
local predictors X̂ij for the residuals and the quantization
step(s) q, all explained in the following sections.

B. Description of all residuals
All residuals used in this paper are graphically shown

in Fig. 2. They are built as locally-supported linear filters
whose outputs are possibly combined using minimum and
maximum operators to increase their diversity. For better
insight, think of each filter in terms of its predictor. For
example, in the first-order residual Rij = Xi,j+1−Xij the
central pixel Xij is predicted as its immediate neighbor,
X̂ij = Xi,j+1, while the predictor in the second-order
residual Rij = Xi,j−1 + Xi,j+1 − 2Xij assumes that
the image is locally linear in the horizontal direction,
2X̂ij = (Xi,j+1 +Xi,j−1). Higher-order differences as well
as differences involving a larger neighborhood correspond
to more complicated assumptions made by the predictor,
such as locally-quadratic behavior or linearity in both
dimensions. Additional motivation for the choice of our
filters appears in Section II-B1.

The central pixel Xij at which the residual (1) is evalu-
ated is always marked with a black dot and accompanied
with an integer – the value c from (1). If the chart
contains only one type of symbol (besides the black dot),
we say that the residual is of type ’spam’ (1a, 2a, 3a, S3a,
E3a, S5a, E5a) by their similarity to the SPAM feature
vector [33].

If there are two or more different symbols other than
the black dot, we call it type ’minmax’. In type ’spam’,
the residual is computed as a linear high-pass filter of
neighboring pixels with the corresponding coefficients. For
example, 2a stands for the second-order Rij = Xi,j−1 +
Xi,j+1−2Xij and 1a for the first-order Rij = Xi,j+1−Xij

residuals. In contrast, ’minmax’ residuals use two or more
linear filters, each filter corresponding to one symbol type,
and the final residual is obtained by taking the minimum
(or maximum) of the filters’ outputs. Thus, there will be
two minmax residuals – one for the operation of ’min’
and one for ’max’. For example, 2b is obtained as Rij =
min{Xi,j−1 +Xi,j+1−2Xij , Xi−1,j +Xi+1,j −2Xij} while

4

1g is Rij = min{Xi−1,j−1 −Xij , Xi−1,j −Xij , Xi−1,j+1 −
Xij , Xi,j+1 − Xij}, etc. The ’min’ and ’max’ operators
introduce non-linearity into the residuals and desirably
increase the model diversity. Both operations also make
the distribution of the residual samples non-symmetrical,
thickening one tail of the distribution of Rij and thinning
out the other.

The number of filters, f , is the first digit attached to
the end of the residual name. The third-order residuals are
computed just like the first-order residuals by replacing,
e.g., Xi,j+1−Xij with −Xi,j+2 + 3Xi,j+1−3Xij +Xi,j−1.
The differences along other directions are obtained ana-
logically.

1) Residual classes: As the figure shows, the residuals
are divided into six classes depending on the central
pixel predictor they are built from. The classes are given
the following descriptive names: 1st, 2nd, 3rd, SQUARE,
EDGE3x3, and EDGE5x5. The predictors in class ’1st’
estimate the pixel as the value of its neighbor, while
those from class ’2nd’ (’3rd’) incorporate a locally linear
(quadratic) model. Such predictors are more accurate in
regions with a strong gradient/curvature (e.g., around
edges and in complex textures). The class ’SQUARE’
makes use of more pixels for the prediction. The 3 × 3
square kernel S3a has been used in steganalysis before [23]
and it also coincides with the best (in the least-square
sense) shift-invariant linear pixel predictor on the 3 × 3
neighborhood for cover images from BOSSbase. The class
’EDGE3x3’ predictors, derived from this kernel, were in-
cluded to provide better estimates at spatial discontinu-
ities (edges). The larger 5×5 predictor in S5a was obtained
as a result of optimizing the coefficients of a circularly-
symmetrical 5 × 5 kernel using the Nelder–Mead algo-
rithm to minimize the detection error for the embedding
algorithm HUGO [29]. While this (only) predictor was
inspired by a specific embedding algorithm, it works very
well against other algorithms we tested in this paper. The
’EDGE5x5’ residuals E5a–E5d (not shown in Fig. 2) are
built from S5a in an analogical manner as E3a–E3d are
built from S3a.

2) Residual symmetries: Each residual exhibits sym-
metries that will later allow us to reduce the number
of submodels and make them better populated. If the
residual does not change after computing it from the image
rotated by 90 degrees, we say that it is non-directional,
otherwise it is directional. For instance, 1a, 1b, 2a, 2e,
E3c are directional while 1e, 2b, 2c, S3a, E3d are non-
directional. Two co-occurrence matrices (3) are computed
for each residual – one for the horizontal and one for the
vertical scan. We call a residual hv-symmetrical if its hori-
zontal and vertical co-occurrences can be added to form a
single matrix (submodel) based on the argument that the
statistics of natural images do not change after rotating
the image by 90 degrees. Obviously, all non-directional
residuals are hv-symmetrical, but many directional residu-
als are hv-symmetrical as well (e.g, 1c, 1h, 2e, E3b, E3d).
In contrast, 1a, 1g, 2a, 2d, E3c are not hv-symmetrical.
In general, an hv-symmetrical residual will thus produce

a single co-occurrence matrix (sum of both horizontal
and vertical matrices), while hv-nonsymmetrical ones will
produce two matrices – one for the horizontal and one for
the vertical direction. We include this fact into the residual
name by appending either ’h’ or ’v’ to the end. No symbol
is appended to hv-symmetrical residuals.

We also define a symmetry index σ for each residual
as the number of different residuals that can be obtained
by rotating and possibly mirrorring the image prior to
computing it. To give an example, 2c, 1b, 1c, and 1g have
symmetry indices equal to 1, 2, 4, and 8, respectively. The
symmetry index is part of the residual name and it always
follows the number of filters, f .

To make the co-occurrence bins more populated, and
thus increase their statistical robustness, and to lower their
dimensionality, for hv-nonsymmetrical residuals we add all
σ co-occurrences. For hv-symmetrical residuals, since we
add both the horizontal and vertical co-occurrences, we
end up adding 2σ matrices. For example, 1f has symmetry
index 4 and because it is hv-symmetrical we can form one
horizontal and one vertical co-occurrence for each of the
four rotations of the filter, adding together 8 matrices.
As another example, 1g has symmetry index 8 and is
hv-nonsymmetrical, which means we end up adding 8
matrices.

3) Syntax: The syntax of names used in Fig. 2 follows
this convention:

name = {type}{f}{σ}{scan}, (4)

where type ∈ {spam,minmax}, f is the number of filters,
σ is the symmetry index, and the last symbol scan ∈
{∅, h, v} may be missing (for hv-symmetrical residuals) or
it is either h or v, depending on the co-occurrence scan
that should be used with the residual.

In summary, the class ’1st’ contains 22 different co-
occurrence matrices – two for 1a, 1c, 1e, 1f, 1h, and four
for 1b, 1d, 1g. The same number is obtained for class ’3rd’,
while ’2nd’ contains 12 matrices – two for 2a, 2b, 2c, 2e,
and four for 2d. There are two matrices in ’SQUARE’,
S3a, S5a, and ten in ’EDGE3x3’ and in ’EDGE5x5’ (two
for E3a, E3b, and E3d, and four for E3c), giving the total
of 22 + 12 + 22 + 2 + 10 + 10 = 78 matrices, each with
625 elements. These matrices are used to form the final
submodels by symmetrization explained next.

C. Co-occurrence symmetrization
The individual submodels of the rich image model will

be obtained from the 78 co-occurrence matrices computed
above by leveraging symmetries of natural images. The
symmetries are in fact quite important as they allow us to
increase the statistical robustness of the model while de-
creasing its dimensionality, making it thus more compact
and improving the performance-to-dimensionality ratio.
We use the sign-symmetry2 as well as the directional
symmetry of images. The symmetrization depends on

2Sign-symmetry means that taking a negative of an image does
not change its statistical properties.

5

1st and 3rd

ORDER:

−1

1a) spam14h,v

+1 +1 −1

1b) minmax22h,v

+1

+1

−1

1c) minmax24

+1

+1

−1

1d) minmax34h,v

+1+1

+1

−1

1e) minmax41

+1+1

+1

−1

1f) minmax34

+1

+1

+1

−1

1g) minmax48h,v

+1

+1

+1+1

−1

1g) minmax54

+1

+1

+1+1

−1

2nd ORDER:

−2

2a) spam12h,v

+1 +1 −2

2b) minmax21

+1 +1

+1

+1

−2

2c) minmax41

+1 +1

+1

+1

+1

+1

+1

+1

−2

2d) minmax24h,v

+1 +1

+1

+1

−2

2e) minmax32

+1 +1

+1

+1

+1

+1

EDGE3x3:
−4

E3a) spam14h,v

+2 +2

+2 −1−1

−4

E3b) minmax24

+2 +2

+2 −1−1

+2−1

−4

E3c) minmax22h,v

+2 +2

+2 −1−1

+2−1 −1

−4

E3d) minmax41

+2 +2

+2 −1−1

−1 −1+2

SQUARE:

−4

S3a) spam11

+2 +2

+2

+2

−1

−1

−1

−1

−12

S5a) spam11

+8 +8

+8

+8

−6

−6

−6

−6

−1

−1

−1

−1

−2 −2

−2

−2

+2

+2

+2

+2

+2

+2

+2

+2

Figure 2. Definitions of all residuals. The residuals 3a – 3h are defined similar to the first-order residuals, while E5a – E5d are similar to
E3a – E3d defined using the corresponding part of the 5× 5 kernel displayed in S5a. See the text for more details.

the residual type. All ’spam’ residuals are symmetrized
sequentially by applying the following two rules for all
d = (d1, d2, d3, d4) ∈ T4:

C̄d ← Cd + C−d, (5)
=
Cd ← C̄d + C̄←−d , (6)

where ←−d = (d4, d3, d2, d1) and −d =
(−d1,−d2,−d3,−d4). After eliminating duplicates
from

=
C (which had originally 625 elements), only 169

unique elements remain.
The ’minmax’ residuals of natural images also possess

the directional symmetry but not the sign symmetry. On
the other hand, since min(X) = −max(−X) for any
finite set X ⊂ R, we use the following two rules for their
symmetrization:

C̄d ← C(min)
d + C(max)

−d (7)
=
Cd ← C̄d + C̄←−d , (8)

where C(min) and C(max) are the ’min’ and ’max’ co-
occurrence matrices computed from the same residual. The
dimensionality is thus reduced from 2× 625 to 325.

After symmetrization, the total number of submodels
decreases from 78 to only 45 as the symmetrization reduces
two co-occurrences, one for ’min’ and one for ’max’, into
a single matrix. The number of co-occurrences for the
’spam’ type stays the same (only their dimensionality
changes). For example, for the class ’1st’, we will have 12
submodels – one symmetrized spam14h and one spam14v,
one minmax22h, one minmax22v, one minmax24, min-
max34h, minmax34v, minmax41, minmax34, minmax48h,
minmax48v, and one minmax54. There will be 12 submod-
els from ’3rd’, seven from ’2nd’, two from ’SQUARE’, and
six from each edge class. In total, there are 12 submodels
of dimension 169 from 12 ’spam’ type residuals and 33
of dimension 325 from type minmax. Thus, when all
submodels are put together, their combined dimensionality
is 12× 169 + 33× 325 = 12, 753.

We remark that it is possible that the symmetrization
might prevent us from detecting steganographic methods
that disturb the above symmetries (think of symmetrizing
the histogram for Jsteg [37]). Such embedding methods
are, however, fundamentally flawed (and easy to detect) as
one can likely build accurate quantitative targeted attacks
leveraging the symmetry violations.

6

D. Quantization
Finally, we specify how to select the quantization step

q. As mentioned already at the end of Section II-A, it is
beneficial to include several versions of submodels with
different values of q because residuals obtained with a
larger q can better detect embedding changes in textured
areas and around edges. Based on sample experiments
with different algorithms and submodels, we determined
that the best performance of each submodel is always
achieved when q ∈ [c, 2c], where c is the residual order.
Thus, we included in the rich cover model all submodels
with residuals quantized with q:

q ∈

{
{c, 1.5c, 2c} for c > 1
{1, 2} for c = 1.

(9)

The case with c = 1 in (9) is different from the rest because
quantizing a residual with c = 1 and q = 1.5 with T = 2
leads to exactly the same result as when quantizing with
q = 2. Thus, each submodel will be built in two versions
for residuals in class ’1st’ and in three versions for the
remaining residuals.

The authors acknowledge that the individual perfor-
mance of each submodel can likely be improved by re-
placing the simple scalar quantizer with an optimized de-
sign. The possibilities worth investigating are non-uniform
scalar quantizers and vector quantizers built directly in the
four-dimensional space. Due to lack of space for such an
investigation in this paper, the authors postpone research-
ing these possibilities to their future work.

E. Discussion
The residuals shown in Fig. 2 were selected using the

principle of simplicity and are by no means to be meant as
the ultimate result as there certainly exist numerous other
possibilities. We view the model building as an open-ended
process because, quite likely, there exist other predictors
that will further improve the detection after adding them
to the proposed model. Having said this, we observed
a “saturation” of performance in the sense that further
enrichment of the model with other types of predictors
lead to an insignificant improvement in detection accuracy
for all tested algorithms (see Section V).

In the future, the authors contemplate learning the best
predictors from the database of cover and stego images, re-
placing thus the hand design described above. We also note
that submodels obtained from residuals computed using
denoising filters almost always lead to poor steganalysis
results because denoising filters typically put substantial
weight to the central pixel being denoised, which leads
to a biased predictor X̂ij , and, when one computes the
residual using (1), the stego signal becomes undesirably
suppressed.

III. Ensemble classifier
Our strategy for constructing steganography detectors

involves a training phase in which we not only build the

steganalyzer but also form the rich image model from
available cover and stego images for a given steganographic
algorithm. Thus, most experiments will be built from
the following experimental unit that starts by randomly
splitting the available image database into a training and
testing set X trn and X tst, each with N trn and N tst cover
images and the same number of their corresponding stego
images. Using only X trn, we assemble the rich model,
construct the steganalyzer, and then test it on X tst. All
images will be represented using d-dimensional features,
x ∈ Rd, where d could stand for the dimension of a given
submodel or their arbitrary union.

Everywhere in this paper, we use the ensemble classifier
as described in [27], [28]. Since these two references obtain
a detailed description of the tool and since this paper is
not about ensemble classification, we repeat only the most
essential details here, referring the reader to the original
publications for more details.

The ensemble classifier is essentially a random forrest
consisting of L binary classifiers called base learners, Bl,
l = 1, . . . , L, each trained on a different dsub-dimensional
subspace of the feature space selected uniformly at ran-
dom. Each random subspace will be described using an
index set Dl ⊂ {1, . . . , d}, |Dl| = dsub. The ensemble
reaches its decision by fusing all L decisions of individual
base learners using majority voting.

Following the investigation reported in the original pub-
lications, we use Fisher Linear Discriminants (FLDs) as
base learners due to their simple and fast training and due
to the fact that in steganalysis we are unlikely to encounter
a small feature set responsible for majority of detection
accuracy. Denoting the cover and stego features from the
training set as x(m) and x̄(m), m = 1, . . . , N trn, respec-
tively, each base learner Bl is trained as the FLD on the set
Xl = {x(m)

Dl
, x̄(m)
Dl
}m∈Nb

l
, where N b

l is a bootstrap sample
of {1, . . . , N trn} with roughly 63% of unique training
examples.3 The remaining 37% are used for estimating the
classifier’s testing error as each Bl provides a single vote
Bl(xDl

) ∈ {0, 1} (cover = 0, stego = 1) for each x /∈ Xl.
After all L base learners are trained, each training sample
x ∈ X trn will thus collect on average 0.37× L predictions
that are fused using the majority voting strategy into the
final prediction, which we denote B(L)(x) ∈ {0, 1}.

The optimal number of base learners, L, and the dimen-
sionality of each feature subspace, dsub, are determined au-
tomatically during ensemble training. The training makes
use of the so-called “out-of-bag” (OOB) error estimate:

E
(L)
OOB = 1

2N trn

Ntrn∑
m=1

(
B(L)(x(m)) + 1−B(L)(x̄(m))

)
,

(10)
which is an unbiased estimate of the testing error [3]. The
parameter dsub is determined by a simple one-dimensional
direct-search derivative-free technique inspired by the

3The threshold of all base learners is set to minimize the total
detection error with equal priors determined again from examples
from the training set only.

7

compass search [31] that minimizes (10). During the
search, for each tested dsub the number of base learners,
L, is gradually increased one-by-one while monitoring the
gradual decrease of the OOB error estimate (10). This
process is stopped, and L is fixed, when (10) starts showing
signs of saturation.

The OOB error estimate is a very convenient by-product
of training. Since it is an unbiased estimate of the testing
error, it is ideally suited for evaluating the detection
performance of the submodel on unseen data without
having to reserve a portion of the training set to assess
the testing error as is commonly done in cross-validation.4
In the next section, we will assemble the rich model using
the OOB error estimates of all submodels.

IV. Assembling the rich model

Fundamentally, the model assembly is a feature selection
problem as the steganalyst strives to achieve the best
performance for a given feature dimensionality. As already
pointed out above, our approach will combine a feature
subset selection heuristic with a classification feedback.
The union of all submodels (co-occurrence matrices), in-
cluding their differently quantized versions, has a total
dimension of 2× (2×169 + 10×325)+3× (10×169 + 23×
325)= 34, 671.5 We apply our feature selection strategies
to the entire submodels based on the estimate of their
individual performance (in terms of the OOB error (10))
as this allows us to interpret the results, relate the selected
submodels to the steganographic algorithms, and provide
interesting feedback to steganographers (Sections V and
VI), which would not be possible if we were selecting indi-
vidual features. The learning process is applied for a given
stegochannel as defined in [15], which entails a specific
steganographic algorithm, message source (payload size),
and a sample of cover and stego images.

Since the dimensionality of submodels that originated
from the ’spam’ type residual is 169 (’minmax’ resid-
uals have dimensionality 325), to make the ranking by
OOB fair, we merge the vertical and horizontal ’spam’
submodels into a single 2 × 169 = 338-dimensional sub-
model (merging spam14h with spam14v from classes ’1st’,
’3rd’, ’EDGE3x3’, and ’EDGE5x5’, and also spam12h with
spam12v from class ’2nd’). Additionally, we merge the two
spam11 submodels from class ’SQUARE’ into one 338-
dimensional submodel. Now, all submodels have approxi-
mately the same dimension (338 or 325) and can thus be
fairly ranked by their individual detection performance.
Note that after merging the horizontal and vertical ’spam’
submodels, we end up with 11 submodels in class ’1st’ and
’3rd’, six in ’2nd’, one in ’SQUARE’, and five in each edge
class (total of 39 submodels or 106 if counting quantized
versions as different). A short acronym will be used for
each submodel consisting of the number of filters, f , the

4Realize that we do not (and cannot!) use any feedback from the
actual testing set X tst for this purpose.

5We provide the extractor of all 34,671 features at
http://dde.binghamton.edu/download/feature_extractors.

symmetry index, σ, and the co-occurrence scan direction.
Since for submodels of type ’spam’ both scan directions
were merged, we use the scan string ’hv’ in their acronym.
These acronyms are used in Fig. 3.

To formally and unambiguously explain the feature
selection strategies, we introduce additional notation. Let
I1, . . . , I6 ⊂ {1, . . . , 39} be the index sets correspond-
ing to submodels from ’1st’, ’2nd’, ’3rd’, ’EDGE3x3’,
’EDGE5x5’, and ’SQUARE’ classes, respectively. The car-
dinalities of these six index sets are 11, 6, 11, 5, 5, and
1, respectively. The reader is advised to follow Fig. 3 for
better clarity. We denote by M(q)

i the ith submodel, i ∈
{1, . . . , 39}, quantized with q (q ∈ {1c, 2c} for i ∈ I1 and
q ∈ {1c, 1.5c, 2c} otherwise). The OOB error estimate (10)
of the ith submodel quantized with q will be denoted E(q)

i .
The following six submodel selection strategies will be

explored in the next section:
• ALL. This strategy is a simple forward feature se-

lection applied to submodels. The idea is to merge
theM best individually performing submodels (based
on their OOB errors) into one model and omit the
rest. Formally, we form the model by merging M
submodels with the M smallest OOB error estimate
E

(q)
i out of all 106 submodels.

• BEST-q. Since two differently quantized versions of
one submodel provide less diversity than two submod-
els built from different residuals, in this strategy we
force diversity among the selected submodels while
hoping to improve the performance-to-dimensionality
ratio. First, we determine the best quantization step
q for each submodel i: qi = arg minq E(q)

i . We remind
that the argument minimum is taken over two values
for q in class ’1st’ and over three values for all other
classes. As a result, we obtain 39 submodels, M(qi)

i ,
with the corresponding OOB error estimates E(qi)

i .
Now, we apply the forward feature selection to these
39 submodels as in ALL. In particular, we merge M
submodelsM(qi)

i with M lowest OOB errors E(qi)
i .

• BEST-q-CLASS. In this strategy, we force diversity
even more than in BEST-q by first selecting one
(the best) submodel from each class before select-
ing a different submodel from the same class again.
As in BEST-q, we begin with only 39 submodels
and proceed in rounds. In the first round, we find
i1 = arg mini∈I1 E

(qi)
i , . . ., i6 = arg mini∈I6 E

(qi)
i

and merge M6 = ∪6
k=1M

(qik
)

ik
. Then, we remove the

submodels from their classes, Ik ← Ik − {ik} and
proceed to the second round. The second round is
the same as the first one but with each class being
by one submodel smaller, etc. If, at some point, the
class becomes empty, we remove it from consideration.
The idea of this strategy is to force diversity even
more than in BEST-q as the first six submodels are
guaranteed to be selected from six different classes,
so are the next six, etc.

• Q1. MergeM(1c)
i , i = 1, . . . , 39. We want to compare

a fixed quantization q = 1c with the optimized quan-

8

tization of the BEST-q (or BEST-q-CLASS) strategy
after merging all 39 submodels. Formally, this strat-
egy is a simple union ∪39

j=1M
(1c)
i .

• CLASS-q. The goal here is to see how successful each
residual type is in detecting a given stego algorithm.
To this end, we form the model by merging all sub-
models with the best quantization step q from a fixed
class. There will be total of six models here, one for
each class (k = 1, . . . , 6): ∪i∈Ik

M(qi)
i .

• ITERATIVE-BEST-q. This strategy is the only one
that considers mutual dependencies among submod-
els. The submodels are selected sequentially one by
one based on how much they improve the detection
w.r.t. the union of those already selected. We start
with 39 submodels just like in strategies BEST-q and
BEST-q-CLASS. The first submodel selected is the
one with the lowest OOB error. We denote itM(qi1)

i1
,

i1 = arg miniE(qi)
i . Having selected k ≥ 1 submodels,

the k + 1st submodelM
(qik+1)
ik+1

is selected as

ik+1 = arg min
i/∈{i1,...,ik}

EOOB

(
∪kj=1M

(qij
)

ij
∪M(qi)

i

)
,

(11)
where EOOB(M) is the OOB error estimate when
training model M. In other words, we add the one
submodel among the 39−k remaining submodels that
leads to the biggest drop in the OOB estimate when
the union of all k + 1 submodels is used as a model.
Determining the first k submodels requires 39 + 38
+· · ·+ 39− k+ 1 trainings, which makes this method
rather expensive for increasing k. In this paper, we
applied this strategy for k ≤ 10.

From the machine-learning point of view, the first three
strategies, ALL, BEST-q, and BEST-q-CLASS, could be
classified as filters [20]. They are based solely on the
initial OOB ranking of every submodel and thus ignore
dependencies among the submodels. They differ mainly
in how they enforce diversity. The ITERATIVE-BEST-q
strategy, on the other hand, continuously utilizes classifi-
cation feedback of the ensemble as it greedily minimizes
the OOB error in every iteration, taking thus the mutual
dependencies among individual submodels into account.
This is an example of a wrapper [20], which is a feature
selection method using a machine-learning tool as a black-
box and is thus classifier-dependent. Filters and wrappers
are both examples of forward feature selection methods,
here applied to the whole submodels rather than to indi-
vidual features.
The CLASS-q strategy corresponds to merging all sub-

models with the best q from one chosen class, while the
Q1 strategy corresponds to merging all 39 submodels with
a fixed quantization q = 1c. The purpose of these two
simple heuristic merging strategies is rather investigative,
see Section V-C.

V. Investigative experiments
All experiments in this paper are carried out on three

steganographic algorithms with contrasting embedding

mechanisms:

1) Non-adaptive ±1 embedding (also called LSB
Matching) implemented with ternary matrix em-
bedding that is optimally coded to minimize the
number of embedding modifications. In particular,
the relative payload α bpp (bits per pixel) is em-
bedded with change rate H−1

3 (α), where H−1
3 (x) is

the inverse of the ternary entropy function H3(x) =
−x log2 x− (1−x) log2(1−x)+x. (For more details,
see, e.g., Chapter 8 in [15].)

2) HUGO [34], which was designed to minimize embed-
ding distortion in a high-dimensional feature space
computed from differences of four neighboring pixels.
We used the embedding simulator available from
the BOSS website [13] with σ = 1 and γ = 1,
for the parameters of the distortion function, and
the switch –T 255, which means that the distortion
function was computed with threshold T = 255
instead of the default value T = 90 used in the
BOSS challenge [13]. We did it to remove a weakness
of HUGO with T = 90 that makes the algorithm
vulnerable to first-order attacks due to an artifact
present in the histogram of pixel differences [29].

3) Edge-Adaptive (EA) algorithm, due to Luo et al. [32]
confines the embedding changes to pixel pairs whose
difference in absolute value is as large as possible
(e.g., around edges). Both HUGO and the EA algo-
rithm place the embedding changes to those parts
of the image that are hard to model and are thus
expected to be more secure than the non-adaptive
±1 embedding.

A. Image source

The image source used for all experiments is the BOSS-
base ver. 0.92 consisting of 9, 074 cover images taken with
seven digital cameras in their RAW format, converted to
grayscale, and resized/cropped to 512 × 512 using the
script provided by the BOSS organizers. The reason for
constraining our investigation to a single cover source was
our desire to apply the proposed framework to several
different algorithms for a wide range of relative payloads,
which by itself is extremely computationally demanding
and required use of a high-performance computer cluster
for an extensive period of time. Moreover, the focus of this
paper is on the methodology rather than benchmarking
steganography in different cover sources.
We structure our investigation into three experiments,

two of which are in this section, while the third one
appears in the next section. The goal of Experiment 1
is to obtain insight about the detection performance for
each submodel, stego algorithm, and quantization step. We
also assess the statistical spread of the results w.r.t. the
randomness in the ensemble. Experiment 2 was designed
to evaluate the efficiency of each model-assembly strategy
listed in Section IV.

9

B. Experiment 1
We start by computing the OOB estimates (10) for each

submodel, including its differently quantized versions, for
each stego method and for one small and one large payload
(0.1 and 0.4 bpp).6 The intention is to investigate how
the submodel ranking is affected by the stego algorithm,
quantization factor, and payload. Note that the ensemble
classifier is built using random structures (randomness
enters the selection of subspaces for base learners and the
bootstrap sample formation), which is why we repeated
each run five times and report the average values of OOB
estimates. Table I shows that the variations are in general
rather negligible. They can also be made arbitrarily small
by the user by increasing the number of base learners L.

All results are summarized in Fig. 3 showing the average
OOB error estimates E(q)

i for all i = 1, . . . , 39 and for
all values of q. The dashed lines separate the ’spam’ sub-
models from submodels of type ’minmax’. The dots were
connected by a line to enable a faster visual interpretation
of the results.

1) Evaluating individual algorithms: By comparing the
patterns for a fixed algorithm, we see that there is a great
deal of similarity between the performance of submodels
across payloads even though the actual rankings may be
different. Remarkably, ±1 embedding with small payload
shows by far the largest sensitivity to the quantization
factor than any other combination of algorithms and pay-
loads. This effect is caused by the non-adaptive character
of ±1 embedding. For small payloads, the amount of
changes in edges and textures is so small that detection
essentially relies on smooth parts where the finest quanti-
zation discerns the embedding far better in comparison
to other quantizations. On the contrary, both adaptive
algorithms are much less sensitive to the quantization step
because small payloads are more concentrated in textures
and edges.

Notice that, for HUGO, submodels built from first-
order differences have worse performance than submodels
obtained from third-order differences, which is due to the
fact that HUGO approximately preserves statistics among
first-order differences; the higher-order differences thus
reach “beyond” the model. Also, features of type ’spam’
seem to be consistently better than ’minmax’ for this
algorithm.

The OOB estimates for the EA algorithm exhibit a
remarkable similarity for both payloads. This property
can probably be attributed to the much more selective
character of embedding. While HUGO makes embedding
changes even in less textured areas albeit with smaller
probability, the EA algorithm limits the embedding only
to those pairs of adjacent pixels whose difference is above a
certain threshold, eliminating a large portion of the image
from the embedding process.

2) Universality of submodels: The best individual sub-
models for the larger payload and ±1 embedding, HUGO,

6Experiment 1 was carried out on the training set for one fixed
split of BOSSbase into 8,074 training and 1000 testing images.

Table I
Mean Absolute Deviation (MAD) of OOB estimates (×10−3)

over five database splits. The table reports the average
and maximal values over all 106 submodels, M(q)

i , for all
three tested stego algorithms and two payloads.

Algorithm ±1 embedding HUGO EA
Payload 0.10 0.40 0.10 0.40 0.10 0.40
avg. MAD 0.649 0.679 0.656 0.526 0.601 0.484
max. MAD 1.640 1.500 2.840 1.220 1.200 0.940

and EA achieve OOB error estimates around 0.1, 0.21, and
0.12, indicating that HUGO is by far the best algorithm
among the three. While there exist clear differences among
the performance of each submodel across algorithms, it is
worth noting that certain submodels rank the same w.r.t.
each other for all three algorithms, both payloads, and all
quantization steps. For example, ’minmax22h’ is always
worse than ’minmax22v’ for class ’1st’ as well as ’3rd’. In
other words, it is better to form co-occurrences in the di-
rection that is perpendicular to the direction in which the
pixel differences are computed. This is most likely because
the perpendicular scan prevents overlaps of filter supports
and thus utilizes more information among neighboring
pixels. The universality of submodels is further supported
by the fact that pair-wise relationships between submodels
are largely invariant to stego method and payload – for
40% of all pairs (i, j), i > j, i, j ∈ {1, . . . , 39} the
numerical relationship between errors of modelsM(qi)

i and
M(qj)

j does not depend on the algorithm or payload.
To further investigate the universality of submodels, in

Fig. 4 we plot for each submodel its OOB error estimate
averaged over all three stego algorithms and five payloads,
0.05, 0.1, 0.2, 0.3, and 0.4 bpp. The fact that submodels
from ’3rd’ consistently provide lower OOBs than the
corresponding submodels from ’1st’ allowed us to overlap
the results and thus compare both classes visually. The
best overall submodel is minmax24 in class ’EDGE3x3’.
Note that ’h’ versions of submodels built from residuals
that are not hv-symmetrical are almost always worse than
’v’ versions as most residuals are defined in Fig. 2 in their
horizontal orientation. This supports the rule that forming
co-occurrence matrices in the direction perpendicular to
the orientation of the kernel support generally leads to
better detection as the co-occurrence bin utilizes more
pixels. Fig. 3 also nicely demonstrates that submodels
built from first-order differences are in general worse than
their equivalents constructed from third-order differences.
Finally, observe that the best submodels are in general
from hv-symmetrical non-directional residuals.

C. Experiment 2
The purpose of this experiment is to investigate the

efficiency of the submodel-selection strategies explained in
Section IV. It is done for a fixed payload of 0.4 bpp for all
three algorithms on the training set for one fixed split of
BOSSbase into 8074 training and 1000 testing images.

1) Evaluation by submodel selection strategies: Fig. 5
shows the OOB error estimate as a function of model

10

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

0.40

0.44

O
O
B

1st 2nd 3rd EDGE3x3 EDGE5x5 SQUARE

22h 22v 24 34 34h 34v 41 48h 48v 54 14hv 21 24h 24v 32 41 12hv 22h 22v 24 34 34h 34v 41 48h 48v 54 14hv 22h 22v 24 41 14hv 22h 22v 24 41 14hv 11

0.10

0.40

Submodel and Class

±1 embedding

0.16

0.20

0.24

0.28

0.32

0.36

0.40

0.44

0.48

0.52

O
O
B

0.10

0.40

HUGO

0.12

0.16

0.20

0.24

0.28

0.32

0.36

0.40

0.44

O
O
B

q = 1.0c q = 1.5c q = 2.0c

0.10

0.40

Edge Adaptive

Figure 3. OOB error estimates (10) for all 106 submodels,M(q)
i , for three stego algorithms and two payloads. The values were averaged

over five runs of the ensemble for a fixed split of the BOSSbase.

11

22h 22v 24 34 34h 34v 41 48h 48v 54 14hv 21 24h 24v 32 41 12hv22h 22v 24 41 14hv22h 22v 24 41 14hv 11
0.26

0.28

0.30

0.32

0.34

O
O
B

er
ro
r

1st 2nd 3rd EDGE3x3 EDGE5x5 SQUARE

1st

3rd

2nd EDGE3x3

EDGE5x5

SQUARE

Individual submodels

Figure 4. OOB error estimates averaged over all three stego methods and five payloads (0.05, 0.1, . . ., 0.4 bpp). Individual classes are shown
in different shades of gray.

dimensionality for all assembly strategies. Diversity-
boosting strategies (BEST-q and BEST-q-CLASS) clearly
achieve better results than the simple ALL.
As expected, ITERATIVE-BEST-q outperforms all

other strategies but its complexity limited us to merging
only ten submodels. A little over 3000 features are in gen-
eral sufficient to obtain detection accuracy within 0.5−1%
of the result when the entire 34,761-dimensional rich model
is used. When all ten submodels are selected using this
strategy, the best “dependency-unaware” strategy, BEST-
q-CLASS, needs roughly double the dimension for compa-
rable performance. This seems to suggest that further and
probably substantial improvement of the performance-
dimensionality trade-off is likely possible using more so-
phisticated feature-selection methods.
Overall, the lowest OOB error estimate is indeed ob-

tained when all 106 (dimension 34,671) submodels are
used. The gain between usingM = 39 submodels of BEST-
q-CLASS (dimensionality 12,753) and all 106 quantized
submodels is however rather negligible, indicating a satu-
ration of performance.
Models assembled from a specific class (CLASS-q) also

provide interesting insight. We obtain another confir-
mation that third-order residuals have better detection
accuracy than first-order residuals across all stego al-
gorithms. Remarkably, despite its lower dimension, the
model assembled from class ’2nd’ for HUGO is better
than class ’1st’. This is not true for the other two al-
gorithms and is due to the fact that HUGO preserves
complex statistics computed from first-order differences
among neighboring pixels. Curiously, while ’EDGE5x5’ is
better than ’EDGE3x3’ for ±1 embedding and HUGO, the
opposite is true for EA. The ’EDGE5x5’ class appears to
be particularly effective against ±1 embedding.
Strategy Q1 (the single black cross at dimensionality

12,753 in Fig. 5) does not optimize w.r.t. the quantization
factor q, and thus it is not surprising that its performance
is generally inferior to the performance of the equally-
dimensional BEST-q-CLASS strategy with M = 39

merged submodels. The loss is however rather small (and
there is almost no loss for ±1 embedding). Additionally,
Q1 allows the steganalyst to reduce the feature extraction
time roughly to 1/3 as only 39 submodels with q = 1c (out
of 106) need to be calculated.

Finally, it is rather interesting that at this payload (0.4
bpp) the EA algorithm is less secure than the simple non-
adaptive ±1 embedding.

VI. Testing the full framework
The purpose of this last experiment is to test the pro-

posed framework in a way it is customary in research works
on steganalysis. In particular, for each split of BOSSbase
into 8,074 training images and 1000 testing images, and for
each payload (0.05, 0.1, 0.2, 0.3, and 0.4 bpp) and stego
method, we use the BEST-q-CLASS strategy and assemble
the rich model as well as the final steganalyzer using only
the training set.7 Here, the training set serves the role of
an available sample from the cover source in which secret
messages are to be detected for a known stego method.

We evaluate the performance using the detection error
on the testing set:

PE , min
PFA

1
2(PFA + PMD(PFA)), (12)

as a function of the payload expressed in bpp, where PFA
and PMD are the probabilities of false alarm and missed
detection. Fig. 6 shows the median values, P̄E, together
with detection errors for the CDF set [30] implemented
with a Gaussian SVM – the state-of-the-art approach be-
fore introducing rich models and ensemble classifiers.8 The
figure contains the results for several models depending
on how many submodels in the BEST-q-CLASS strategy
are used; TOPM means that the first M submodels as
reported in Fig. 5 were used.

7It is entirely possible that the submodel ranking is slightly differ-
ent on each split.

8To save on processing time, we report the results for the CDF set
with a G-SVM for only a single split as the variations over different
splits are rather small and similar to those of the ensemble.

12

·104

0.07

0.08

0.09

0.10

0.11 SQUARE 2nd
EDGE3x3

EDGE5x5

1st

3rd

O
O
B

±1 embedding

·104

0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.21
0.22 SQUARE EDGE3x3

EDGE5x5

2nd

1st

3rd

O
O
B

HUGO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 25 35

·104

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16
SQUARE

EDGE5x5

EDGE3x3

2nd 1st

3rd

Dimensionality

O
O
B

ALL BEST-q BEST-q-CLASS Q1 CLASS-q ITERATIVE-BEST-q

Edge Adaptive

× 103

Figure 5. Performance-to-model dimensionality trade-off for five different submodel selection strategies for three algorithms and a fixed
relative payload of 0.4 bpp. The performance is reported in terms of OOB error estimates. The last three tics on the x axis for strategy ALL
are not drawn to scale. The last point corresponds to a model in which all quantized versions of all 106 submodels are merged.

13

0 0.10 0.20 0.30 0.40
0

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Payload (bpp)

P
E

±1 embedding

±1 embedding

payload CDF (G-SVM) TOP 39

(bpp) (single split) MED MAD

0.05 0.3615 0.2740 0.0065

0.10 0.2705 0.1985 0.0057

0.20 0.1890 0.1345 0.0035

0.30 0.1490 0.0968 0.0038

0.40 0.1215 0.0785 0.0035

0 0.10 0.20 0.30 0.40
0

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Payload (bpp)

P
E

HUGO

HUGO

payload CDF (G-SVM) TOP 39

(bpp) (single split) MED MAD

0.05 0.4775 0.4240 0.0045

0.10 0.4540 0.3640 0.0023

0.20 0.3975 0.2658 0.0053

0.30 0.3435 0.1915 0.0033

0.40 0.2750 0.1355 0.0035

0 0.10 0.20 0.30 0.40
0

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Payload (bpp)

P
E

TOP 1 (d ≈ 330) TOP 10 (d ≈ 3286)

TOP 3 (d ≈ 985) TOP 39 (d = 12753)

CDF (d = 1234)

Edge Adaptive
Edge Adaptive

payload CDF (G-SVM) TOP 39

(bpp) (single split) MED MAD

0.05 0.4240 0.3255 0.0028

0.10 0.3555 0.2335 0.0067

0.20 0.2650 0.1445 0.0037

0.30 0.1875 0.0958 0.0038

0.40 0.1390 0.0695 0.0020

CDF . . . dimension d = 1234

TOP 39 . . . dimension d = 12753

Figure 6. Detection error for three stego algorithms as a function of payload for several rich models. P̄E is the median detection error
PE over ten database splits into 8074/1000 training/testing images. The models as well as the classifiers were constructed for each split.
The model assembly strategy was BEST-q-CLASS. The tables on the left contain the numerical values and a comparison with a classifier
implemented using Gaussian SVM with the CDF set.

14

A. Evaluation by steganographic methods
The results confirm that HUGO is by far the best

algorithm of all three capable of hiding the payload 0.05
bpp with PE ≈ 0.42. Surprisingly, the security of the EA
algorithm is comparable with that of ±1 embedding for
payloads larger than 0.3 bpp. We observed that at higher
payloads the EA algorithm loses much of its adaptivity and
embeds with higher change rate than ±1 embedding due
to its less sophisticated syndrome coding. For smaller pay-
loads, the EA algorithm is only slightly more secure than
±1 embedding. Overall, the detection of both adaptive
stego methods benefits more from the rich model than ±1
embedding, which is to be expected and was commented
upon already in Section V-B.

B. Evaluation w.r.t. previous models
The proposed detectors provide a substantial improve-

ment in detection accuracy over the 1234-dimensional
CDF set with a Gaussian SVM even when the smallest
model (TOP1 with dimensionality slightly above 300) is
used. This improvement is again much higher for the
two adaptive stego algorithms. With regards to the more
recent publications on detection of HUGO, we note that
the results of [19] were reported for HUGO implemented
with T = 90, which introduces artifacts that make the
steganalysis significantly more accurate and thus incompa-
rable with the HUGO algorithm run with T = 255 tested
here (see Section V and [29] for more details). Even though
the attacks on HUGO reported in [17], [16], [27], [19] did
not explicitly utilize the above-mentioned weakness, they,
too are likely affected by the weakness and are thus not
directly comparable. Having said this, the best results
of [17] on HUGO (with T = 90) achieved with model
dimensionality of 33,930 can now be matched with our
rich model with dimensionality 30–100 times smaller. The
decrease in the detection error PE ranges from roughly
6% (for payload 0.1 bpp) to about 3% for payload 0.4
bpp. For ±1 embedding, the improvement is smaller and
ranges from 1− 2%.

VII. Conclusion
Recent developments in digital media steganalysis

clearly indicate the immense importance of accurate mod-
els that are relevant for steganalysis. The accuracy of
steganalyzers and their ability to detect a wide spectrum
of embedding methods in various cover sources strongly
depends on the quality and generality of the cover model.
It appears that any substantial progress is only possible
when steganalysts incorporate more complex models that
capture a large number of dependencies among pixels. This
paper introduces a novel methodology for constructing rich
models of the noise component of digital images, rich in the
sense that they consider numerous qualitatively different
relationships among pixels. The model is assembled for
a given sample of the cover source and stego method.
Both the model-building and the construction of the fi-
nal steganalyzer use ensemble classifiers because of their

good performance that can be achieved with very low
complexity. Symmetries of natural images are heavily uti-
lized to compactify the model and increase the statistical
significance of individual co-occurrence bins forming the
model. Several simple submodel-selection strategies are
tested to improve the trade-off between detection accuracy
and model dimensionality.

The framework is demonstrated on three stego algo-
rithms operating in the spatial domain: ±1 embedding
and two content-adaptive methods – HUGO and an edge-
adaptive method by Luo et al. [32]. Ensemble classifiers
with the rich model significantly outperform previously-
proposed detectors especially for the two adaptive meth-
ods as they place embedding changes in hard-to-model
regions of images where the rich model better discerns the
embedding changes. Remarkably, the rich model is capable
of achieving the same level of statistical detectability with
dimensions 30 to 100 times smaller than for the early
versions of rich models [17], [16], [27].

The rich models are built using the philosophy of max-
imizing the diversity of submodels while keeping all their
elements (co-occurrence bins) well populated and thus
statistically significant. This is quite different from the
model used in HUGO, where the authors simply increased
the truncation threshold to obtain a high-dimensional
model. Besides steganalysis, the rich model could be used
for steganography as well by endowing the model space
with an appropriate distortion function using, e.g., the
method described in [11]. The authors, however, hypoth-
esize that steganographic methods based on minimizing
distortion in a rich model space, such as [10], may no longer
be able to embed large payloads undetectably as it will
become increasingly harder to preserve a large number of
statistically significant quantities. This statement stems
from an observation made in this paper, namely that
submodels built from first-order differences among pixels
are able to detect HUGO relatively reliably despite the
fact that its distortion function minimizes perturbations
to joint statistics built from such differences.

We expect that the proposed rich models of the noise
component might find applications beyond steganography
and steganalysis in related fields, such as digital forensics,
for problems dealing with imaging hardware identification,
media integrity, processing history recovery, and authen-
tication. A similar framework based on rich models can
likely be adopted for other media types, including audio
and video signals.

The steganalyzers and models proposed in this paper
consist of several procedures and modules whose de-
sign certainly deserves further investigation and optimiza-
tion that might bring further performance improvement.
This concerns, for example, the quantizer of the multi-
dimensional co-occurrences. Replacing the uniform scalar
quantizers with non-uniform or vector quantizers may help
us further improve the performance for a fixed model
dimensionality. Additional boost can likely be obtained by
applying more sophisticated feature selection algorithms
for choosing the submodels and/or their individual bins.

15

Finally, the local pixel predictors could be parametrized
and optimized w.r.t. a specific stego method and cover
source.

As our final remark, we note that one could view the
model-building process independently of the final classi-
fier design. It is certainly possible to use the speed and
convenience of the ensemble to assemble the model and
then use it to build a classifier using a different machine-
learning tool that may provide a better separation between
classes when a highly non-linear boundary exists that
may not be well captured by the ensemble equipped with
linear base learners. In fact, we observed that features
built as co-occurrences of neighboring noise residuals often
lead to non-linear boundaries that are better captured by
Gaussian SVMs than the ensemble as implemented in this
paper. This has already been observed in our previous
work [17] and is confirmed for our rich model as well.9
To demonstrate the potential of this approach, we in-

cluded one more final experiment. We used our best rich
model (best in terms of the OOB error estimate vs. di-
mensionality) assembled using the strategy ITERATIVE-
BEST-q with ten submodels merged (dimension approx-
imately 3300) and trained a G-SVM for all three algo-
rithms using the same experimental setup as described in
Section VI. This was the largest model we could afford
to use with a G-SVM given our computing resources.
Calculating the median detection error over ten splits,
in Table II we compare the results with the detection
error of classifiers implemented as ensembles using the
12,753-dimensional TOP39 rich model. We only show the
results for the 0.4 bpp payload as carrying out these types
of experiments under our experimental setting (feature
dimensionality and training set size) is rather expensive
with a G-SVM. Interestingly, the smaller model with a
G-SVM as the final classifier provided our best detection
results. The improvement is roughly by 0.5–1% over all
three steganographic methods, in terms of the median
testing error, with a similar level of statistical variability
over the splits. The running time of a G-SVM classifier
with 3,300-dimensional features, however, was on average
30–90 times higher than the running time of the ensemble
classifier with 12,753-dimensional features, as reported in
Table III. The measured running times correspond to the
full training and testing, including the parameter-search
procedures of both types of classifiers. In case of the en-
semble, this is the search for the optimal value of dsub, and
in case of a G-SVM it is a five-fold cross-validation search
for the optimal hyper-parameters – the cost parameter
C and the kernel width γ. It was carried out on the
multiplicative grid GC × Gγ , GC = {10a}, a ∈ {0, . . . , 4},
Gγ =

{ 1
d · 2

b
}
, b ∈ {−4, . . . , 3}, where d is the feature

space dimensionality. We used our Matlab implementation
of the ensemble classifier10 and the publicly available

9In contrast, in the JPEG domain co-occurrences between quan-
tized DCT coefficients appear to react in a more linear fashion to
embedding, causing the ensemble to perform equally well as G-
SVMs [27], [28].

10available at http://dde.binghamton.edu/download/ensemble

Table II
Detection error PE for three algorithms for payload 0.4

bpp when the ensemble is used with the rich
12,753-dimensional TOP39 model and when a G-SVM is

combined with the ∼ 3300-dimensional best
ITERATIVE-BEST-q model. The reported numbers are

achieved over ten splits of BOSSbase.

Algorithm Ensemble G-SVM
MED MAD MED MAD

±1 Emb. 0.0785 0.0035 0.0683 0.0042
HUGO 0.1355 0.0035 0.1310 0.0065
EA 0.0695 0.0020 0.0643 0.0030

Table III
The average running time (for the training and testing

together) of the experiments in Table II if executed on a
single computer with the AMD Opteron 275 processor

running at 2.2 GHz.

Algorithm Ensemble G-SVM
±1 Emb. 1 hr 20 min 4 days 22 hr 37 min
HUGO 4 hr 35 min 8 days 15 hr 31 min
EA 3 hr 09 min 3 days 23 hr 50 min

package LIBSVM [5] (with manually implemented cross-
validation [25]) to conduct the G-SVM experiments.

References

[1] I. Avcibas, M. Kharrazi, N.D. Memon, and B. Sankur. Image
steganalysis with binary similarity measures. EURASIP Jour-
nal on Applied Signal Processing, 17:2749–2757, 2005.

[2] I. Avcibas, N.D. Memon, and B. Sankur. Steganalysis using
image quality metrics. In E.J. Delp and P.W. Wong, editors,
Proceedings SPIE, Electronic Imaging, Security and Water-
marking of Multimedia Contents III, volume 4314, pages 523–
531, San Jose, CA, January 22–25, 2001.

[3] L. Breiman. Bagging predictors. Machine Learning, 24:123–140,
August 1996.

[4] G. Cancelli, G. Doërr, I.J. Cox, and M. Barni. Detection of
±1 LSB steganography based on the amplitude of histogram
local extrema. In Proceedings IEEE, International Conference
on Image Processing, ICIP 2008, pages 1288–1291, San Diego,
CA, October 12–15, 2008.

[5] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for
support vector machines, 2001. Software available at http://
www.csie.ntu.edu.tw/~cjlin/libsvm.

[6] C. Chen and Y.Q. Shi. JPEG image steganalysis utilizing both
intrablock and interblock correlations. In Circuits and Systems,
ISCAS 2008. IEEE International Symposium on, pages 3029–
3032, May 2008.

[7] C. Chen, Y.Q. Shi, and Wei Su. A machine learning based
scheme for double JPEG compression detection. In 19th In-
ternational Conference on Pattern Recognition (ICPR 2008),
pages 1–4, Tampa, FL, 2009.

[8] V. Chonev and A.D. Ker. Feature restoration and distor-
tion metrics. In N.D. Memon, E.J. Delp, P.W. Wong, and
J. Dittmann, editors, Proceedings SPIE, Electronic Imaging,
Security and Forensics of Multimedia XIII, volume 7880, pages
0G01–0G14, San Francisco, CA, January 23–26, 2011.

[9] H. Farid and L. Siwei. Detecting hidden messages using higher-
order statistics and support vector machines. In F.A.P. Petit-
colas, editor, Information Hiding, 5th International Workshop,
volume 2578 of Lecture Notes in Computer Science, pages 340–
354, Noordwijkerhout, The Netherlands, October 7–9, 2002.
Springer-Verlag, New York.

[10] T. Filler and J. Fridrich. Gibbs construction in steganography.
IEEE Transactions on Information Forensics and Security,
5(4):705–720, 2010.

16

Table IV
List of symbols.

X, X̄ cover/stego image C(h)
d ,C(v)

d hor./ver. cooc. Ntrn,Ntst no. of train/test pts E
(q)
i OOB of M(q)

i

I,J index sets R = (Rij) noise residual Bl lth base learner E
(L)
OOB OOB with L learners

T threshold X̂ij pixel predictor B(l) decision of Bl EOOB(M) OOB with model M

q quant. step c residual order Nb
l Bl bootstrap set M(q)

i ith submodel quant. q

truncT truncation f no. of filters Dl lth rand. subspace qi gives smallest OOB for M(q)
i

P̄E, PE (median) tst. error σ symmetry index dsub rand.subspace dim. OOB out of bag estimate

H3(x) ternary entropy Nij pixel neighb. L no. of base learners
=
Cd symmetrized Cd

[11] T. Filler and J. Fridrich. Design of adaptive steganographic
schemes for digital images. In N.D. Memon, E.J. Delp, P.W.
Wong, and J. Dittmann, editors, Proceedings SPIE, Electronic
Imaging, Security and Forensics of Multimedia XIII, volume
7880, pages OF 1–14, San Francisco, CA, January 23–26, 2011.

[12] T. Filler, J. Judas, and J. Fridrich. Minimizing additive dis-
tortion in steganography using syndrome-trellis codes. IEEE
Transactions on Information Forensics and Security, 6(3):920–
935, 2010.

[13] T. Filler, T. Pevný, and P. Bas. BOSS (Break Our Steganogra-
phy System). http://boss.gipsa-lab.grenoble-inp.fr, July 2010.

[14] J. Fridrich. Feature-based steganalysis for JPEG images and
its implications for future design of steganographic schemes.
In J. Fridrich, editor, Information Hiding, 6th International
Workshop, volume 3200 of Lecture Notes in Computer Science,
pages 67–81, Toronto, Canada, May 23–25, 2004. Springer-
Verlag, New York.

[15] J. Fridrich. Steganography in Digital Media: Principles, Algo-
rithms, and Applications. Cambridge University Press, 2009.

[16] J. Fridrich, J. Kodovský, M. Goljan, and V. Holub. Breaking
HUGO – the process discovery. In T. Filler, T. Pevný, A. Ker,
and S. Craver, editors, Information Hiding, 13th International
Workshop, volume 6958 of Lecture Notes in Computer Science,
pages 85–101, Prague, Czech Republic, May 18–20, 2011.

[17] J. Fridrich, J. Kodovský, M. Goljan, and V. Holub. Steganal-
ysis of content-adaptive steganography in spatial domain. In
T. Filler, T. Pevný, A. Ker, and S. Craver, editors, Information
Hiding, 13th International Workshop, volume 6958 of Lecture
Notes in Computer Science, pages 102–117, Prague, Czech Re-
public, May 18–20, 2011.

[18] M. Goljan, J. Fridrich, and T. Holotyak. New blind steganalysis
and its implications. In E.J. Delp and P.W. Wong, editors,
Proceedings SPIE, Electronic Imaging, Security, Steganography,
and Watermarking of Multimedia Contents VIII, volume 6072,
pages 1–13, San Jose, CA, January 16–19, 2006.

[19] G. Gül and F. Kurugollu. A new methodology in steganaly-
sis: Breaking highly undetactable steganograpy (HUGO). In
T. Filler, T. Pevný, A. Ker, and S. Craver, editors, Information
Hiding, 13th International Workshop, volume 6958 of Lecture
Notes in Computer Science, pages 71–84, Prague, Czech Re-
public, May 18–20, 2011.

[20] I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors. Fea-
ture Extraction, Foundations and Applications. Physica-Verlag,
Springer, 2006.

[21] J. J. Harmsen and W. A. Pearlman. Steganalysis of additive
noise modelable information hiding. In E.J. Delp and P.W.
Wong, editors, Proceedings SPIE, Electronic Imaging, Security
and Watermarking of Multimedia Contents V, volume 5020,
pages 131–142, Santa Clara, CA, January 21–24, 2003.

[22] S. Katzenbeisser and F. A. P. Petitcolas, editors. Information
Hiding Techniques for Steganography and Digital Watermark-
ing. New York: Artech House, 2000.

[23] A.D. Ker and R. Böhme. Revisiting weighted stego-image
steganalysis. In E.J. Delp and P.W. Wong, editors, Proceedings
SPIE, Electronic Imaging, Security, Forensics, Steganography,
and Watermarking of Multimedia Contents X, volume 6819,
pages 5 1–5 17, San Jose, CA, January 27–31, 2008.

[24] M. Kirchner and J. Fridrich. On detection of median filtering
in images. In Proc. SPIE, Electronic Imaging, Media Forensics
and Security XII, volume 7542, pages 10 1–12, San Jose, CA,
January 17–21 2010.

[25] J. Kodovský. On dangers of cross-validation in steganalysis.
Technical report, Binghamton University, August 2011.

[26] J. Kodovský and J. Fridrich. On completeness of feature spaces
in blind steganalysis. In A.D. Ker, J. Dittmann, and J. Fridrich,
editors, Proceedings of the 10th ACM Multimedia & Security
Workshop, pages 123–132, Oxford, UK, September 22–23, 2008.

[27] J. Kodovský and J. Fridrich. Steganalysis in high dimensions:
Fusing classifiers built on random subspaces. In N.D. Memon,
E.J. Delp, P.W. Wong, and J. Dittmann, editors, Proceedings
SPIE, Electronic Imaging, Security and Forensics of Multimedia
XIII, volume 7880, pages OL 1–13, San Francisco, CA, January
23–26, 2011.

[28] J. Kodovský, J. Fridrich, and V. Holub. Ensemble classifiers for
steganalysis of digital media. IEEE Transactions on Informa-
tion Forensics and Security, 2011. Under review.

[29] J. Kodovský, J. Fridrich, and V. Holub. On dangers of overtrain-
ing steganography to incomplete cover model. In J. Dittmann,
S. Craver, and C. Heitzenrater, editors, Proceedings of the 13th
ACM Multimedia & Security Workshop, Niagara Falls, NY,
September 29–30, 2011.

[30] J. Kodovský, T. Pevný, and J. Fridrich. Modern steganalysis
can detect YASS. In N.D. Memon, E.J. Delp, P.W. Wong, and
J. Dittmann, editors, Proceedings SPIE, Electronic Imaging,
Security and Forensics of Multimedia XII, volume 7541, pages
02–01–02–11, San Jose, CA, January 17–21, 2010.

[31] T.G. Kolda, R.M. Lewis, and V. Torczon. Optimization by
direct search: New perspectives on some classical and modern
methods. SIAM Review, 45:385–482, 2003.

[32] W. Luo, F. Huang, and J. Huang. Edge adaptive image
steganography based on LSB matching revisited. IEEE Trans-
actions on Information Forensics and Security, 5(2):201–214,
June 2010.

[33] T. Pevný, P. Bas, and J. Fridrich. Steganalysis by subtractive
pixel adjacency matrix. IEEE Transactions on Information
Forensics and Security, 5(2):215–224, June 2010.

[34] T. Pevný, T. Filler, and P. Bas. Using high-dimensional im-
age models to perform highly undetectable steganography. In
R. Böhme and R. Safavi-Naini, editors, Information Hiding,
12th International Workshop, volume 6387 of Lecture Notes in
Computer Science, pages 161–177, Calgary, Canada, June 28–
30, 2010. Springer-Verlag, New York.

[35] Y. Q. Shi, C. Chen, and W. Chen. A Markov process based
approach to effective attacking JPEG steganography. In J.L.
Camenisch, C.S. Collberg, N.F. Johnson, and P. Sallee, editors,
Information Hiding, 8th International Workshop, volume 4437
of Lecture Notes in Computer Science, pages 249–264, Alexan-
dria, VA, July 10–12, 2006. Springer-Verlag, New York.

[36] K. Sullivan, U. Madhow, S. Chandrasekaran, and B.S. Man-
junath. Steganalysis of spread spectrum data hiding exploiting
cover memory. In E.J. Delp and P.W.Wong, editors, Proceedings
SPIE, Electronic Imaging, Security, Steganography, and Water-
marking of Multimedia Contents VII, volume 5681, pages 38–46,
January 16–20,.

[37] D. Upham. Steganographic algorithm JSteg. Software available
at http://zooid.org/~paul/crypto/jsteg.

[38] D. Zou, Y. Q. Shi, W. Su, and G. Xuan. Steganalysis based
on Markov model of thresholded prediction-error image. In
Proceedings IEEE, International Conference on Multimedia and
Expo, pages 1365–1368, Toronto, Canada, July 9–12, 2006.

