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Abstract—The machine learning paradigm currently predom-
inantly used for steganalysis of digital images works on the
principle of fusing the decisions of many weak base learners.
In this paper, we employ a statistical model of such an ensemble
and replace the majority voting rule with a likelihood ratio
test. This allows us to train the ensemble to guarantee desired
statistical properties, such as the false-alarm probability and the
detection power while preserving the high detection accuracy of
original ensemble classifier. It also turns out the proposed test is
linear. Moreover, by replacing the conventional total probability
of error with an alternative criterion of optimality, the ensemble
can be extended to detect messages of an unknown length to
address composite hypotheses. Finally, the proposed well-founded
statistical formulation allows us to extend the ensemble to multi-
class classification with an appropriate criterion of optimality and
an optimal associated decision rule. This is useful when a digital
image is tested for presence of secret data hidden by more than
one steganographic method. Numerical results on real images
show the sharpness of the theoretically established results and
the relevance of the proposed methodology.

Index Terms—Hypothesis testing theory, information hiding,
optimal detection, multi-class classification, ensemble classifier.

I. INTRODUCTION

STEGANOGRAPHY is often referred to as the science of
covert communication. Its objective is to hide a secret

message within an innocuous looking cover object creating
thus a stego-object that can be sent over an insecure channel
without raising any suspicion. Steganography that hides mes-
sages in digital images has received great attention since mid
1990’s.

A. Modern Steganalysis
While steganography has been advanced to hide data more

efficiently and more securely, see e.g. [1], the related field of
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steganography detection, steganalysis, has also been develop-
ing at a fast rate. Currently, there exist two main trends in
steganalysis:

1) Optimal detectors, as referred to in [2], find an optimal
statistical test with respect to a given criterion based
on a statistical model of cover objects. One of the first
optimal detectors was proposed for Least Significant
Bit (LSB) replacement in [3] using a simple statistical
model of pixels. The detection has been further improved
by considering more sophisticated models [4]–[7]. The
methodology of optimal detection has also been applied
to LSB matching in the spatial domain [8] and to the
Jsteg algorithm in the JPEG domain [9], [10].

2) A large portion of steganalysis methods today are imple-
mented using machine learning. First, a feature represen-
tation of cover objects, that could reveal steganography,
is selected. Then, a classifier is trained to distinguish
between cover and stego features. One of the first
feature based steganalysis can be found in [11], where
the Fisher Linear Discriminant (FLD) was used for
machine learning. Soon, more efficient machine learning
techniques were proposed, such as the Support Vector
Machines (SVM) [12], [13], combined with a plethora
of representations of digital images. Recently, the FLD-
based ensemble classifier [14] has been successfully
introduced as a scalable alternative to SVMs for features
of a high dimension.

Machine learning based steganalysis methods are usually
much more powerful than optimal detectors derived from
simple models. They can also be extended to multi-class
detection [15] and payload estimation [13]. Their drawback,
however, is that the theoretical statistical properties of such
detectors are generally unknown: the false-alarm and correct-
detection probabilities are always evaluated empirically from
a large set of digital images. While optimal detectors derived
from a cover model perform much worse in practice, since
modeling such complex objects as digital images is chal-
lenging, these detectors offer certain indisputable advantages.
First, one can theoretically find an explicit formula for the
statistical performance of the optimal test and guarantee a
false-alarm rate, which is crucial in practical application when
searching for hidden data in large data sets. Second, such
framework provides valuable insight into the problem of how
the properties of digital images impact statistical detectability,
see [16], [17] for an example of steganography designed to
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minimize the impact on a statistical image model.

B. Contribution and Organization of this Paper

The present paper leverages the advantages of both ap-
proaches. By employing an accurate statistical model for
the base learners’ projections in an ensemble classifier [14],
it is possible to replace the majority voting detector with
a likelihood ratio test. This allows us to (1) establish the
statistical properties of the proposed optimal test, (2) use
alternative criteria for the detector design (e.g., the Neyman–
Pearson criterion instead of the frequently used Bayesian
criterion), and (3) extend the classifier to multi-class detection
while using optimality criteria established within the detection
theory. The new framework, when used with the Bayesian
criterion, preserves the high detection performance of the
original ensemble classifier. To the best of our knowledge,
this approach, which casts the ensemble base learners’ within
hypothesis testing theory, has never been studied before.
Although the present paper focuses on steganalysis with en-
semble classifiers whose base learners are FLDs, the proposed
approach is applicable to other instances of ensembles whose
base learners are linear (e.g., linear SVMs).
We now highlight the main contributions of this paper with
respect to the original formulation of the ensemble classifier
for steganalysis [14]:

1) The statistical model of base learners’ projections,
whose accuracy is verified on real data sets, allows
us to formally establish the statistical properties of the
proposed test. For instance, one can compute the thresh-
old that guarantees a desired false-alarm rate together
with the highest power one can expect. This extension
of the ensemble also allows using other measures of
performance than the usual minimal total probability PE
and to draw the receiver operating characteristic (ROC)
curve. This part has already been partially published
in [18].

2) Moreover, with the proposed approach, we show that a
statistical test can be designed for the ensemble so that
it remains optimal (under a mild assumption) when the
embedding payload / hidden message length is unknown.

3) Finally, the ensemble is extended to a multi-hypotheses
detection/classification problem. This is possible be-
cause we casted the ensemble classifier within the hy-
pothesis testing theory based on the proposed statistical
model. A novel criterion of optimality is proposed (and
the associated optimal statistical test is presented) to
preserve the constraint on the false-alarm probability
that, up to our knowledge, has never been studied in
steganalysis.

This paper is an extension of our prior work [18]. It provides
three majors advancements with respect to this prior art: 1)
a detailed description of the implementation, which has been
modified to improve the accuracy; 2) extension to the case of
an unknown payload together with a proof of optimality of
the proposed test; and 3) extension to the multi-hypotheses
(multiclass steganalysis) with a novel criterion of optimality.

Though the present paper focuses on steganalysis, the
proposed methodology is general enough to be used as a
supervised learning method in a broader context, such as for
content retrieval [19], face recognition [20], and automatic
annotation [21], which also employ ensemble classifiers.

The paper is organized as follows. Section II provides a
brief summary of ensemble classifiers for steganalysis using
high-dimensional feature-spaces. Then, Section III states the
steganalysis problem within the framework of the statistical
hypothesis testing theory. This is followed by a description of
the proposed optimal Likelihood Ratio Test (LRT) including
the study of its statistical properties. Section IV extends the
proposed optimal detection approach to the case of multi-
class classification through an original criterion of optimality
never used in steganalysis. Numerical results on a large image
database for both spatial and JPEG domain steganographic
methods presented in Section V show the sharpness of the
theoretical results and the relevance of the proposed method-
ology. Finally, Section VI summarizes the present work and
concludes the paper.

II. FLD ENSEMBLE CLASSIFIER (BACKGROUND)

In the whole paper, matrices are represented with capital
bold letters X, vectors are denoted with lower case bold letters
x, scalars with lower case letters x, and sets and probability
distributions with calligraphic capital letters X .

With the rapidly increasing dimension of feature spaces for
steganalysis, ensemble classifiers have received a great interest
because their computational complexity scales favorably with
respect to the feature dimensionality. However, their theoreti-
cal performance remains largely unstudied. The present paper
focuses on the ensemble classifier as originally designed for
the BOSS competition [22] and further developed in [14]. Each
base learner is a Fisher Linear Discriminant classifier trained
on a uniformly randomly selected subset of features.

Formally, let f ∈ Rd be a (column) vector of d features
extracted from one image. It is assumed that the features
extracted from N pairs of cover and corresponding stego
images, respectively denoted C = (c1, . . . , cN ) and S =
(s1, . . . , sN ), are available together with their class labels. This
set is divided into two disjoint subsets of N trn training and
N tst testing samples, N trn + N tst = N . During the training
phase, each base learner is given a subset of features on which
an FLD classifier is trained.1 Let the training sets of cover
and stego image features be matrices of size d×N trn denoted
Ctrn = (ctrn

1 , . . . , ctrn
Ntrn) and Strn = (strn

1 , . . . , strn
Ntrn). The

FLD assumes that, within these two classes, the features are
i.i.d. with means µc and µs, of size d × 1, and covariance
matrices Σc and Σs of size d× d. Among all linear decision
rules defined by:2

C :

{
H0 if wTf < b

H1 if wTf > b
(1)

1We also point out that in steganalysis the training set must always consist
of pairs of cover-stego images as it has been shown that preserving those pairs
can significantly increase the detection performance [23].

2Since the FLD is a well-known tool, it is only briefly described in this
paper; the reader is referred to [24] for a more detailed exposition.
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where f is a feature vector to be classified, the FLD finds the
weighting vector w ∈ Rd that maximizes the following Fisher
separability criterion:

wT(µc − µs)(µc − µs)
Tw

wT(Σc + Σs)w
. (2)

Few calculations show that maximizing the Fisher criterion on
the training data, Ctrn and Strn, gives the following weighting
vector w:

w =
(
Σ̂c + Σ̂s

)−1

(µ̂c − µ̂s) (3)

with µ̂c =
1

Ntrn

Ntrn∑
n=1

ctrn
n , µ̂s =

1

Ntrn

Ntrn∑
n=1

strn
n

Σ̂c =
1

Ntrn − 1
(Ctrn − µ̂c)(C

trn − µ̂c)
T ,

and Σ̂s =
1

Ntrn − 1
(Strn − µ̂s)(S

trn − µ̂s)
T.

The power of the ensemble classifier comes from using L
different FLD classifiers all built on randomly selected subsets
of dsub features denoted F1, . . . ,FL. It is worth noting that
the vector v ∈ RL of all L projections from (1) can be written:

v = Pf , (4)

where, again, f ∈ Rd is a feature vector to be classified and
P is a “sparse” matrix of size L× d whose l-th row contains
zeros for all features not included in Fl while it contains the
weighting vector from the corresponding l-th base learner in
all remaining elements.
In the ensemble classifier as developed for steganalysis [14],
the projection v is then thresholded, to obtain a vote from
each base learner, as follows:

sign (v − b) ,

where b ∈ RL represents the vector of thresholds of all L base
learners (1) and the sign(x) function, applied element-wise, is
1 if x is positive, −1 is x is negative and 0 in the (unlikely)
case of x = 0.

In this paper, we model the distribution of v using the
multivariate Gaussian distribution and cast the process of
reaching the ensemble decision within the framework of
hypothesis testing. This will allow us to design optimal
detectors and establish their performance. In Section IV, we
extend this approach to the case of multi-class steganalysis
(multiple hypothesis testing). Because we also changed the
implementation of the ensemble classifier for steganalysis, we
provide a detailed comparison with the original ensemble in
Section III-C.

III. OPTIMAL BINARY DETECTOR USING ENSEMBLE
CLASSIFIER

Let us assume that the vector of base learners’ projections
v, see Equation (4), follows the distribution Pθ0 under the null
hypothesis H0 (features are extracted from cover images) and
Pθ1 under the alternative hypothesis H1 (features extracted
from stego-images with data hidden with a known payload R
and a known embedding method). This constitutes the ideal

scenario for a steganalyst as he/she knows the probability
distribution under both hypotheses, the embedding method,
and the payload R. Accepting for a moment this ideal setting,
steganalysis amounts to choosing between the two following
simple hypotheses: {

H0 : {v ∼ Pθ0} ,
H1 : {v ∼ Pθ1} .

(5)

A statistical test is a mapping δ : RL 7→ {H0,H1}, such that
hypothesis Hi is accepted if δ(v) = Hi (see [25], [26] for
details). The present paper focuses on the Neyman–Pearson bi-
criteria approach that aims at minimizing the missed-detection
probability for a guaranteed false-alarm probability. Hence, let:

Kα0
= {δ : PH0

(δ(v) = H1) ≤ α0} , (6)

be the class of tests with a false-alarm probability upper-
bounded by α0. Here, PHi(A) stands for the probability of
event A under hypothesis Hi, i = {0, 1}.

Among all tests in Kα0
, it is necessary to find a test δ that

maximizes the power function defined by the correct detection
probability:

βδ = PH1
(δ(v) = H1) , (7)

which is equivalent to minimizing the missed-detection prob-
ability α1(δ) = 1− βδ .

When the hypotheses are simple, it follows from the
Neyman–Pearson Lemma [26, Theorem 3.2.1] that the Most
Powerful (MP) test in the class Kα0 (6) is the Likelihood Ratio
test (LRT) defined as:

δlr(v) =


H0 if Λlr(v) =

pθ1(v)

pθ0(v)
≤ τ lr,

H1 if Λlr(v) =
pθ1(v)

pθ0(v)
> τ lr,

(8)

where pθ0 and pθ1 denote the joint probability density
function (pdf) associated with the distributions Pθ0 and
Pθ1 , respectively, and τ lr is the solution of the equation
PH0

(
Λlr(v) > τ lr

)
= α0 to ensure that the LRT is in the

class Kα0
, see Equation (6).

The choice of the Neyman–Pearson criterion of optimality
is justified by practical consideration; in fact, when analyzing a
large number of digital images the most difficult challenge is to
guarantee a (very) low false-alarm probability, which is exactly
the goal of the Neyman–Pearson approach that maximizes the
detection accuracy under the constraint of a prescribed false-
alarm probability. Other criteria, such as Fishers’ separability
criterion (2), Bayesian criterion, see Corollary 1, do not
indicate how to set the threshold in order to guarantee a
false-alarm probability and, consequently, do not provide an
expression for the achievable detection accuracy for a given
prescribed false-alarm rate.

The ideal scenario of testing simple hypotheses is addressed
in the remainder of this section. Then, two extensions are
presented within the same framework that aim at designing
a detector with established statistical properties to guarantee
a prescribed false-alarm probability. First, in Section III-E a
practical application of the proposed test when the payload
is unknown is addressed. Second, the problem of extending
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the proposed approach of optimal detection to multi-class
classification is addressed in Section IV. This corresponds to
classifying images with data hidden with different embedding
methods.

A. Statistical Model of Ensemble Classifier

In the present paper, it is proposed to model the vector
v of base learners’ projections by a multivariate normal
distribution. Fundamentally, it is hardly possible to formally
prove that this model holds true whatever the features might
be. However, since the number of features used by each base
learner is usually quite large the use of the multivariate normal
distribution is supported by invoking Lindeberg’s central limit
theorem (CLT) [26, Theorem 11.2.5]. This is later confirmed
experimentally. Using this statistical model, v ∼ N (µ0,Σ0),
under the null hypothesis H0, and v ∼ N (µ1,Σ1) under
the alternative hypothesis H1. Here µi and Σi represent
the expectations and covariances of base learners’ projections
under hypotheses Hi , i = {0, 1}.

In order to simplify the presentation of the proposed test,
we transform the base learners’ projections as follows:

ṽ = Σ
−1/2
0 (v − µ0) , (9)

where the symbol Σ
−1/2
0 denotes the symmetric matrix satis-

fying Σ
−1/2
0 Σ

−1/2
0 = Σ−1

0 . It is straightforward to note that it
is equivalent to computing the normalized projections ṽ from
base learners projections v or from v − b, used to compute
the votes, as the mean µ0 is also modified in the same way.
This is why, within the proposed methodology, there is no
need to use any thresholds of the individual base learners. The
affine transformation (9) guarantees that, under the hypothesis
H0, the “normalized” base learners’ projections ṽ follow a
multivariate normal distribution with zero mean and identity
covariance matrix: ṽ ∼ N (0, IL) with IL the identity matrix
of size L. It is important to note that the family of multivariate
normal distributions N (µ0,Σ0) remains invariant under such
a transformation, see [25, Chap. 4] and [26, Chap. 6] for details
about the invariance principle in statistical decision theory.

In this paper it is further assumed that the covariance ma-
trices Σ0 and Σ1 are equal; this assumption is approximately
true for small payloads R, which are the focus of the present
paper because it is the most difficult case for detection.

Let us denote

θ1 = Σ
−1/2
0 (µ1 − µ0) . (10)

The steganalysis detection problem can be rewritten as a
choice between the two following simple hypotheses:{

H0 : {ṽ ∼ N (0, IL)} ,
H1 : {ṽ ∼ N (θ1, IL)} .

(11)

We have conducted a wide range of experiments to confirm
the validity of this model. Some are presented among the
numerical results in Section V-B.

B. Optimal LRT and Study of its Statistical Performance

As discussed in the introduction of Section III, for simple
hypotheses (11) the optimal statistical test that guarantees a
false-alarm probability and maximal power function is the
LRT (8). In our case, the Likelihood Ratio (LR) between the
tested hypotheses can be simplified as (see Appendix A):

Λlr(ṽ) =
θT

1 ṽ

‖θ1‖
, (12)

where, ‖θ1‖2 = θT
1 θ1.

Note that the proposed LR, Λlr(ṽ), is related to the Lin-
ear Discriminant Analysis (LDA) because both share the
underlying model, the homoscedastic multivariate Gaussian
distribution of data, and reach the decision in a linear fashion
based on the projection vector θ1, see Eq. (10).
From the properties of the multivariate normal distribution,
it immediately follows from the distribution of ṽ under hy-
potheses H0 and H1, see Equation (11), that the LR Λlr(ṽ),
Equation (12), follows the following distribution:

Λlr(ṽ) =
θT

1 ṽ

‖θ1‖
∼

{
N (0, 1) underH0

N (‖θ1‖ , 1) underH1.
(13)

From here, it is straightforward to establish the statistical
properties of the proposed LRT (8):

Proposition 1. For any false alarm probability α0 ∈ (0, 1), it
follows from (13) that the following decision threshold:

τ lr = Φ−1(1− α0), (14)

guarantees that PH0

(
Λlr(ṽ) > τ lr

)
= α0. Here Φ and Φ−1

denote the normal cumulative distribution function (cdf) and
its inverse.
From the expression for the threshold τ lr (14), and the
statistical distribution of the LR Λlr(ṽ), Equation (13), the
power function of the most powerful LRT δlr is given by:

βδlr = PH1

(
Λlr(ṽ) > τ lr

)
= 1− Φ

(
τ lr − ‖θ1‖

)
(15)

= 1− Φ
(
Φ−1(1−α0)− ‖θ1‖

)
.

Proof. Proposition 1 is proved in Appendix A.

Two essential elements can be deduced from Proposition 1.
First, thanks to the normalization of the base learners’ projec-
tions, see (9), and of the LR Λlr(ṽ) through the multiplication
by ‖θ1‖−1 (12), the decision threshold only depends on the
prescribed false-alarm probability. Second, the performance of
the proposed optimal LRT is entirely given by ‖θ1‖, the norm
of the expectation under H1.

Remark 1. Note that the proposed LRT is in fact a linear clas-
sifier. It is indeed straightforward from Equation (4) and (9)
that for a feature vector f the proposed LRT (12) accepts the
alternative hypothesis H1 if, with the previous notation:

θT
1 Σ
−1/2
0 (Pf − µ0)

‖θ1‖
> τ lr.

In fact, the only non-linearity in the original ensemble clas-
sifier for steganalysis comes from the majority voting, which



R.COGRANNE, AND J.FRIDRICH, “... A THEORETICAL FRAMEWORK CAST WITHIN HYPOTHESIS TESTING THEORY” 5

is not used in the proposed methodology. The fact that the
proposed linear decision rule performed virtually identically
within our experiments (see Section V-D) makes the usefulness
of the non-linearity due to majority voting in the original
ensemble questionable. This claim is also supported in [27]
which shows that, provided the regularization parameter is
correctly set, a linear classifier can be constructed with the
same performance as that of the original ensemble. This
indicates that the fusion of base learners in the ensemble acts
as a regularization, which seems to help the detection more
that the non-linear majority vote rule.

Finally, from Proposition 1, one can also compute the
decision threshold τPE that minimizes the total probability of
error under equal Bayesian priors, PE = 1/2 (α0 + 1− β(α0))
as follows, see details in Appendix 1:

Corollary 1. The threshold given by:

τPE =
‖θ1‖

2
, (16)

minimizes the total probability of error PE . Using the thresh-
old given in Equation (16), the power and the false-alarm
probability of the optimal LRT, at the minimal PE , are given
by:

α0 = βδlr = 1− Φ

(
‖θ1‖

2

)
. (17)

C. Comparison with Original Ensemble Classifier for Stega-
nalysis

First of all, it worth noting that the proposed methodology
fundamentally differs from the majority voting rule originally
proposed for the FLD ensemble for the following three rea-
sons. First, the covariance between the base learners is taken
into account. Second, while the majority voting gives the same
weight to all base learners, the proposed framework, as well as
some other prior works [28], allows giving more importance
to base learners that better distinguish the two classes. Last, as
stated above, the proposed optimal LRT is a linear classifier.
The main advantage of the proposed LRT is that, thanks to the
statistical model detailed in Section III-A, the performance of
our test is established in Proposition 1. Hence, one can not only
design a test that guarantees a given false-alarm probability but
also compute the associated threshold as well as the highest
detection performance that can be expected. Moreover, the
theoretically expected performance of the test can be compared
with the empirically obtained one (see Section V-D).

Additionally, we also adjusted the search for the optimal
parameters, the number of features used by each base learner
dsub as well as the number of base learners L, see also discus-
sion in Section III-D. The original FLD ensemble minimizes
the total probability of error under equal Bayesian priors,
PE = 1/2 (PMD + PFA), with PMD and PFA the probability
of missed detection and false alarm, respectively (see the
formal definitions in Section III-A). Since we proposed a
statistical model for the ensemble classifier, we also use it
to determine the optimal values of the parameters dsub and
L in order to maximize the theoretically established detection

performance, see Proposition 1. In fact the theoretical perfor-
mance only depends on the expected norm of the normalized
projection vector ‖θ1‖, see Equation (10). Hence, we proposed
to maximize directly ‖θ1‖ when searching for optimal values
of dsub and L, instead of determining these parameters by
maximizing the empirical total probability PE as proposed in
the original version of ensemble classifier.

Finally, we wish to emphasize that the computational cost of
the proposed LRT is very similar to the original ensemble. We
note that the training of a single FLD base learner requires to
evaluate the scatter matrix denoted Σ̂c + Σ̂s in Equation 3
and its inversion. These two operations are respectively of
complexity O(N trnd2

sub) and O(d3
sub). Hence, for a fixed

value of the parameters dsub and L the training complexity is
O(N trnLd2

sub +Ld3
sub), where N trn is the size of the training

set. To evaluate the performance through the mean projection
‖θ1‖ the proposed methodology requires to estimate the
covariance matrix Σ0 between base learners’ projections and
then inverting this matrix. These operations are, respectively,
of complexity O(N cvL2) and O(L3), with N cv the size of the
cross-validation set (in our implementation, the training set is,
by default, split into subsets of equal size for training and cross
validation). Hence, the proposed methodology is slightly more
computationally expensive. Note, however, that the difference
is of order O(N cvL2) + O(L3), which is rather negligible
compared the to overall complexity of the ensemble classifier,
which is O(N trnLd2

sub + Ld3
sub) since usually dsub >> L2.

As for the original ensemble, the overall complexity remains
much smaller than others popular machine learning algorithms
(e.g. SVM).

D. Implementation of the Proposed Methodology

The implementation of the proposed LRT is similar to
the original ensemble classifier as detailed in [14]. Here, we
emphasize the main implementation differences. The flowchart
in Figure 1 represents the proposed implementation for the
training (and testing) with the proposed methodology. First, as
in [14], the features are divided into two subsets for training
and testing, both equal in size by default. The testing set
is used to compute the numerical results in this paper, see
Figure 1, but of course, in “real life” all the samples will be
used for training, the testing set will be provided by data to
classify for which the “label” (either cover or steganographic
images) remains unknown. Then, the training of each base
learner is performed only on a subset of the training set, while
the remaining subset of the training set is used for cross-
validation to measure the performance of the base learners. In
contrast to the original ensemble, we did not use bootstrapping
but simply split the training set into two subsets of equal size
(hence each containing one quarter of the entire feature set).
All these subsets are kept disjoint in both the original ensemble
as well as the proposed method.

As briefly discussed in Section III-C, we use the proposed
statistical model for the ensemble classifier in order to search
for the optimal values of the parameters dsub and L. To this
end, one only needs to measure the base learners’ projection
covariance Σ0 and the expectations µ0 and µ1 under each
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Cover and stego
feature sets (C, S)

Split into
disjoint
subsets

Testing
set

Training
set

Split into
disjoint
subsets

Training
subset

Cross-
Validation

subset

Optimal
L value

[14, Algo.1]

Yes

No Train FLD
(training set)
to obtain new

vector w

Update
µ0, µ1

and matrix
Σ0

Update
Σ

−1/2
0 and

compute θ1

as in (10)

Obtain
empirical

results
α and β

Estimation
of Σ0 on
10 splits

Optimal
dsub value ?
[14, Algo.2]

No
Yes

Fig. 1: Schematic representation describing the implemen-
tation of the proposed methodology. Note that rectangles
represent data, circles are associated with operations, and
rhombuses represent loops and associated tests.

hypothesis H0 and H1, respectively. Hence, for a fixed value
of dsub, each base learner is added to the ensemble as follows
(see the bottom row of Figure 1): (1) a randomly selected
subset of features of size dsub is selected (not shown in
Figure 1) (2) the training set is used to obtain the projection
vector w, see Equation (3), from an FLD base learner (each
base learner is trained as a usual FLD except that we do not
need the threshold value b); (3) the cross-validation set is used,
with the projection vector w, to update the base learners’
projection covariance Σ0 and expectations µ0 and µ1. Once
these values have been updated, it is straightforward to re-
compute ‖θ1‖ using Equation (10). Because we reused the
search method used to find the parameters dsub and L from
the original ensemble classifier [14] (shown by rhombuses in
Figure 1), we refer the reader to this paper for further details.

It also worth noting that in the original ensemble a boot-
straping is done so that, for each added base learner, the cross-
validation is performed on a different subset of the training
set and all the training samples are considered to estimate
the performance using the out-of-bag (OOB) estimate of the
testing error. Because this can hardly be done with the base
learners’ projections, we change the subset used for the cross-
validation only when the number of features dsub is changed
and keep the split of the training set unchanged to find the
number of base learners L.

Finally, note that the estimation of the parameters of the
multivariate normal distribution is also difficult in this context.
While the estimation of expectations is rather simple, the
estimation of the covariance matrices becomes difficult when
the number of base learners increases: for L base learners,
1/2L(L + 1) covariances have to be estimated. Since the
estimation of the covariance matrix of projections Σ0 plays
a crucial role, once the optimal values of dsub and L are

found, we estimate the mean µ0 and the covariance matrix
Σ0 on ten random cross-validation splits. This is especially
important for the covariance matrix estimation: an accurate
estimation ensures the validity of the theoretical results for
low false-alarm probability α0 around 10−3, see Section V-D.

E. Extension to Steganalysis of Unknown Payload

Until now, the most powerful LRT was designed based on
the assumption that the payload R was known. In practice,
however, the steganalyst usually has little or no information
about the payload size. In this case, the statistical problem of
detecting the presence of hidden data becomes a test between
the following composite hypotheses, reusing the notation from
Section III-A:{

H0 : {v ∼ Pθ0} ,
H1 : {v ∼ PθR , R ∈ (0, 1]} ,

(18)

with R the payload expressed in bits per pixel (or per non-zero
AC DCT coefficient for JPEG images).

The ultimate goal of steganalysis is to design a statistical
test that is Uniformly Most Powerful (UMP): a test which
coincides with the Most Powerful LRT whatever the embedded
payload might be. Generally speaking, such a test rarely exists
except when the hypotheses have a monotone Likelihood Ratio
of a scalar parameter, see [26, Theorem 3.4.1]. We adopt here
the assumption that, whatever the payload used for training,
when testing an image, the expectations of base learners
projections are increasing with the payload. This assumption
is sometimes referred to as the “shift hypothesis” and was
recognized for the first time in [29]. We further assumed
that the covariance matrix remains the same for any (small)
payload; this is reasonable for small payloads, which is the
focus of this paper. With the proposed statistical model, the
problem of detecting messages of unknown length can be
formally written as a choice between the following composite
hypotheses: {

H0 : {ṽ ∼ N (0, IL)} ,
HR : {ṽ ∼ N (f(R)θ1, IL)} ,

(19)

with f : [0, 1] 7→ R+ a monotone increasing function. Roughly
speaking f(R) represents the impact of the payload R, how
much it “pushes” all the expectations of all base learners’
projections ṽ, see Equation (9).

Proposition 2. (1) Assuming that the model (19) holds true,
then for any α0 ∈ (0, 1) the LRT (8) with the LR defined as
in (12) is UMP in the class Kα0

for testing hypotheses (19)
provided that the decision threshold is chosen as in Equa-
tion (14).
(2) For any payload R ∈ (0, 1] and for any α0 ∈ (0, 1), the
power function of the UMP LRT (8) is given by:

βδlr =PH1

(
Λlr(ṽ)>τ lr

)
=1− Φ

(
τ lr − f(R) ‖θ1‖

)
(20)

=1−Φ
(
Φ−1(1−α0)− f(R) ‖θ1‖

)
Proof. Proposition 2 is proved in Appendix A.

It is important here to stress that, in practice, the function
f(R) is not used in the proposed UMP LRT. The proposed
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approach requires only the knowledge of θ1 and the covariance
matrix Σ0, which can both be estimated for any fixed payload
as in the case of simple hypotheses.
The function f(R) is primarily introduced to formalize the
condition under which the optimality of the proposed approach
holds, which is when a given embedding scheme pushes
the projections of all base learners’ projections along the
same direction θ1 regardless of the payload. In practice,
f(0) = 0 and is non-linearly increasing with the payload; it
behavior depends on the steganographic embedding algorithm,
its content adaptivity, the embedding domain (spatial or JPEG),
and many other attributes.
Besides, since the power of the proposed UMP LRT (20)
depends on f(R), in the case of an unknown payload, R, the
power is also unknown. This expression is provided in order to
(a) contrast it with the case of simple hypothesis (15) and (b)
fully characterize the statistical properties of the UMP LRT.

Note that there exist other possibilities to construct a test
that is optimal regardless of the payload. It has been proposed
in [5] to use the Local Asymptotic Normality [33] in order to
design an asymptotically UMP test around a chosen payload
R?. This approach can however hardly be used for the problem
addressed in this paper because 1) we explicitly wish to
address the case in which the payload is unknown and no prior
information on this is available and, 2) it is hardly possible
to indefinitely increase the number of base learners. A more
practical approach has been proposed in [34] by training the
classifier with a mixture of payloads. The author has shown
that the best results are obtained using a uniform distribution of
payload. This approach is contrasted with the proposed UMP
test in Section V-E for two different embedding algorithms.
Note that we tested many other embedding algorithms but, for
brevity, only two are presented. The results obtained show the
relevance of the proposed test. While the proposed UMP test
performs very well, either when trained on a mixed payload
or with a wrong payload, the original ensemble with majority
voting performs significantly worse, see Section V-E.

IV. OPTIMAL CRITERIA AND DESIGN OF STATISTICAL
TESTS FOR MULTI-CLASS STEGANALYSIS

The previous Section III focused on binary hypothesis
testing, that is when the steganalysts’ goal is to detect a
specific embedding scheme. The goal of this section is to
extend the proposed methodology to classification of multiple
steganographic algorithms. Before presenting the proposed
optimal statistical test, let us first formally state the problem of
multi-class classification (or multiple hypotheses testing) and
present the criterion of optimality that will be used, and that
has never been studied for steganalysis.

A. Multi-class Classification: Problem Statement

In the context of multi-class classification a set of M differ-
ent steganographic algorithms is suspected by the steganalyst.
As in Sections III-A – III-B, let us assume that the payload
R is known and that the base learners have been trained and
their projection vectors normalized, see Equation (9). Hence,

we have a set of M + 1 possible hypotheses:
H0 : {ṽ ∼ N (0 , IL)}
H1 : {ṽ ∼ N (θ1 , IL)}

...
...

HM : {ṽ ∼ N (θM , IL)} ,

(21)

where, again, ṽ are the normalized base learners’ projections
defined in (9) and θm , m = {1, . . . ,M}, represents the
expected value of the normalized base learners’ projections
under hypothesis Hm.

Remark 2. It is worth noting that the hypotheses testing
problem (21) is similar to the detection of signal in Gaussian
noise, which has been extensively studied but seldom within
the framework of hypothesis testing, such as in [35]–[37].

Remark 3. Two main settings have been used for training
the ensemble: 1) gather FLD base learners when training H0

against Hm, giving us M sets of base learners, 2) train an
ensemble for each pair Hk against Hm, with k 6= m, giving
us M×(M+1)/2 sets of FLD base learners. Since the second
approach performs better, it is the only one used in this paper.

The problem of multi-class classification is usually ad-
dressed using a vector decision function δmc : RL →
{0, 1}M+1 defined by M + 1 “sub-decision functions” δmc =
(δmc

0 , . . . , δmc
M )

T such that hypothesis Hm , m = {0, . . . ,M},
is accepted if δmc

m (ṽ) = 1 and ∀ṽ ∈ RL ,
∑M
m=0 δ

mc
m (ṽ) = 1.

With this notation, let us formally define the following
probabilities, useful for evaluating the average performance
of a statistical multi-class (multiple hypotheses) test:

α0 = P (FA) = EH0 (1− δmc
0 (ṽ))

PHm(MD) = EHm (δmc
0 (ṽ))

βm = PHm(CC) = EHm (δmc
m (ṽ)) .

(22)

Here, P (FA) corresponds to the probability of false-alarm,
PHm(MD) denotes the probability of missed detection under
hypothesis Hm, and PHm(CC) represents the probability of
correct classification under hypothesisHm with the probability
of erroneous classification defined by αm = 1 − βm =
PHm(EC) = EHm (1− δmc

m (ṽ)).

B. Minimax criterion and Optimal Minimax Test

The Neyman–Pearson criterion of optimality is no longer
usable for multi-class classification. A natural extension of
the Neyman–Pearson approach for multi-class classification
is to seek a test that, first, guarantees a prescribed false
alarm probability α0 and, second, maximizes the worst correct-
classification probability βm with respect to all possible alter-
native hypotheses H1, . . . ,HM . The idea behind focusing on
the worst case is similar to the example given in [38]. Consider
two tests, one that provides a 60% correct classification
probability for all alternative hypotheses and one that has a
correct classification probability of 80% for the first half of the
alternatives hypotheses and a correct classification probability
of 45% for the second half of alternative hypotheses. Which
test is more desirable to use in practice? It is argued in [38] that
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the first test is more stable. Another crucial argument is that
the steganographer may choose the embedding method that
the steganalyst detects the worst: one for which the correct
classification probability is 45%.

In hypothesis testing theory, a test that achieves a given
false alarm probability α0 while maximizing the worst case
correct-classification probability βm, is referred to as the
“constrained minimax test” [39]. Formally, for solving the
detection problem defined in (21), let us define the class of all
tests with a false-alarm probability bounded by α as:

Dα0
=

{
δ : RL → {0, 1}M+1 ,

M∑
m=0

δmc
m (ṽ) = 1 , (23)

EH0
(1− δmc

0 (ṽ)) ≤ α
}
. (24)

Among all the tests in (23), we try to find a test that
maximizes the smallest correct-classification probability βm,
or, equivalently, minimizes the maximal αm. Hence, the test
δmc = (δmc

0 , . . . , δmc
M )

T is formally said to be an optimal
constrained minimax test if, for any other decision function
δmc′ =

(
δmc
0
′, . . . , δmc

M
′)T, δmc satisfies:

max
m>0

EHm
(

1− δmc
m (ṽ)

)
≤ max

m>0
EHm

(
1− δmc

m
′(ṽ)

)
. (25)

Note that while the usual minimax criterion aims at finding
a test that minimizes the maximal αm (22) (over all M + 1
hypotheses), the constrained minimax test introduces a con-
straint on the false-alarm probability α0, which is similar to the
Neyman–Pearson criterion of optimality for the binary case.

A practical way to find the constrained minimax test follows
from the following theorem [39].

Theorem 1. The test δmc = (δmc
0 , . . . , δmc

M )
T with the assign-

ments
δmc
0 (ṽ) = 1 if max

m∈{1,...,M}
wm+θT

mṽ ≤ τmc

δmc
k (ṽ) = 1 if max

m∈{1,...,M}
wm+θT

mṽ = wk+θT
k ṽ > τmc

(26)
is an optimal constrained minimax test provided the weights
wm are such that the following necessary and sufficient
conditions hold:
1) δmc ∈ Dα0

;
2) all the erroneous classification probabilities are equal:

EH1

(
1− δmc

1 (ṽ)
)

= . . . = EHM
(

1− δmc
M (ṽ)

)
. (27)

Such a test is referred to as an “equalizer test” in the sense
that ∀m ∈ {1, . . . ,M} , PHm(EC) = EHm (1− δmc

m (ṽ)) =
αmc.

We note that the log-likelihood ratio between the hypotheses
Hm and H0 can be written as θT

mṽ, see (12) and Appendix A.
Hence, the term wm+θT

mṽ corresponds to the likelihood ratio
between hypotheses Hm and H0 scaled by ewm .

Remark 4. A formal proof of Theorem 1 can be found
in [39]. One way way to understand this theorem is that if
all probabilities αm were not equal, then one could randomly
accept the k-th hypothesis, with k = arg maxm∈{1...M} αm
(the one with the highest erroneous classification rate), instead

of the j-th hypothesis, with j = arg minm∈{1...M} αm (which
has the smallest erroneous classification rate) to design a test
with a smaller maximal erroneous classification probability.

Remark 5. It also worth noting that the proposed minimax test
coincides with the Bayesian test for the testing problem (21),
see [25, Chap. 6] when the prior probabilities p0, . . . , pM
satisfy wm = log(pm/p0). The prior distribution, which
corresponds to the minimax test, is sometimes referred to as
the “least favorable distribution” since it is the one for which
the correct classification probability is the smallest, see [26,
Chapter 3.8].

C. Discussion and Implementation of Proposed Minimax Test

Before discussing the results of the proposed minimax test,
in Section V-F, let us first recall that such a criterion of
optimality, that guarantees a false-alarm rate for multi-class
case, has never been studied in steganalysis.
Let us also briefly describe the implementation of the proposed
minimax test which is depicted in Figure 2. Again, we have
chosen to train an ensemble for each pair Hk against Hm,
with k 6= m, see Remark 3 and the training step in Figure 2.
Then all the base learners are aggregated: that is the features
to be classified are projected onto projection vectors of all
base learners from all classifiers; this in fact does not cause
computation issue even though the ensembles may have dif-
ferent base learners which may be build on subset of features
of different dimension.
Again, as in the binary testing case discussed in Section III-D,
we note that in fact, the proposed methodology only needs
to estimate the base learners’ projection expectations and
covariances. Hence, from the aggregated projection vectors,
it is straightforward to estimate the covariance matrix Σ0 and
the expectation µ0 on the cross-validation subset. This ensures
that all projections are normalized and that the proposed
model (21) holds true. This is the normalization step in
Figure 2. Finally, the means of the normalized projections
are computed from the cross-validation subset for each al-
ternative hypothesis. From this last step, the application of the
proposed minimax test is straightforward. Note that because
of the higher number of projections involved in this case,
the accuracy of the covariance matrix estimate is extremely
important, hence the necessity of estimating it with many
different cross-validation splits described in Section III-C.
Note that the classifiers trained without H0 are used in
the same way, and, from experiments, we noted that their
use substantially helps to decrease the misclassification of
embedding schemes (or alternatives hypotheses).

It should be noted that the weights wm, which are required
to “equalize the erroneous classification probability” (27), are
computed numerically because it is hardly possible to find an
analytic formula for the weights wm that “equalize” erroneous
classification probabilities. Indeed, let us define:

Λmc =
(
θT

1 ṽ, . . . ,θT
M ṽ
)T

,

which correspond to the M values of the log-likelihood
ratios between hypotheses Hm , m ∈ {1, . . . ,M}, and H0.
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Fig. 2: Schematic representation describing the application of
proposed multi-hypotheses minimax test.

It is straightforward to establish from the statistical model
of normalized base learners’ projections ṽ that Λmc fol-
lows, under hypothesis Hm, a multivariate normal distribu-
tion with expectation EHm

(
θT
n ṽ
)

= θT
nθm and covariance

Cov
(
θT
mṽ,θT

n ṽ
)

= θT
mθn. Even though some accurate

approximations of multivariate normal probabilities may be
found [40], [41], analytically computing the threshold that
guarantees that PH0

(
θT

1 ṽ ≤ τmc ∩ . . . ∩ θT
M ṽ ≤ τmc

)
= 1−

α0 is hardly possible. Similarly, the correct classification prob-
ability PHm

(⋂
n 6=m θT

n ṽ < θT
mṽ ∩ θT

mṽ > τmc
)

requires in-
tegrating a multivariate normal pdf over a complicated domain,
which is quite difficult to achieve even numerically.
We thus opted to compute the weights numerically using a
gradient-free Nelder–Mead (downhill simplex) method [42]
on the training samples. The initial weights are set to zero
while the threshold is fixed at τmc = Φ−1 (1− α0/M),
which is easily shown to guarantee the prescribed false-alarm
probability α0 in the case of orthogonal vectors θm. Then,
on the cross-validation subset, we numerically compute the
“weights” wm that (1) guarantee the prescribed false-alarm
rate α0 and (2) equalize the erroneous-classification proba-
bility αm , ∀m ∈ {1, . . . ,M}. This was done using Matlab
built-in optimization functions by minimizing a weighted sum
of the two objective functions.

V. NUMERICAL SIMULATIONS AND RESULTS

A. Common core of all experiments

All results presented in this paper are obtained on BOSSbase
1.01 [22] containing 10, 000 512×512 gray-scale images. The
detection errors are always computed by averaging over 10
different random database splits. Four spatial domain embed-
ding schemes were used: HUGO [31] with bounding distortion
(HUGO-BD) implemented using the Gibbs construction [32],
the Wavelet Obtained Weights (WOW) [30] algorithm, the
spatial version of UNIversal WAvelet Relative Distortion (S-
UNIWARD) [1], and the recent scheme based on statistical

detectability [16], [17]. For spatial domain steganalysis, we
used the second-order Subtractive Pixel Adjacency Matrix
(SPAM) [12] feature set of dimensionality 686, the Spatial
Rich Model (SRM) [43] with dimensionality 34, 671 and its
selection-channel-aware version (maxSRMd2) [44].
Several embedding methods for JPEG domain have also been
included in our tests, namely, nsF5 [45], the Entropy-Based
Steganography (EBS) [47], the Uniform Embedding Distortion
(UED) [46], and the JPEG domain version of UNIWARD
referred to as J-UNIWARD [1]; the two last being the state-of-
the-art in JPEG domain steganography that does not use side
information. For JPEG domain embedding scheme with side
information we used the Perturbed Quantization (PQ) [45], the
side-informed version of EBS (SI-EBS) [47], and the side-
informed version of UNIWARD, SI-UNIWARD [1]. The four
different feature sets that have been used for JPEG image
steganalysis are the Cartesian-calibrated JPEG Rich Model
(CC-JRM) [48] with 22, 510 features, the CF? [14] feature
set with 7, 850 features, the spatial rich model with fixed
quantization (SRMQ1) [43] of dimensionality 12, 753, and the
union of SRMQ1 and CC-JRM, referred to as JSRM [48],
whose dimensionality is 35, 263. All feature extractors used in
this paper and most embedding algorithms can be downloaded
from the DDE website at http://dde.binghamton.edu/download.

Note that the payload is measured in bits per pixel (bpp)
for spatial domain steganography and in bits per non-zero AC
coefficients (bpnzAC) for JPEG domain steganography. The
JPEG images were created using the imwrite function from
Matlab with quality factors 75 and 90 for both side-informed
and non-side informed schemes. The precover was either the
uncompressed image (for SI-UNIWARD and SI-EBS) or a
JPEG image compressed with quality factor 90 and 100 (for
the PQ algorithm). Finally, note that for HUGO-BD, the switch
T was set to 255 to remove the weakness identified during the
BOSS contest. The stabilizing constant σ for UNIWARD was
set to 1 for the spatial version and to 10−6 for JPEG versions
to prevent the attack proposed in [1].

Finally, note that when the detection accuracy is measured
as the total probability of error under equal Bayesian priors,
PE = 1/2 (PMD + PFA), we used the threshold τPE as given
in Corollary 1, Equation (16).

B. Experiment and Comparison on Simulated Data

To verify the sharpness of the theoretical results, we selected
the covariance matrix corresponding to five randomly selected
base learners for the experiment on multiple hypothesis testing
reported in Table X. It used the SRM features and three dif-
ferent embedding schemes, WOW, S-UNIWARD, and HUGO-
BD, all with payload R = 0.4. The estimated covariance under
hypothesis H0 is given by:

Σ0 =


0.9823 0.5524 0.5218 0.1734 0.2724
0.5524 1.1416 0.6179 0.3140 0.4191
0.5218 0.6179 1.2359 0.2996 0.6512
0.1734 0.3140 0.2996 0.8243 0.4635
0.2724 0.4191 0.6512 0.4635 1.4514

 ,

which clearly shows a very high correlation between the base
learners’ projections.

http://dde.binghamton.edu/download
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Fig. 3: ROC curves for the ensemble classifier implemented
with majority voting and the proposed optimal LRT compar-
ing empirical and theoretical results: toy example with five
randomly chosen base learners (see the text for more details).

Then, a total of 107 samples following a multivariate normal
distribution with this covariance have been randomly generated
for each hypothesis and the proposed optimal binary test has
been applied and compared with the theoretically established
power function βδlr , see (15). Figure 3 shows the ROC curves
for the binary test of H0 (covers) versus hypotheses H1 and
H2 (corresponding to WOW and S-UNIWARD at R = 0.4).
These results indicate that the proposed optimal LRT performs
almost exactly as theoretically established.
For comparison, we also include the results obtained with the
original ensemble classifier with the majority voting (denoted
EC-MV). Note that for a very low L, the optimal LRT
performs much better, see also Figure 6. Most importantly,
however, establishing the statistical properties of the EC-
MV detector is quite expensive. Even in this toy example,
drawing the ROCs required 32 evaluations of the multivariate
normal cumulative distribution function (cdf) to establish the
probability of having at least Nc ∈ 0, . . . , 5 base learner votes.
More precisely, in this toy example, one needs to compute the
probability that exactly Nc base learners among 5 classify an
image as stego. Since there exists

(
5
Nc

)
possibilities that ex-

actly Nc base learners classify an image as stego, this requires
evaluating the same number of time a normal mutivariate cdfs.
For establishing the performance of the original ensemble
classifier with a variable threshold on the number of votes,
this should be done for Nc ∈ 0, . . . , 5.
This example can be extended easily to L base learners when
one wants to establish the probability of false alarm and the
power as a function of the number of base learner votes using a
multivariate Gaussian model or, in fact, any statistical model.
For each threshold Nc on the number of base learners that
classify an image as stego, there is

(
L
Nc

)
possibilities. So if one

wants to establish the power and the false-alarm probability
for all possible values of Nc, so that it can select the one
that suits it needs in terms of the false-alarm probability for
instance, this requires a total of 2L possibilities.
A similar complication occurs when optimizing the threshold
of each base learner to maximize the detection accuracy. This
will also be extremely time consuming to compute using a
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Distribution of Λlr(ṽ) under H0

Distribution of Λlr(ṽ) under H0
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Theoretical distribution N (0, 1)

Fig. 4: Comparison between the theoretical normal distribution
and the empirical distribution of the proposed LR under H0

on one half of BOSSbase [22] used for testing.

statistical model of base learners for the same reason. A
numerical joint optimization over L thresholds of all base
learners will certainly be computation expensive as well.

C. Relevance of the Proposed Model

A wide range of numerical experiments have been per-
formed to confirm the assumption of mutivariate normality
of base learners’ projections. For brevity and clarity, in this
section we include numerical results that support the claim that
the proposed LR Λlr(ṽ) follows a normal distribution with 0
mean and unit variance underH0, which is crucial to guarantee
a prescribed false-alarm probability, see Proposition 1.

First, Figure 4 shows a comparison between the theoretical
Gaussian distribution of the LR, Λlr(ṽ), and the empirical
distribution obtained with optimal dsub and L for three differ-
ent algorithms (WOW [30], S-UNIWARD [1], and HUGO-
BD [31]). This provides visually interpretable results that
show the match between the empirical distribution and the
theoretical model.

Next, Tables I ans II show the χ2 goodness-of-fit (GOF)
score obtained when comparing the empirical LR Λlr(ṽ)
distribution and one with the assumed pdf N (0, 1) under
hypothesis H0. Because of the rather high number of testing
data, we have used 100 bins to apply the χ2 GOF test. Hence,
this score should follow a χ2 distribution with 100 degree
of freedom, that has an expectation of 100 with variance
200, with higher scores indicating a larger deviation from the
assumed model.

We hypothesize that the normal distribution of base learners’
projection is a consequence of CLT. Hence, the model should
be more accurate when increasing the number of features D,
the number of features used by each base learner dsub, and
the number of base learners L. Table I shows the χ2 GOF
score for the content-adaptive scheme [16] when using both
SRM and maxSRMd2 features [44], to be able to increase the
number of features. As shown in Table I, when the number
of base learners L increases, the assumed model becomes
more accurate. Similarly, when dsub increases the goodness
also generally increases, however, one can note that when it
becomes too large the empirical distribution starts diverging
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(a) Comparison between EC-MV and the proposed
LRT in terms of PE for WOW, SRM feature set.
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(b) Comparison between EC-MV and the proposed
LRT in terms of PE for S-UNIWARD, SRM
feature set.
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(c) Comparison between EC-MV and the proposed
LRT in terms of PE for HUGO-BD, SRM feature
set.
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(e) Comparison between the EC-MV and the pro-
posed LRT in terms of PE for J-UNIWARD,
SRMQ1 feature set.
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(f) Comparison between the EC-MV and th pro-
posed LRT in terms of PE for J-UNIWARD, JSRM
features set.

Fig. 5: Comparison between the proposed LRT and the majority vote decision rule for different spatial domain embedding
schemes, top row, and for J-UNIWARD with different feature sets, bottom row.

Feature D = 8000 D = 64000
dsub = 400 800 1600 3200 400 800 1600 3200
L = 50 413.0 355.6 347.2 645.7 410.0 339.1 307.6 449.3
L = 100 354.8 326.7 269.8 639.4 313.1 312.1 260.3 396.8
L = 200 287.0 243.8 269.2 562.0 234.7 262.7 227.7 334.0
L = 400 213.7 217.3 231.3 485.7 208.5 211.7 204.2 307.1

TABLE I: Values of χ2 GOF for several values of dsub and
L. Results obtained with MiPOD [16] and gathering SRM and
maxSRMd2 [44] features.

Training ratio 0.3 0.4 0.5 0.6 0.7 0.8 0.9
χ2-GOF score 270.8 209.9 202.3 161.9 150.9 138.0 123.3

TABLE II: Values of χ2 GOF as a function of the training
ratio for UED [46] and JSRM [48] features.

significantly from the expected model. This can be explained
by the fact that in this case the base learners become strongly
correlated, which destabilizes the inversion of the covariance
matrix Σ0.

Next, we wanted to simulate the use of a larger database, so
that we would be able to learn more accurately the diversity of
images in BOSSbase. To this end, Table II shows the χ2 GOF
score when the training size is increased. The results presented
in Table II have been obtained using UED [46] and JSRM [48]
features with the ratio of data used for training ranging from
0.3 to 0.9. These results confirm that when the diversity of
images can be learned more accurately, the proposed model
also becomes more accurate.

Tables I and II also show the limit of the proposed model

because a χ2 GOF score of about 200 shows a non-negligible
deviation from the assumed model. The proposed model is
in fact not perfect and especially we note that, because the
learning is carried out over a range of images, some images
act as outliers because they have singular properties (very
smooth content, underexposed scenes, etc. . . . ). We also note,
see Table II that the accuracy of the model is estimated on the
testing set, while parameters are estimated using the training
set and that those may be slightly different.

D. Numerical Results for the Binary Case

While the main goal of the present paper is to analytically
establish the statistical properties of the ensemble classifier
within the proposed framework of hypothesis testing and to
extend its scope, it is also very important to ensure that the
proposed optimal test does not perform significantly worse
than the original EC-MV detector [14]. To this end, Figure 5
shows a comparison between the EC-MV and the proposed
optimal LRT. These results were obtained by searching for
the optimal values of the parameters dsub and L for each
detector separately, that is by minimizing PE for the EC-MV
and maximizing the theoretical power function βδlr for the
proposed LRT, see Section III-C. For diversity, the top row
of Figure 5 shows a comparison between the EC-MV and the
proposed optimal LRT for spatial domain steganography: the
same feature set (SRM) is used with three different embedding
schemes: WOW in Figure 5a, S-UNIWARD in Figure 5b, and
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Fig. 6: Comparison between the performance of the proposed
optimal LRT and the EC-MV detector as a function of L for
selected values of dsub.
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Fig. 7: Comparison between the theoretically established and
empirical power function βδ for selected values of dsub and L.

HUGO-BD in Figure 5c. The bottom row of Figure 5 shows
a comparison between the proposed optimal LRT and the EC-
MV for J-UNIWARD using three different feature sets: the
CC-JRM in Figure 5d, the CF? in Figure 5e, and the JSRM
in Figure 5f. Note that the detection performance is measured
in both figures using the usual mean probability of error PE
even though the proposed LR is designed to maximize the
detection power under a false-alarm probability constraint.

Figure 5 shows that the proposed optimal LRT achieves
basically the same performance as the EC-MV detector. How-
ever, both detectors behave differently with respect to the
parameters dsub and L. This is demonstrated in Figure 6,
which shows the total probability of error PE as a function
of L for a few fixed values of dsub. As discussed at the
beginning of Section V, the proposed optimal LRT performs
much better for small values of L or for small values of
dsub. For large values of L and dsub the performance of
both detectors becomes very similar. The results presented in
Figure 6 were obtained with the CC-JRM feature set and J-
UNIWARD at payload R = 0.4 bpnzAC. Similar trends have
been observed for other feature sets and embedding methods.

Finally, we wanted to verify the accuracy of theoretically
established results, false alarm probability and power function,
see Proposition 1. To this end, Figure 7 presents a comparison

Feature Embedding α0 = α0 = α0 =
set algorithm 0.2% 0.1% 0.05%

SRMQ1 [43] WOW [30] 0.204% 0.134% 0.094%
S-UNIWARD [1] 0.206% 0.120% 0.062%

SRM [43] WOW [30] 0.224% 0.146% 0.100%
S-UNIWARD [1] 0.234% 0.150% 0.086%

maxSRMd2 [44] MiPOD [16] 0.156% 0.120% 0.094%

CF? [14]

EBS [47] 0.194% 0.112% 0.076%
SI-EBS [47] 0.238% 0.138% 0.086%

J-UNIWARD [1] 0.244% 0.142% 0.102%
SI-UNIWARD [1] 0.200% 0.118% 0.078%

nsF5 [45] 0.140% 0.100% 0.074%
UED [46] 0.210% 0.120% 0.076%

JSRM [48]

EBS [47] 0.252% 0.172% 0.120%
SI-EBS [47] 0.216% 0.134% 0.092%

J-UNIWARD [1] 0.244% 0.136% 0.076%
SI-UNIWARD [1] 0.180% 0.122% 0.084%

nsF5 [45] 0.222% 0.142% 0.094%
UED [46] 0.234% 0.130% 0.062%

TABLE III: Comparison between the empirical and the theo-
retical false-alarm probabilities for a wide-range of stegano-
graphic algorithms and feature sets.

between the theoretically established optimal LRT power βδlr ,
see (15), as a function of the false-alarm (ROC curve), and
the empirical power function obtained on the testing set.
The results were obtained using the JSRM feature set for J-
UNIWARD with payload R = 0.4 bpnzAC. Similar results
have been obtained with other feature sets and embedding
methods in both the spatial and JPEG domain.
Figure 7 shows that the theoretically established power func-
tion almost perfectly matches the empirical power function.
However, as discussed above, using a very high number of
features for each base leaner dsub, typically beyond the opti-
mally found parameter, would certainly decrease the accuracy
of the theoretical results.

Finally, we would like to emphasize the possibility of
the proposed approach to guarantee a prescribed false-alarm
probability. To this end, Table III compares the empirical
and the theoretical false-alarm probabilities for three differ-
ent threshold values that correspond respectively to α0 =
{2, 1, 0.5} ·10−3. The results presented in Table III have been
obtained with the parameters L and dsub always set to their
optimal values.
We note that, generally, the empirical false-alarm probabilities
are close the theoretical ones. However, these results have been
obtained with 10 equally sized random splits of BOSSbase for
training and testing, giving us a total of 50, 000 LR values.
Thus, it is important to note that the very low prescribed
false-alarm probability corresponds to the limit of what can
be obtained within this setup as measuring a false-alarm
probability of 10−3 corresponds to 50 images. In practice,
it would be interesting to study even much lower false-
alarm probabilities, but in such a case the use of the CLT is
disputable as it is not relevant to model the tails of distribution.

Similarly to Table III, Figure 8 shows a comparison between
the theoretically established false-alarm probability as a func-
tion of the decision threshold, 1−Φ(τ lr) = α0, see (14), and
the empirically measured false-alarm probability obtained on
the testing set. Again, for brevity, only the results obtained
from J-UNIWARD with payload R = 0.4 bpnzAC and
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Fig. 8: Comparison between the theoretically established and
the empirical probability of false-alarm as a function of the
decision threshold τ .

steganalysis using the JSRM feature set are shown. From this
figure, the empirical and theoretical false-alarm probabilities
are very close and similar trends can be found for other
embedding methods and feature sets, see Table III.

The results presented in Figure 8 and in Table III clearly
demonstrate that it is feasible in practice to accurately guaran-
tee even a low false-alarm rate (typically around α0 = 10−3).

E. Results for Composite Hypotheses: Unknown Payload

Tables IV and VI show the detection power β, or correct
detection probability, Equation (7), obtained with the optimal
LRT that knows the embedding rate (the clairvoyant test),
the LRT when the ensemble classifiers were trained on a
uniform mixture of payloads, and the proposed UMP test when
the ensemble classifiers were trained with a fixed payload
R = 0.4.
This should be contrasted with Tables V and VII also showing
the detection power under the same setting with the original
ensemble classifier trained to minimize PE . While the detec-
tion power for clairvoyant detectors produces almost the same
results, when either trained on payload mixture or with a fixed
payload R = 0.4, the original ensemble performs significantly
worse. This can be explained in part by the non-linearity of the
majority vote, which tends to classify steganographic images
with a smaller payload than the one used for training as covers.
Note that here, the false-alarm probability α0 is again set at
0.075 i.e. 7.5%. Note also that, for the original ensemble
classifier, we replaced the majority voting rule so that the
hypothesis H1 is accepted when reaching a given “number of
votes” Nc determined to satisfy the false-alarm constraint on
the cross-validation subset. Similar results have been obtained
with the original majority voting rule and the usual minimal
PE measure of detection accuracy with other embedding
schemes and feature sets.

The results given in Tables VI and VII are also interesting
because the steganalysis features utilize the knowledge of the
selection channel, the probabilities of changing each pixel
during embedding [44]. For such features, assuming two
different payloads for training and testing may thus create
an additional mismatch for the detector because the change

Payload Clairvoyant test Payload mixture Trained for R = 0.4
0.4 0.9015 0.8950 0.9007
0.3 0.6444 0.6286 0.6375
0.2 0.3399 0.3185 0.3122
0.1 0.1510 0.1473 0.1418
0.05 0.1041 0.0998 0.0984

TABLE IV: Power β, see Equation 7, of the proposed op-
timal UMP test for false-alarm probability α0 = 0.075 and
UED [46] embedding scheme with CF? [14] features; dsub

and L set at the optimal values.
Payload Clairvoyant test Payload mixture Trained for R = 0.4
0.4 0.9009 0.8521 0.9008
0.3 0.6403 0.5932 0.6211
0.2 0.3355 0.2495 0.2449
0.1 0.1514 0.1427 0.1113
0.05 0.1029 0.0990 0.0867

TABLE V: Power β of the original ensemble classifier with
the same settings as in Table IV.

Payload Clairvoyant test Payload mixture Trained for R = 0.4
0.4 0.5493 0.5663 0.5484
0.3 0.4538 0.4555 0.4472
0.2 0.3415 0.3340 0.3169
0.1 0.2268 0.2045 0.1866
0.05 0.1603 0.1489 0.1383

TABLE VI: Power β, see Equation 7, of the proposed optimal
UMP test for false-alarm probability α0 = 0.075 and the
content-adaptive scheme [16] with maxSRMd2 features [44];
dsub and L set at the optimal values.

Payload Clairvoyant test Payload mixture Trained for R = 0.4
0.4 0.5382 0.5641 0.5438
0.3 0.4356 0.4416 0.3902
0.2 0.3187 0.2934 0.1843
0.1 0.2064 0.1319 0.1164
0.05 0.1418 0.0896 0.0891

TABLE VII: Power β of the original ensemble classifier with
same settings as in Table VI.

probabilities used for feature extraction will also be different.
We note that in this case the proposed LRT trained for R = 0.4
still achieves good performance as compared to the clairvoyant
LRT, though the loss of detection accuracy is larger.

F. Extension to Multi-Class Steganalysis

The performance of the proposed constrained minimax
test is shown on selected cases in Tables VIII–XI for a
prescribed false-alarm rate of α0 = 0.075. The training was
carried out as described in Section IV-C. The parameters
dsub and L were set to their optimal values as described
in Section III-C. Tables VIII and IX present the detection
performance for JPEG domain steganographic schemes using
JSRM [48] features. The results presented in Table VIII show
the detection accuracy for distinguishing J-UNIWARD [1],
UED [46], and EBS [47], all with payload R = 0.4 bpnzAC.
The results presented in Table IX are the same except for
J-UNIWARD replaced by nsF5 [45] with payload R = 0.2
bpnzAC. Interestingly, the correct classification probability
for UED and EBS increased in this case. In fact, since the
detection of J-UNIWARD is much harder than the detection
of nsF5, the proposed equalizer test focuses mainly (in the first
set of results) on maximizing the correct classification of J-
UNIWARD to the detriment of UED and EBS. The probability
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True/accept H0(Cover) H1(J-UNIW) H2(UED) H3(EBS)
H0 0.9203 0.0665 0.0067 0.0065
H1 0.5154 0.4509 0.0170 0.0167
H2 0.1161 0.3835 0.4679 0.0325
H3 0.0465 0.4600 0.0201 0.4734

TABLE VIII: Classification accuracy for the proposed multi-
class minimax test, JPEG embedding schemes, payload R =
0.4, JSRM features.

True/accept H0(Cover) H1(nsF5) H2(UED) H3(EBS)
H0 0.9202 0.0198 0.0409 0.0190
H1 0.0661 0.8259 0.0987 0.0093
H2 0.0969 0.0127 0.8228 0.0676
H3 0.0379 0.0063 0.1317 0.8241

TABLE IX: Classification accuracy for the proposed multi-
class minimax test, JPEG embedding schemes, payload R =
0.2 for nsF5 and R = 0.4 for UED and EBS, JSRM features.

True/accept H0(Cover) H1(WOW) H2(S-UNIW) H3(HUGO-BD)
H0 0.9228 0.0363 0.0277 0.0131
H1 0.5347 0.3601 0.0879 0.0174
H2 0.4653 0.1524 0.3531 0.0292
H3 0.5022 0.0613 0.0566 0.3800

TABLE X: Classification accuracy for the proposed multi-class
minimax test, spatial domain embedding schemes, payload
R = 0.4, SRM features.

True/accept H0(Cover) H1(WOW) H2(S-UNIW) H3(HUGO-BD)
H0 0.9239 0.0313 0.0249 0.0199
H1 0.7164 0.1763 0.0828 0.0245
H2 0.6857 0.0841 0.2003 0.0300
H3 0.6964 0.0445 0.0496 0.2096

TABLE XI: Classification accuracy for the proposed multi-
class minimax test, spatial domain embedding schemes, pay-
load R = 0.2, SRM features.

of mis-classifying UED and EBS as J-UNIWARD is much
larger in Table VIII than the probability of mis-classifying
EBS and nsF5 as UED in Table IX.

The results presented in Tables X–XI show the detection
accuracy for spatial domain steganography: classification of
WOW [30], S-UNIWARD [1], and HUGO with bounding
distortion [31], [32] using the SRM [43]. The results shown
in Table X indicate that at payload R = 0.4 bpp the above
state-of-the-art algorithms can be correctly classified with a
probability as high as 35% for a false-alarm probability as
low as 0.075 despite the fact that all these algorithms are very
similar, in the sense that they all place the embedding changes
adaptively based on content complexity, and hence are hard to
discern from each other.

We note that, however, the proposed minimax test implies
a higher missed-detection rate for each individual embedding
scheme compared with the individual binary tests with known
payload. This is natural because the test must guarantee a
prescribed false-alarm rate with respect to several alternative
hypotheses. For the same reason, the correct classification rate
of the proposed minimax test decreased for each alternative
hypothesis. This is because in the multi-class case one can
mis-classify a steganographic algorithm as another one, which
cannot happen in the binary case.

Finally and most importantly, Tables VIII–XI testify that
the prescribed false-alarm probability of 0.075 can indeed be
achieved on the testing set, which was one of the main goals

of the proposed optimal minimax test.

VI. CONCLUSION

This paper proposes a statistical model of base learners’
projections in an ensemble of linear classifiers for steganalysis
of digital images. The main assumptions adopted here are that
the base learners’ projections follow a multivariate normal
distribution and that the covariance matrix remains constant
under information hiding, at least for small payloads. This
statistical model is used within the framework of hypothesis
testing theory to achieve the following three main goals. First,
the statistical properties of the optimal LRT designed for
binary case, i.e., targeted steganalysis, are analytically estab-
lished. Second, the LRT is extended to an optimal detector
of steganography when the payload is unknown. Last but not
least, the proposed framework permits extending the ensemble
to multi-class steganalysis. The validity of the proposed statis-
tical model based on which the sharpness of the theoretically
established results holds has been confirmed by extensive and
diverse experiments. Finally, because the proposed LRT is
linear, this work also questions the usefulness of the non-linear
majority vote by showing that a linear classifier can achieve
roughly same performance for steganalysis using current state-
of-the-art high dimensional rich feature spaces.
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[48] J. Kodovskỳ and J. Fridrich, “Steganalysis of JPEG images using rich
models,”in IS&T/SPIE Electronic Imaging conf., vol. 8303, Security,
Steganography, and Watermarking of Multimedia Contents, 2012, pp.
83 030A–13.

APPENDIX A
EXPRESSION FOR THE LIKELIHOOD RATIO AND PROOF OF

OPTIMAL PROPERTIES

The goal of this appendix is threefold. First, elements of
calculus are provided to establish the form of the LR (12).
Then, proofs of Corollary 1, and Proposition 2 are given.

A. Expression of the Likelihood Ratio for Simple Hypothesis
and Proof of Proposition 1

Let us recall that after the transformation (9), the problem
of detecting hidden data may be described as a choice between
the following hypotheses (11){

H0 : {ṽ ∼ N (0, IL)} ,
H1 : {ṽ ∼ N (θ1, IL)} .

(28)

Here, the pdf of the multivariate normal distribution of L
jointly distributed random variables is denoted

p(x;µ,Σ) =
1

(2π)
−L
2 |Σ|

−1
2

exp

(
−1

2
(x−µ)TΣ−1(x−µ)

)
(29)
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with µ and Σ the expectation and the covariance matrix
respectively and |Σ| denotes the determinant of matrix Σ.

From the above definition of tested hypotheses, one can get
the following expression for the LR between the hypotheses:

p(x; 0, IL)

p(x;θ1, IL)
=

exp
(
− 1

2 (x− θ1)T(x− θ1)
)

exp
(
− 1

2xTx
)

= exp

(
1

2
xTx− 1

2
(x− θ1)T(x− θ1)

)
= exp

(
xTθ1 −

1

2
θT

1 θ1

)
. (30)

Here, taking any strictly increasing function of the LR
p(x;0,IL)
p(x;θ1,IL) does not change the properties of the test, up to
the decision threshold; the logarithm of the LR, permits us to
write

ln
p(x; 0, IL)

p(x;θ1, IL)
= xTθ1 −

1

2
θT

1 θ1. (31)

Similarly, since 1
2θ

T
1 θ1 and ‖θ1‖ are constants whatever the

true hypothesis may be, removing the first term and scaling
by the second does not change the optimality of the test and
immediately yields (12).

From the properties of the multivariate normal distribution,
it is immediate to obtain the distribution of the LR

Λlr(ṽ) =
θT

1 ṽ

‖θ1‖
, (32)

as given in (13), as it is essentially a weighted sum of
uncorrelated normally distributed random variables.

The proof of Proposition 1 thus immediately follows from
the distribution (13) as it straightforward that:

PH0

(
Λlr(ṽ) > τ lr

)
= 1− Φ(τ lr) ≤ α0

⇔1− α0 ≤ Φ(τ lr)⇔ Φ−1(1− α0) ≤ τ lr (33)

with the last equality following from the fact that the standard
normal cdf Φ is strictly increasing, while the equality in the
inequality ensures the maximization of the power function.

Similarly, the power function of the LRT δlr immediately
follows from distribution (13) as

PH1

(
Λlr(ṽ) > τ lr

)
= 1− Φ(τ lr − ‖θ1‖). (34)

B. Computing the Threshold that Minimizes PE , Corollary 1

Using the definition of the proposed LRT, the probability
of false alarm (14) and the power function (15), also provided
in (33) and (34) respectively, as a function of the decision
threshold τ lr can be written:{

α0(τ lr) = 1− Φ
(
τ lr
)
,

βδlr(τ
lr) = 1− Φ

(
τ lr − ‖θ1‖

)
.

(35)

The threshold τ lr that minimizes the total probabil-
ity of error under equal Bayesian priors, PE(τ lr) =
1/2
(
α0(τ lr) + 1− βδlr(τ lr)

)
, can be obtained by using Equa-

tion (35) and differentiating with respect to τ lr. From the
definition of Φ(x) is it immediate that

dα0(τ lr)
d τ lr = − 1√

2π
exp

(
− τ

lr2

2

)
,

d β
δlr

(τ lr)

d τ lr = − 1√
2π

exp
(
− (‖θ1‖−τ lr)2

2

)
,

(36)

from which it follows that

dPE(τ lr)

d τ lr
=

1√
2π

(
exp

(
−(‖θ1‖ − τ lr)2

2

)
− exp

(
−τ lr2

2

))
.

(37)
Setting the derivative of PE (37) to zero to find the threshold

value τ lr that minimizes PE leads to

exp

(
−τ

lr2

2

)
− exp

(
− (‖θ1‖ − τ lr)2

2

)
= 0,

⇔ τ lr2
= (‖θ1‖ − τ lr)2 ⇔ 2τ lr = ‖θ1‖ ⇔ τ lr =

1

2
‖θ1‖ .

which proves the Corollary 1.

C. Proof of Uniformly Most Powerful Property, Proposition 2
Next, to prove that the LRT δlr is also Uniformly Most

Powerful for the case in which the payload R is unknown, it
is worth noting that the pdf p(x; f(R)θ1, IL), see (29), of the
normalized base learners’ projections ṽ can be written:

p(x; f(R)θ1, IL)=exp

(
Λlr(x)f(R) ‖θ1‖−

1

2
f(R)2 ‖θ1‖

)
× exp

(
−1

2
xTx

)
, (38)

which, from the factorization (Fisher–Neyman) Theorem [26,
Chapt. 1.9] immediately proves that the proposed LR Λlr(ṽ)
is a sufficient statistic for R.

Then, recalling that f : [0, 1] 7→ R+ is an increasing func-
tion, it is immediate to note that Λlr(x) is also an increasing
function of R and hence, it follows from [26, Theorem 3.4.1]
that the proposed LRT (8) is a Uniformly Powerful Test
(UMP) for solving the hypothesis testing problem (18) with a
composite alternative hypothesis HR.
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