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Abstract—In order to achieve high practical security, Natural

Steganography (NS) uses cover images captured at ISO sensitivity
ISO1 and generates stego images mimicking ISO sensitivity
ISO2 > ISO1. This is achieved by adding a stego signal to
the cover that mimics the sensor photonic noise. This paper
proposes an embedding mechanism to perform NS in the JPEG
domain after linear developments by explicitly computing the
correlations between DCT coefficients before quantization. In
order to compute the covariance matrix of the photonic noise
in the DCT domain, we first develop the matrix representation
of demosaicking, luminance averaging, pixel section, and 2D-
DCT. A detailed analysis of the resulting covariance matrix is
done in order to explain the origins of the correlations between
the coefficients of 3 × 3 DCT blocks. An embedding scheme
is then presented that takes into account all the correlations.
It employs 4 sub-lattices and 64 lattices per sub-lattices.
The modification probabilities of each DCT coefficient are
then derived by computing conditional probabilities computed
from a multivariate Gaussian distribution using the Cholesky
decomposition of the covariance matrix. This derivation is also
used to compute the embedding capacity of each image. Using a
specific database called E1Base, we show that in the JPEG domain
NS (J-Cov-NS) enables to achieve high capacity (more than 2
bits per non-zero AC DCT) and with high practical security
(PE ' 40% using DCTR and PE ' 32% using SRNet) from QF
75 to QF 100).

I. INTRODUCTION

In 1998, Cachin [1] defined the theoretical security of
a steganographic embedding scheme as DKL(PX , PY ), the
Kullback–Leibler divergence between the distributions of
the cover contents PX and stego contents PY . Using this
definition, a scheme providing DKL(PX , PY ) = 0 should be
theoretically perfectly secure.

Interestingly, only few exceptions, such as Model-Based
Steganography (MBS) [2], HUGO [3], and MiPOD [4],
are based on Cachin’s rationale, while the majority of
embedding schemes, such as UNIWARD [5], HILL [6], and
UERD [7] minimize the sum of empirically defined costs
based on the local complexity of each pixel/DCT coefficient.
In MBS, the embedding preserves the underlying generalized
Cauchy distribution fit to each DCT mode. In HUGO, the
cost is computed from the difference between the SPAM
features set [8] used for steganalysis. MiPOD minimizes

Théo Taburet and Patrick Bas are with CNRS, Ecole Centrale de Lille,
CRIStAL Lab 59651 Villeneuve d’Ascq Cedex, France

Wadih Sawaya is with IMT Lille-Douai
Univ. Lille, CNRS, Centrale Lille Cité Scientifique UMR 9189, France

Jessica Fridrich is with Department of ECE, SUNY Binghamton, NY, USA

the deflection coefficient, i.e., the normalized difference
between the expectations of the likelihood ratio under the
two hypotheses in the weak signal and large data sample
asymptotics, as a “cost.”

Natural Steganography (NS) [9], [10], [11], [12] is based
on the same principle as model based steganography since it
embeds message whose associated stego signal tries to mimic
the statistical properties of the camera photonic noise, a.k.a.
camera shot noise. Starting with a cover image acquired at
ISO1, the embedding is designed in such a way that the
stego image looks like an image acquired at a larger ISO
sensitivity ISO2 > ISO1. This strategy is named “cover-
source switching” since it relies on changing the model of
the cover-source during the embedding process. In the pixel
domain or for monochrome sensors [9], [10], [11], [12], this
approach has been shown to achieve both high capacity and
statistical undetectability as long as the embedder is able to
correctly model the added signal. The high security of NS
schemes is also due to the fact that NS uses a pre-cover at
the embedder [9]. In contrast to other schemes relying on side
information, such as SI-UNIWARD [5] or other side-informed
implementations [13], the embedding capacity of NS is only
limited by the gap between the two ISO sensitivities.

In the spatial domain, implementations of NS have
been proposed for monochrome sensors, which do not
perform demosaicking, with a development processes that
includes only quantization, gamma correction [9], and
downsampling [10]. In the JPEG domain, previous works [11],
[12] have shown that models that only consider first-order
marginal statistics (histograms) work well for monochrome
sensors but the embedding is very detectable for color sensors
since the embedding does not take into account dependencies
due to demosaicking.

Note that like side-informed embedding methods [14], [5],
NS uses a pre-cover image, being here the RAW image. This
application scenario can be practically motivated by the fact
that it is nowadays possible for a user to record his acquisition
in RAW format, even on smart-phones [15].

The goal of this paper is to extend Natural Steganography
in the JPEG domain to color sensors. The paper is organized
as follows. Section II introduces notation, and describes
the considered development pipeline and the principle of
embedding using NS. Section III derives the statistical
distribution of the stego signal in the DCT domain by
computing the covariance matrix of its associated joint
distribution. Section IV provides a deep analysis of different
components of the resulting covariance matrix. Finally,
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Fig. 1: Differences between embedding, simulated embedding, and pseudo embedding.

Section V presents the embedding scheme. The new scheme is
benchmarked in Section VI and compared with relevant state-
of-the-art steganographic schemes.

This paper is an important extension of the method
presented in [12], where the statistical properties of the
photonic noise are obtained by empirically estimating the noise
covariance matrix. The obtained estimation error leads to a
higher detectability, especially for high JPEG quality factors.
In this paper, we instead compute the covariance matrix
exactly as presented in [16]. We add an extensive analysis of
the properties of this matrix and a detailed description of the
embedding scheme. We also propose a large variety of results
at different JPEG quality factors and for different alphabet
sizes.

II. PRELIMINARIES

A. Notations

Throughout this article, we use capital letters for random
variables X and their corresponding lowercase symbols for
their realizations x. Matrices are written in uppercase A and
vectors (of scalar or random variables) in lowercase boldface
font a. Matrix transposition is denoted with a superscript At.
The subscripts

e
p and

e
d will be respectively associated to

the photo-site domain and the developed domain.
In this article, matrix vectorization of matrices according to

the rows or columns are used. For a m × n matrix A, the
respective vectorization by rows and columns is defined as
follows:

For:

A ∈ Rm×n/A =




a1,1 . . . a1,n

...
...

am,1 . . . am,n


 (1)

the respective vectorization by columns (C) and rows (R)
is defined as follows:

vecC(A) = [a1,1, . . . , am,1, . . . , a1,n, . . . am,n]
t ∈ Rmn×1

(2)

vecR(A) = [a1,1, . . . , a1,n, . . . , am,1, . . . am,n]
t ∈ Rmn×1

(3)

B. Pseudo-embedding, simulated embedding and embedding

We distinguish between three forms of steganographic
embedding that are illustrated in Figure 1: pseudo-embedding,
simulated embedding, and (true) embedding.

Pseudo-embedding means that practical embedding is not
possible with the proposed implementation. It acts as a generic
mathematical operation (a reference) which outputs the so-
called pseudo-stego image should be statistically distributed
like the stego image.

In simulated embedding, the embedding changes are
simulated according to a given selection channel using the
probability πi(k) of modifying the ith cover sample by
magnitude k ∈ {−K, ...,K}.

(True) embedding can be realized using multilayered
STCs [17] based on costs ρi(k) directly computed
from the set of embedding probabilities πi(k), with
ρi(k) = log (πi(0)/πi(k)). The STC algorithm minimizes the
sum of embedding costs while embedding the payload using
a Viterbi algorithm.

C. Principles of Natural Steganography

We first review the principles of Natural Steganography
when pseudo embedding is performed at the photo-site level,
and then introduce the technical goals of this paper.

1) Pseudo-embedding at the photo-site level: Modifying
the photo-sites directly leads to pseudo-embedding. However,
as mentioned in [9], it can also be directly used for simulated
embedding or true embedding in the spatial domain for
monochrome sensors.

The key idea here is to add a stego signal S that mimics
the statistical properties of the photonic noise. For a CCD
or CMOS sensor, the photonic noise N at photo-site i, j due
to the error of photonics count during acquisition is assumed
to be independent across photo-sites with a widely adopted
heteroscedastic model [18]:

N
(1)
i,j ∼ N (0, a1µi,j + b1) , (4)

where µi,j is the noiseless photo-site value at photo-site i, j,
and (a1, b1) a pair of parameters depending only on the ISO1

sensitivity and the specific sensor. The acquired photo-site
sample x

(1)
i,j is thus a realization x

(1)
i,j = µi,j + n

(1)
i,j of a

Gaussian variable distributed as X(1)
i,j ∼ N (µi,j , a1µi,j + b1).

In the same way, for sensitivity ISO2:
X

(2)
i,j ∼ N (µi,j , a2µi,j + b2). Thus, we can generate a
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stego image mimicking a cover captured at ISO2 such that
for each photo-site i, j we have:

yi,j = x
(1)
i,j + si,j , (5)

with Si,j the random variable representing the stego signal:
Si,j ∼ N (0, (a2 − a1)xi,j + b2 − b1) . (6)

The photo-site of the stego image is then distributed as:

Yi,j ∼ N (µi,j , a1µi,j + b1 + (a2 − a1)xi,j + b2 − b1) . (7)
Assuming that the value of the observed photo-site is close to
its expectation, i.e., µi,j ≈ x(1)

i,j , we obtain

Yi,j
d
= X

(2)
i,j , (8)

where d
= represents the equality in distribution of two random

variables. Equation (8) highlights that the distribution of a
stego image photo-site is the same as the distribution of
a cover photo-site acquired at ISO2. Equation (5) is the
pseudo-embedding operation, which enables us to generate
pseudo-stego content at the photo-site level. Practically, the
distribution of the stego signal in the continuous domain takes
into account the statistical model of the shot noise estimated
for two ISO settings, ISO1 and ISO2, using the procedure
described in [9], [19]. The work presented in [9], [10] shows
that for monochrome sensors, this model in the spatial domain
can be used to derive the distribution of the stego signal in
the spatial domain after quantization, gamma correction, and
image downsampling using bilinear kernels.

2) Simulated embedding in JPEG domain: The main
purpose of this paper is to detail how to perform modifications
on quantized DCT coefficients in order to perform simulated
embedding. The modeling of the stego signal and its
dependencies in the DCT domain are crucial for the
embedding to be secure. We thus focus on modeling the
image development process in order to firstly derive the
statistical characteristics of the stego signal in the DCT
domain, then compute the modification probabilities for each
DCT coefficient, and finally perform simulated embedding.

The next section, we explain how we reach the first goal and
in Section V we detail the algorithm used to perform simulated
embedding.

III. MODELING DEPENDENCIES IN THE DCT DOMAIN

A. The development pipeline

In this paper, we use a linear development pipeline. Since
the distribution at the photo-site level of the random vector
of components Si,j is multivariate Gaussian (with diagonal
covariance matrix), and because the pipeline up to the DCT
transform is a succession of linear operations, one main result
of statistical signal processing [20] it that its distribution in
the DCT domain is also a multivariate Gaussian distribution,
but with arbitrary covariance matrix. The linear development
allows us also to derive the covariance matrix of this
distribution. We can write that yp = xp + sp, where xp is
the vectorized version of a block of photo-site values of the
cover image, and sp the vectorized values of the added stego
signal in the photo-site domain.

The goal of this section is to model the development
pipeline as a linear equation in the form of:

yd = Myp ⇔ sd = Msp, (9)
where yd and sd represent the vectors of respectively the stego
content and the stego signal in the developed domain. Since the
only random component is the stego signal sp, the covariance
matrix Σd = Cov(sd) of the multivariate distribution in the
DCT domain will then be given by:

Σd = M Σp Mt, (10)
where Σp = Cov(sp) is the covariance matrix of the
considered block of the stego signal in the photo-site domain
given the cover x.

Denoting now i the index of one photo-site in xp, using (6)
and the hypothesis µi ≈ xi, the covariance matrix Σp of the
stego-signal is a diagonal matrix with diagonal terms equal to
(a2 − a1)xi + b2 − b1.

In order to compute M, we consider the different steps of
the pipeline and decompose the computation of M into the
following steps (see Figure 2):

1) Demosaicking: this step predicts for each photo-site the
two missing colors that are not recorded by the sensor.
We use bilinear filtering as a linear interpolation process.

2) Luminance averaging: (we only consider embedding
in grayscale JPEG image) the demosaicked vector
undergoes luminance averaging following the ITU-R BT
601 standard.

3) 2D-DCT transform is computed independently on each
block of 8× 8 pixels.

4) Quantization: the DCT coefficients are quantized using
the quantization table matching a selected JPEG quality
factor (QF ) to generate a set of JPEG coefficients. Note
that since this operation is non-linear, it is not captured
by equation (9).

We now detail the different linear operations which are
detailed on content vectors yf (the subscript f denoting the
operation), but can also be written w.r.t. sf thanks to the linear
formulation by switching yf by sf .

Scene
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Fig. 2: Development pipeline: From a scene captured by a
color sensor to luminance JPEG coefficients.
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B. Considered photo-sites

Since the color interpolation step uses the neighboring
photo-sites to interpolate colors, this creates correlations
between adjacent 8-connected blocks of 8× 8 photo-sites.

These correlations between blocks can be very weak,
especially between diagonal blocks. On the contrary, it is
important to note that two blocks which are not 8-connected
represent independent realizations of the sensor-noise after
demosaicking. This property will be used in Section (V)
to design the embedding scheme. Both correlation between
adjacent blocks and uncorrelated blocks are illustrated in
Figure 3. On this figure we can see that two diagonal blocks
can share only two correlated photo-sites, and the correlations
can either come from three photo-site values coming from
vertical, horizontal, and diagonal blocks (this is the case
between NE and SW neighbors), or two photo-site values
coming from horizontal and vertical blocks only (this is the
case for NW or SE neighbors). On the contrary two blocks that
are disconnected are associated to uncorrelated stego signals.

In order to capture all the correlations between DCT
coefficients, we consequently need to consider a matrix Yp

of (3 × 8 + 2) × (3 × 8 + 2) photo-sites, which gives after
vectorization vecR(Yp) a vector yp of 676 photo-sites as an
input of our linear system as illustrated in Figure 4.

Fig. 3: Locations of photo-sites (dark colors) used to
interpolate pixel values within one block using bilinear
demosaicking. Diagonal blocks are involved in the
computation on two pixels for the blue channel (up
right) and the red channel (bottom, left).

1 + (3× 8) + 1
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Fig. 4: RAW photo-sites and its outer border.

C. Demosaicking

It is possible to write the demosaicking operations as matrix
multiplications. For each component R, G and B, we define
the matrices Dr, Dg , Db of size (24 + 2)2 × (24 + 2)2, such

that the result of the matrix multiplication of yp with one of
these matrices is the vectorized version of the corresponding
color channel after demosaicking:

yr = Dryp, yg = Dgyp, yb = Dbyp. (11)

Denoting i the index of one photo-site in yi, one row
i of Dk, k ∈ {r, g, b} is obtained by vectorization of a
(24 + 2)× (24 + 2) matrix with zeros entries except a specific
kernel specific kernel Ki centered on (i, i). This kernel models
any kind of interpolation between neighboring photo-sites and
yi:

rowi(Dk) = vecR




0 · · ·
...

. . .

. . .

Ki 0 · · ·
0 0
...

. . .




. (12)

Without loss of generality we now focus on the computation
of Dg , we consequently have two possibilities in this case:
• If index i corresponds to a green photo-site on the Bayer

CFA, this photo-site does not need color interpolation,
i.e.:

Ki = [1]. (13)

• If index i corresponds to a pixel which needs to be
interpolated, then:

Ki =




0.25 0 0.25
0 0 0

0.25 0 0.25


 . (14)

The kernel coefficient in bold representing the location
(i, i). For the red and blue channels, we use four different
convolution kernels Ki to build Dr and Db, which are:

[1] ,




0.5
0

0.5


 ,
[

0.5 0 0.5
]

and




0.25 0 0.25
0 0 0

0.25 0 0.25


 ,

and are respectively used for duplication, interpolation
between vertical or horizontal photo-sites and interpolation
between four diagonal photo-sites.

D. Luminance averaging

To perform luminance averaging, we can define the matrix
L following the ITU-R BT 601 standard as:

yl = (0.2126 ·Dr + 0.7152 ·Dg + 0.0722 ·Db)︸ ︷︷ ︸
L

yp, (15)

with yl∈R(24+2)2×1.

E. Pixel selection

As stated above, the surrounding edges of 3 × 3 blocks
of samples are included in order to take into account
the convolution window during demosaicking. Once the
demosaicking operations have been carried out, the photo-sites
not present in the DCT blocks can then be discarded. Let us
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denote Yl the (24 + 2)× (24 + 2) photo-sites matrix with its
outer border, and Ys without it as depicted in Figure 5. The
selection matrix S∈R(24)2×(24+2)2 can then be defined such
that:

ys = vecR(Ys) = S vecR(Yl) = Syl. (16)

and we also can write: ys = S Lyp.
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Fig. 5: Block representation of the pixel selection operation.

F. Blocks permutation and block selection

Blocks permutation and block selection are not mandatory,
but they are useful to compute conditional probabilities while
limiting the computational load (see section V). Depending
on the lattice considered during the embedding (see again
section V), the correlation matrix can be computed for DCT
coefficients belonging to one, five or nine adjacent blocks.

In order to mathematically express a block permutation and
selection as the matrix multiplication

ype = P ys, (17)
we define Ys∈R24×24 as an array composed of the 3 × 3
blocks of pixels, such that the vector ys = vecR(Ys), with:

Ys =




B0 ,0 B0 ,1 B0 ,2

B1 ,0 B1 ,1 B1 ,2

B2 ,0 B2 ,1 B2 ,2


 ,

where Bi,j ∈ R8×8 are blocks of 8× 8 pixels, 0 ≤ i, j ≤ 2.
We recall that DCT is performed independently on each of
these blocks. We need then to extract from ys the vector
corresponding to the required sequence of each block.

For each block to extract, we define a 82 × 242

block selection matrix Pi,j composed of 3 sub-matrices[
P̃0 P̃1 P̃2

]
, where the size of P̃i is 64 × (3 · 64),

0 ≤ i ≤ 2. When extracting vecR(Bi,j), all P̃k , k 6= i
are set to zero and P̃i takes the following entries:

P̃i =




Fj 0 0 · · · 0
0 Fj 0 · · · 0
0 0 Fj · · · 0
...

... 0
. . . 0

0 0 0 0 Fj



,

where Fj is a 8× 24 sub-matrix consisting of 3 sub-matrices[
F̃0 F̃1 F̃2

]
, each of size 8 × 8. When extracting

vecR(Bi,j), all F̃k , k 6= j, are set to zero and F̃j = I8 , the
identity 8× 8 matrix.

We illustrate this with two examples.

Example 1: Suppose we need to extract the vectorized form
of the central block B1,1, i.e., i = 1 and j = 1. We then have:

F1 =
[

0 I8 0
]
,

and

P1,1 =




0 · · · 0 F1 0 · · · 0 0 · · · 0
0 . . . 0 0 F1 0 0 . . . 0
...

. . . 0
... 0

. . . 0
...

. . . 0
0 · · · 0 0 0 0 F1 0 · · · 0


 .

The corresponding vector permutation matrix is then
P = P1,1.

Example 2: This additional example is useful for the
remaining of the paper (see Section V-A). Let us extract
from ys the vector resulting from the concatenation of the
vectorized version of five 8 × 8 blocks of pixels in a given
order,

yB = [vecR(B1,1), vecR(B0,0), vecR(B0,2), vecR(B2,0), vecR(B2,2)] t

The corresponding matrix operation will be:

P =
[

P1,1 P0,0 P0,2 P2,0 P2,2

]t
.

G. 2D-DCT Transform

For a 8×8 block in the spatial domain, B, its 2D-DCT block
version written here as Bd can be expressed by the following
matrix multiplication:

DCT(B) = A ·B ·At = A · (A ·Bt)t, (18)

with:

A =




a a a a a a a a
b d e g −g −e −d −b
c f −f −c −c −f f c
d −g −b −e e b g −d
a −a −a a a −a −a a
e −b g d −d −g b −e
f −c c −f −f c −c f
g −e d −b b −d e −g




, (19)

and : 


a
b
c
d
e
f
g




=
1

2




cos(π4 )
cos( π16 )
cos(π8 )
cos( 3π

16 )
cos( 5π

16 )
cos( 3π

8 )
cos( 7π

16 )




. (20)

It should be observed that the multiplication by A and At

is due to the fact that the DCT transform is separable and
processes the columns and rows independently. In order to
compute the covariance matrix of the spatial signal B, we use
vector notation by transforming the matrix B∈R8×8 into a
vector b∈R64 by concatenating the columns. As a result, the
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8×8 matrix A is transformed into a 64×64 matrix Av given
by :

Av =




A 0 . . . 0

0 A 0
...

... 0
. . . 0

0 · · · 0 A



. (21)

We also define a transpose operator Tr ∈ R64×64 such as
vecc(Xt

S) = Tr · vecc(XS) = Tr · xS, with :

Tr = (δr(i), c(j))0≤i<64
0≤j<64

,

and,

r(i) = 8 bi/8c+ (imod(8)),
c(j) = 8(jmod(8) + bj/8c ,

δr(i), c(j) being the Kronecker function applied to row r(i) and
column c(j).

The transpose operation Bt is then equivalent to the
multiplication Tr · b, and the vector form of the DCT 8 × 8
block DCT (B) finally becomes:

DCT(b) = Av Tr Av Tr︸ ︷︷ ︸
Tb

b (22)

In order to compute the DCT of n blocks of size 8 × 8
(n ∈ {1, 5, 9}), we now define :

T =




Tb 0
. . .

0 Tb


 .

With T a block diagonal matrix with n matrices Tb on its
diagonal.

H. Whole covariance matrix

The development pipeline can be then explicitly formulated
as

sd = Msp = T P S L︸ ︷︷ ︸
M

sp, (23)

and the covariance matrix is computed as:

Σd = ME
[
sp stp

]
Mt. (24)

Note that for a uniform constant RAW image defined by
µ = const. (i.e., E [sd · std] ∝ I), we obtain Σd ∝ MMt.
Depending of the number of blocks n considered in the
neighborhood (n ∈ {1, 5, 9}, see V-A), the size of Σd is
(n× 64, n× 64).

IV. ANALYSIS OF THE COVARIANCE MATRIX

In this section, we analyze the properties of the derived
covariance matrix and interpret its different components. We
show that the inter-block correlations are due to the signal
continuity between blocks and that intra-block correlations
highlight both artifacts due to demosaicking and due to low-
pass filtering.

Note that this analysis is beneficial in order to understand
the causes of the observed covariances. This understanding

enables to decompose the embedding scheme into independent
lattices (see section V) but also to pave the road for
other synchronization strategies applied to other development
pipelines. For example, in [21], the covariance matrix is
limited to the effect of averaging and can be used to
synchronize DCT coefficients of classical schemes such as
UERD or J-Uniward. In [22], relationships between DCT
coefficients to preserve continuities are in line with the
presented analysis of the inter-block correlations (see IV-B).
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(c)

Fig. 6: (a) 256×256 covariance matrix of DCT coefficients of a
color sensor with bilinear demosaicking for an i.i.d signal (the
correlation values are thresholded for visualization purposes).
(b): scan order by blocks and coefficients. (c): types of sub-
matrices representing the 9 covariance matrices.

As non connected blocks are uncorrelated, we focus here
on only four adjacent 8 × 8 blocks of unquantized DCT
coefficients, as depicted in Figure (6b). This selection enables
us to analyze correlations within a block, but also correlations
between horizontal, vertical and diagonal neighboring blocks.
By observing Figure (6a) together with the scan order depicted
in Figure (6b), we can decompose the entire covariance matrix
into four types of matrices of size 64 × 64 as illustrated in
Figure (6c):
• Intra-block 8×8 covariance matrices of type ΣC capture

the correlations between DCT coefficients in the same
block. They are located on the diagonal of the covariance
matrix Σd. Note that DCT coefficients can be positively
or negatively correlated.

• Horizontal inter-block covariance matrices of type ΣE or
ΣW . They hold correlations between horizontal blocks.

• Vertical inter-block covariance matrices capture
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correlations between vertical blocks. They can be
of type ΣN or ΣS .

• Diagonal inter-block covariance matrices capture
correlations between diagonal blocks. They can be of
type ΣNE , ΣSW ,ΣSE , or ΣNW .

It is worth noting that the stationary behavior that appears here
in Σd is not true for real images where the input signal is not
identically distributed. Being aware of this, we do not consider
stationarity for the embedding procedure (see Section (V)) but
we use it only for analysis purposes. We give now an accurate
analysis of the structure of the above defined covariances
matrices.

A. Intra-block correlations
The coefficients of the covariance matrix for intra-

block correlations are of two types: they are either due
to demosaicking artifacts (see Section IV-A1), or the
consequence of low-pass filtering (see Section IV-A2).

1) Effect of demosaicking: In order to emphasize the effect
of demosaicking, we select only one color channel, the red
one, and we investigate the intra-block correlations when the
luminance computation operation is not taken into account.
The demosaicking operation introduces dependencies within
the same block and this is both due to the structure of the
CFA itself and the color interpolation algorithm. For a given
waveform of the DCT mode , i.e. its representation in the
spatial domain1, the demosaicking operation, which can be
seen as a succession of sub-sampling and linear interpolation,
introduces artifacts coming from interpolation errors, such that
the final result is a linear combination of the other 63 DCT
modes. The initial mode is encoded with a larger magnitude
than the others as summed up in the following expression:

DCT (Dem (modei)) = Ai ·modei +
∑

i 6=j
Aj ·modej

︸ ︷︷ ︸
DCT artifacts

,

here modei represents the spatial representation of DCT mode
i after demosaicking (the Dem() function). The appearance of
the Aj terms is due to small interpolation errors of mode i.
These artifacts are illustrated in Figure 7. This figure can be
explained as follows: in order to encode continuous waveforms
that are interpolated during the demosaicking process, the
interpolation process has to deal with missing values (see
Figure 7a), which encode other frequencies in the DCT domain
(see Figure 7c). So, instead of encoding one component
(see Figure 7b), it also encodes other DCT components (see
Figure 7d).

In Figure 7d, we also compare the covariance matrix
computed by interpolating only the red channel on continuous
DCT waveforms and the DCT of the interpolated waveform.
Note that the fourth line of the covariance matrix is very
similar with the components depicted in Figure 7d.

In the 2D spatial domain, for a single mode applied to a
8 × 8 photo-sites array, the demosaicking algorithm creates
artifacts such that the resulting image in the DCT domain is
a linear mixture of the different DCT modes.

1a.k.a. the pixel domain.
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Fig. 7: Impact of demosaicking on correlation between intra-
block DCT coefficients: (a) visualization of one line bc of
the (0, 2) mode in the spatial domain. (b) DCT (bc) . (c)
Continuous signal, interpolated signal bi and interpolation
error. (d) comparison between the DCT transform of the
interpolated waveform (left) and the covariance matrix
obtained from interpolated pure DCT modes (right).

2) Effect of low pass filtering: The second category of
artifacts is due to a low-pass filter, which can be related to the
conversion from RGB to luminance or to any downsampling
operation. In order to simulate the effect of low pass filtering,
we use a random independent noise as a RAW image and
convolve this input with a standard low pass filter, such as:

L =
1

12
·




1 1 1
1 4 1
1 1 1


 .

The covariance matrix obtained by incorporating the low-
pass filter in the development process is complementary to the
covariance matrix obtained considering only the demosaicking
artifacts. Figure 8 shows these relationships: the total intra-
covariance matrix (Figure 8c) can be approximated as the
superposition of the covariance matrix of signals representing
the demosaicking artifacts (Figure 8a) and the covariance
matrix of the independent signal at the photo-site level
undergoing low-pass filtering (Figure 8b).
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Fig. 8: (a): Covariance matrix computed after randomly generating DCT continuous modes that are interpolated using bilinear
filtering. (b): Intra correlations within a block after low-pass filtering using filter L. (c): Intra-block covariance matrix for
µ = const.The correlation values are thresholded for visualization purposes.

B. Inter-block correlations

Inter-block correlations between DCT coefficients are also
caused by demosaicking, which averages adjacent photo-site
values to interpolate the missing color values. It creates
correlations between neighboring pixels, including pixels
belonging to two different DCT blocks. This interpolation
process highlights the low-pass component of the sensor noise,
and this is consistent across different demosaicking methods
(see [12]). This phenomenon is illustrated in Figure 9, which
shows for different DCT modes in the spatial domain, the
arrangements of blocks that are the most correlated for the
horizontal and vertical neighbors. For each arrangement, we
can notice that the continuity from one block to its neighbor
is preserved.

The most significant correlations correspond to the
surrounding vertical and horizontal blocks. This is due to
the large number of neighboring photo-sites involved in the
interpolation process. Note that the largest correlations are for
the same vertical or horizontal frequency due to frequencies
consistency between adjacent blocks.

The sign of the correlations represents the preservation
of continuity between blocks in order to guarantee spatial
continuity. For example, alternating signs are due to the
topology of the waveforms. For example for mode (1, 0), all
modes (i, 0) have a white top line but the bottom line alternates
between white and black w.r.t. i.

It is interesting to connect this analysis with the recent
steganographic scheme proposed by Li et al. [22] which
synchronizes embedding changes between several DCT modes
by empirically adjusting costs in order to favor continuities
between blocks. This practical rationale is now theoretically
justified by our analysis.

(a) (1, 0) (b) (0, 1) (c) (0, 5) (d) (1, 1)

Fig. 9: Different DCT modes (central blocks) and their
most correlated modes (represented by horizontal or vertical
blocks). The presented locations of the blocks correspond to
the spatial locations of the blocks. We can notice that the most
correlated blocks preserve continuities between neighboring
blocks.

V. SIMULATED EMBEDDING

In order to perform simulated embedding, we first need to
compute the probability mass function (pmf) of the embedding
changes for each coefficient of the cover JPEG before
performing embedding changes. We then sample according
to this pmf in order to generate the quantized stego signal s̃d
and consequently the JPEG stego image. We recall that true
embedding may also be performed by computing the costs
associated with each embedding probability change, and by
running a multilayer STC (see Section II-B).

In Section (III), we saw that in the DCT domain, the of
the coefficients resulting from a stego signal follows a zero-
mean multivariate Gaussian distribution. Its covariance matrix
computed for 3× 3 blocks (each block containing 8× 8 DCT
coefficients) is given by (24). Moreover 8-connected blocks
are correlated, but two not connected blocks can be drawn
independently.

In order to sample according to the joint distribution, we
need to compute conditional pmfs for each quantized DCT
coefficient using the four following technical developments:

1) The decomposition of the image in the DCT domain into
four disjoint macro lattices (see (V-A)).

2) The use of the chain rule of conditional sampling
(see (V-B)) combined with an embedding over 4 × 64
lattices.
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3) The computation of the associated probability mass
functions and associated sampling operations in the
continuous and quantized domain (see V-C).

4) The computation of the embedding capacity (see V-D).

A. Decomposition into lattices

The embedding has to take into account three facts:

1) Intra-block dependencies within each 8× 8 block.
2) Inter-block dependencies between one central block and

its horizontal, vertical and diagonal neighbors.
3) Independence of blocks that are not neighbors.

Argument (1) means that we practically have to use 64 lattices
(one per DCT mode) to perform embedding in one DCT
block and (2) and (3) mean that we need a maximum of four
macro-lattices {Λ1,Λ2,Λ3,Λ4} to perform embedding in each
DCT block while respecting the correlations exhibited by the
computed covariance matrix.

The different macro-lattices are illustrated in Figure 10
together with the neighboring blocks that are involved.

Condider a vector of 3 × 3 blocks of the stego signal
in the DCT domain. Let sCd be the central block and
sNWd , sNd , s

NE
d , sWd , s

E
d , s

SW
d , sSd , sSEd be respectively the

north-west, north, north-east, west, east, south-west, south, and
south-east blocks w.r.t. the central one.

We can build the vector of interest s?, used to compute
conditional probabilities (see next sub-section), as follows:

- For Λ1, only the intra-block covariance matrix is necessary,
computed w.r.t. s? = sCd ,

- For Λ2, s? = [sCd , s
NW
d , sNEd , sSWd , sSEd ],

- For Λ3, s? = [sCd , s
N
d , s

W
d , s

E
d , s

S
d ],

- For Λ4, s? = [sCd , s
NW
d , sNd , s

NE
d , sWd , s

E
d , s

SW
d , sSd , s

SE
d ].

We end up with a decomposition of the image into
4 × 64 = 256 lattices (four macro lattices and one lattice
per DCT mode). In each lattice, the covariance matrix may be
expressed as:

Σd =

[
Σ[0:64][0:64] Σ[0:64][64:n×64]

Σ[64:n×64][0:64] Σ[64:n×64][64:n×64]

]
, (25)

with n denoting the number of blocks in s? (see footnote
2) and n = 1 for Λ1, n = 5 for Λ2 and Λ3 and n = 9 for Λ4,
see Figure (10).

44 4

4

1

2

3

: Λ1

: Λ2

: Λ3

4 : Λ4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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33
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4

Fig. 10: The four macro lattices used for embedding.
Arrows indicate the neighborhood used to compute conditional
probabilities.

2The pythonic notation [i : j] means that all indexes from the
interval[i, j − 1] are considered.

B. Conditional sampling

Using the lattice decomposition, changes can be drawn
independently according to the pmf πi for simulated
embedding in each lattice, or using a STC based on costs ρi
(see (II-B)). In order to derive the pmf πi(k) for each sample i
and the modification magnitude k, we need to use conditional
sampling, a variation of Gibbs sampling, which enables to
sample from a multivariate distribution using only conditional
distributions.

Without loss of generality, if we focus on the set of 4
macro lattices defined in (V-A) (but this can be applied on
any number of lattices that are conditionally independent), the
chain rule of conditional probabilities gives

P (sd) = P (sΛ1 , sΛ2 , sΛ3 , sΛ4) ,

= P (sΛ1)P (sΛ2 |sΛ1)P (sΛ3 |sΛ1 , sΛ2)P (sΛ4 |sΛ1 , sΛ2 , sΛ3) .

where s is a random vector representing the whole set of DCT
coefficients related to the stego signal in the DCT domain, and
sΛi represents the DCT coefficients belonging to lattice Λi.

This means that we can perform (simulated) embedding
first in lattice Λ1 by sampling according to P (sΛ1

), then
embed in the second lattice by sampling according to
P (sΛ2 |sΛ1) and so on until embedding in lattice Λ4 by
sampling according to P (sΛ4 |sΛ1 , sΛ2 , sΛ3) .

Conditional distribution in the continuous domain:

We explain now how we can compute the conditional
probability related to a particular DCT coefficient.
For each macro lattice Λk, k ∈ 1, .., 4 and block `, the
random vector of stego signal components conditioned by
the previous embeddings follows a Multivariate Gaussian
Distribution: N (mk,`,Σk,`), where mk,` and Σk,` can be
computed using the Schur complement of the full covariance
matrix(25 [23]). For example, if we perform the embedding
in block ` from lattice Λ4, the mean vector m4,` and the
covariance matrix Σ4,` are computed conditionally to the
embedding performed in {Λ1,Λ2,Λ3} (recall that the mean
of sd is 0):

m4,` = Σ[0:64][64:n×64]Σ
−1
[64:n×64][64:n×64]sΛ1,Λ2,Λ3

, (26)
and the Schur complement is given by:

Σ4,` = Σ[0:64][0:64]Σ[0:64][64:n×64]Σ
−1
[64:n×64][64:n×64]Σ[64:n×64][0:64]

(27)
for the stego-signal sΛ1,Λ2,Λ3 defined by the surrounding

blocks belonging to the three first lattices (see Figure 10).
At this stage of the study, it is possible to generate the 64

stego signal values sk,` = (c0, . . . , c63)tk,` in the DCT domain.
For each of the 64 lattices in each macro lattice, we sample

by using the Cholesky decomposition of the corresponding
covariance matrix Σk,`, denoted Lk,`, which is a lower
triangular matrix such that Σk,` = Lk,` · Ltk,`.

Let (N1, N2, · · · , N63) ∼ N (0, I64) a standard
multivariate Gaussian distribution, and n = (n0, . . . , n63) an
outcome of it. Then sk,` ∼ N (mk,`,Σk,`) can be sampled by
computing sk,` = mk,` + Lk,`n. More precisely, because we
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need to generate sk,` iteratively, omitting here indexes (k, `)
for writing convenience, we have:





s0 = m0 + L (0, 0) · n0

s1|0 = m1 + L (1, 0) · n0︸ ︷︷ ︸
m1|0

+L (1, 1)︸ ︷︷ ︸
σ2
1|0

·n1

...

,

and

Si|i−1...,0 ∼ N
(
m′i, σ

′2
i

)
1 ≤ i ≤ 63, (28)

with m′i = mi +
∑i−1
l=0 L(i, l)nl, and σ′2i = L2(i, i),

i ≥ 1, m′0 = m0, σ′2i = L2(0, 0).
Equation (28) gives consequently the conditional

distribution of each sample of the stego signal in the
continuous domain.

C. Computation of the probability mass functions and
sampling

Using the JPEG quantization matrix, the stego signal
undergoes a quantization and the conditioned probability
density function has to be to converted into a probability
mass function which takes into account the associated
quantization table for the chosen quality factor QF . To
compute πi(k) = Pr[S̄i = k], the probability that the stego
signal produces a change of magnitude k ∈ Z at a coefficient
i ∈ N for a given block, we compute the quantized version
of the real valued random variable Si. This probability mass
function is given by:

πi(k) = Pr
[
uk <

Si
Qi
≤ uk+1

]
,

=

∫ uk+1

uk

1√
2πσ̂2

i

exp
(
− (x− m̂i)

2

2σ̂2
i

)
dx,

=
1

2

[
erf
(uk+1 − m̂i√

2σ̂i

)
− erf

(uk − m̂i√
2σ̂i

)]
, (29)

where uk = [m̂i] − 0.5 + k, m̂i = m′i/Qi, σ̂i = σ′i/Qi for
parameters m′i and σ′i before quantization associated with a
quantization step Qi. At each step i, the parameters m′i and
σ′i have to be generated in the continuous domain with the
knowledge of values drawn at steps 0 ≤ l ≤ i − 1. All the
previous continuous samples are then needed to compute m′i
and σ′i. Once a sample has been generated in the discrete
domain, we need then to obtain a candidate in the continuous
domain which could have led to the sampled discrete value.
This could be done for example by using rejection sampling,
where we can obtain for each discrete sample its continuous
candidate Si|c̄i .

Rejection sampling works in the following way: for each
discrete sampled value, we sample according to the continuous
distribution until we find the appropriate candidate Si|s̄i such
that:

uk < Si|s̄i < uk+1. (30)

where s̄i = k, uk = [m̂i] − 0.5 + k, and k ∈ Z the symbol
sampled as a modification in the discrete domain.

Note that during this step, we need to both to embed/sample
on JPEG coefficients, and to sample in the continuous domain
in order to be able to compute the conditional distribution
using (28), this is illustrated on Figure (11).

Conditional
Distribution

PDF to
PMF

Entropy

Sampling in 
discrete 
domaine

Sampling in 
continuous 
domaine

p (Si | Si−1, . . . , S0)

<latexit sha1_base64="dQVhPV+B7RVaGxIHszRqOWnURlQ="></latexit>

si

<latexit sha1_base64="4aTAhnZjvapeNfQh+wksCO+2EiU="></latexit>

Si

<latexit sha1_base64="no+SEuiE9UFdr0btdfcVhDBogNY="></latexit>

i := i+ 1

<latexit sha1_base64="hz7cDZcCjXjbWI+6921IHfxOgDw="></latexit>

Hπi

Fig. 11: Sequential computation of the PMF needed to perform
simulated embedding.

D. Entropy estimation

Finally, from the probability mass function obtained in
the previous section, the binary entropy associated to the
steganographic signal for the ith coefficient can be computed.
Given the alphabet A = (−K, . . . , 0, . . . ,K), k ∈ N+∗, it is
defined as:

H(A, i) = −
∑

k∈A
π′i(k) log2π

′
i(k), (31)

where π′i(k) = πi(k) for i ∈ {−K − 1, . . . ,K − 1},
π′i(−K) = −∑i=−K

i=−∞ πi(k) and π′i(K) = −∑i=+∞
i=K πi(k).

E. Final embedding algorithm

Algorithm 1 J-Cov-NS embedding scheme.
- Inputs: the cover RAW image Xp, the payload, a secret key
- Develop Xp in the DCT domain, before quantization to
obtain Xd and in the JPEG domain to obtain Xj ;
- Divide Xp into 4 macro-lattices Λ1, Λ2, Λ3, Λ4;
- For each macro-lattice Λi do:
• For each DCT block of Λi do:

– Compute the covariance matrix for each set of DCT
blocks (Eq. (24);

– Compute the conditional mean vector (Eq. (26)) and
covariance matrix (Eq. (27)) w.r.t. the embeddings
done on the previous lattices;
∗ For each DCT coefficient of Xd do:
· Compute the conditional distribution Eq. (28)

given the previous embedding changes;
· Compute the PMF πi(k), Eq. (29);
· Perform the modification on Xj by sampling

according to πi(k);
· Sample the continuous variable related to the

modification, Eq (30);
- Return the JPEG stego image Yj .

The resulting embedding algorithm (named J-Cov-NS) can
be decomposed into the following steps, summed up in the
pseudo code presented in Algorithm 1. The use of the key
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in not explicit, but it can be used to shuffle the coefficients
withing each lattice. The embedded payload is such that its
size matches Eq. (31).

VI. RESULTS

This section presents a detailed benchmark of the
embedding scheme on JPEG images, in the cover-source
switching scenario, i.e., a scenario where the cover image
comes from a higher ISO sensitivity than the image used to
generate the stego image, and where the embedding mimics
the ISO change.

A. Generation of E1Base

We evaluate the proposed embedding scheme to test on
images taken by the Micro 4/3 16 MP CMOS sensor from
the Z CAM E1 action camera.

Note that this steganalysis setup is relatively unconventional
compared to the state of the art (see Figure 12). This is due
to the fact that the goal of the classifier here is to distinguish
between cover images captured at ISO2 from stego images
coming from cover images captured at ISO1 but emulating
sensor noise captured at ISO2.

Raw images coming from the E1 sensor are acquired
with two ISO settings (ISO 100 and ISO 200) and
constitute E1Base. This database can be downloaded at
https://gitlab.cristal.univ-lille.fr/ttaburet/e1base and is built
according to the following requirements:

- It contains an equal number of images of equivalent scenes
captured at both ISO1 = 100 and ISO2 = 200. The training
and testing sets have been generated from 200 Raw images
(DNG format, with a 12 bits dynamic range) that have been
developed and cropped without overlapping in order to provide
10, 800 images of size 512×512. This dataset has already been
used under similar circumstances in [11], [12], [16].

- A particular care has been taken in order to ensure that
the only important difference between the database acquired
at ISO1 and the database acquired at ISO2 is the sensor
noise. In the same way as the MonoBase was acquired by
a monochrome sensor [9], the average focus and average
luminance are both similar between the two databases. This
step is mandatory in order to guarantee that the steganalyzer
is not using semantic information to distinguish between the
cover and stego datasets. This requirement is specific to the
benchmarking process of Natural Steganography since the
cover and stego images do not come from the same source
in this case.

For this given database, the value used to compute
the variance of the sensor noise at the photo-site level
are (a2 − a1) = 1.15 and (b2 − b1) = −1150 (the
variance is set to zero whenever it is negative). A python
notebook used to generate both the cover and the stego
images is also downloadable here: https://gitlab.cristal.univ-
lille.fr/ttaburet/tifs-ns/.

Classically, E1 Base is split into two halves, 5400 pairs of
images are used for training and 5400 pairs for testing.

E1Base

Covers
ISO1

Covers
ISO2

Simulated
Embedding

Stegos
Emulating ISO2

Steganalysis

Fig. 12: Steganalysis setup when benchmarking NS.

B. Benchmark settings

We adopt the DCTR features set [24] combined with
a low complexity linear classifier [25] to perform the
steganalysis with the threshold set in order to minimize
the total classification error probability under equal priors,
PE = minPFA

1
2 (PFA + PMD), with PFA and PMD standing

for the false-alarm and missed-detection rates, respectively.
For comparison with the current state of the art (of side

informed schemes in the JPEG domain), we embedded all
images also with SI-UNIWARD with an embedding rate of
1 bit per nzAC coefficient. In this case, the steganalysis task
is the classic one: try to distinguish stegos images (produced
by SI-UNIWARD) from covers acquired at ISO2.

C. Comparison with other embedding strategies

Table I compares the proposed embedding scheme for
different JPEG QF with other embedding strategies which are:
• Pseudo embedding in the photo-site domain, i.e. using

Eq. (5), and applying the process depicted in the top raw
of Figure 1,

• Estimating the empirical covariance matrix from a
stationary signal and scaling it according to the average
RGB values of the raw image, which is one solution
to circumvent the explicit calculus of the covariance
matrix [12],

• Embedding without taking into account correlations
between DCT coefficients, this is performed by
computing an empirical histogram of each DCT mode
estimated after multiple embeddings and Monte-Carlo
simulations [11],

• Embedding taking into account only intra-block
correlations, this is performed by using only the
computation of the intra-block covariance matrix, no
inter-block correlations are consequently considered
here,

• SI-UNIWARD [5], one state of the art embedding scheme
in the JPEG domain which use side-informed embedding
from the RAW image.

We can notice that computing the covariance matrix for each
DCT block enables us to achieve about the same practical
security than pseudo-embedding. Contrary to the previous
scheme proposed in [12], which relies on an approximation

https://gitlab.cristal.univ-lille.fr/ttaburet/e1base
https://gitlab.cristal.univ-lille.fr/ttaburet/tifs-ns/
https://gitlab.cristal.univ-lille.fr/ttaburet/tifs-ns/
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PE (%) / H J-Cov-NS Pseudo Covariance Independent Intra-block SI-Uniward [5]
JPEG QF (bpnzAC) embedding (7) scaling [12] embedding [11] correlations only 1 bpnzAC

100 2.0 42.9 40.2 13.9 0.0 0.0 0.0
95 2.2 41.2 40.9 30.3 0.5 0.2 0.4
85 2.4 41.2 41.9 39.8 10.8 15.8 12.3
75 7.0 41.6 41.3 40.4 27.0 25.2 24.8

TABLE I: Empirical security (PE in %) and average embedding capacity (H) for different quality factors and embedding
strategies on E1Base. DCTR features combined with regularized linear classifier are used for steganalysis.

of the covariance matrix using a scaling factor dependent
on the RGB values of each block, J-Cov-NS does not
exhibit any security loss for high QFs. The comparison with
independent embedding, which offers good practical security
for monochrome sensors, highlights the fact that the latter
scheme is not adapted to color sensors, and that it is extremely
important to take into account correlations between DCT
coefficients, especially for high QFs. Note also that if only the
intra-block correlations are taken into account, the embedding
scheme still remains highly detectable. Finally, the comparison
with SI-UNIWARD shows that this state-of the art scheme
is not secure for very high embedding rates (1 bit pnzAC
coefficient here). This is not surprising since SI-UNIWARD
does not rely on cover-source switching and does not use all
the information provided by the development pipeline.

D. Evaluation for other steganalysis strategies

We also evaluated J-Cov-NS w.r.t to other steganalysis
strategies dedicated to JPEG images. To this end, we
performed steganalysis using another JPEG feature sets based
on resudials extracted using Gabor filters (GFR, see [26]) and
also using the non-linear ensemble classifier [27] for different
JPEG QF. Results are presented in Table II and shows that
both strategies are equivalent with the former one, with a slight
advantage on GFR over DCTR features (-1% to -3%). Note
however that GRF features have higher dimensionality (17.103

vs 8.103) and are longer to extract. The use of the ensemble
classifier enables also gain reduce the detectability, but by a
small margin of maximum 1%, together with a computational
cost of about one order of magnitude.

Since steganalysis based on deep neural network offer
the opportunity to automatically extract relevant features
regardless of the embedding scheme, we also benchmark J-
Cov-Net w.r.t. SRNet, one state of the art network in spatial or
JPEG steganalysis [28]. The network was trained using mini-
batches of 32 512×512 images (16 covers and 16 stego) using
Nvidia GPU Quadro P6000 (24 GB of memory), the learning
rate was is initially set to 10−3 and decreases by 10% each
5000 iterations. The sizes of the training set is 4000 pairs
(augmented using rotations and flipping transforms), 1000
pairs are used for validation in order to select the best trained
network, and the rest for testing. The results presented in
table III are obtained after convergence is reached, i.e. after
100 000 iterations. We can notice that DNN based steganalysis
enables to increase the performances in detectability by about
10% w.r.t. to DCTR combined with the low complexity linear
classifier. With more than 30% of average error rate, this
does not jeopardize the detectability of the presented scheme

though. Note also that this improved detectability can be due
to the fact that the automatic feature extraction provided by
the convolutional layers of SRNet succeeds to catch possible
slight general content discrepancies between images of E1Base
acquired at ISO 100 and 200.

QF / Linear Classifier Ensemble Classifier
PE (%) DCTR GFR DCTR GFR

100 42.9 40.3 40.8 39.6
95 41.2 39.2 41.3 38.4
85 41.2 39.1 41.0 38.1
75 41.6 40.3 41.4 39.1

TABLE II: Practical security of J-Cov-NS for other
steganalysis strategies: DCTR and GFR features sets using
the Linear Classifier and the Ensemble Classifier.

QF 100 95 75
PE (%) 37.4 31.2 35.0

TABLE III: Practical security of J-Cov-NS against SRNet.

E. Embedding capacity
In this section, we investigate the distribution of the

embedding capacity through the whole E1Base database, and
compute its average value for JPEG QFs 75, 85, 95, and
100 and for different alphabet sizes. Thus, we estimate the
entropy for each 512× 512 image, compute the proportion of
nzAC and obtain Hbits/pixels and Hbits/nzAC as a function of
the of the chosen alphabet size for each QF. Figure 13a and
Figure 13b illustrate, respectively, the evolution of Hbits/pixels

and Hbits/nzAC when the size of the alphabet for insertion
increases from

[
−1 0 +1

]
to
[
−5 . . . +5

]
.

The average embedding capacity in bits per nzAC is
relatively high, around 2 bits pnzAC for JPEG QF∈ {95, 100}
and over 7 bits pnzAC for QF ∈ {75, 85}. The alphabet size
has a minor impact on the capacity. However, QF ∈ {75, 85}
highlights an exotic case, since on the one hand the embedding
is concentrated on the DC coefficients, and on the other hand
there are only few nzAC coefficients at QF ∈ {75, 85}. For
example, given a 512×512 image with an average embedding
rate of 1 bit per DC coefficient and having only 100 non-zero
AC coefficients, this image has a total embedding rate of 40.96
bits per nzAC!

Figure (14) shows the embedding capacity computed on a
synthetic constant cover RAW image for each DCT coefficient
on the four lattices Λ1, Λ2, Λ3, and Λ4 at QF = 100 and
QF = 95. Within each block, row scan is used. Two remarks
can be drawn:
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Fig. 13: Average entropy H (bits) of J-Cov-NS over the
database (a) per pixel, (b) per nzAC as a function of K for
different JPEG QFs. Histograms of H (bits) across images for
different QFs in (c) per pixel, (d) per nzAC.

1) the capacity decreases w.r.t. the coefficient frequency,
this is due to demosaicking and the fact that the stego
signal is mainly encoded by low frequency components.
For QF = 95, this is also due to the fact that the
quantization steps are larger for high frequencies.

2) the capacity decreases w.r.t. the lattice index, with an
average value at QF = 100 of 0.8 bpp for Λ1 to 0.4
bpp for Λ4. This is because conditioning reduces the
entropy of a random variable [29]. At QF = 100, where
the quantization is the same for each DCT mode, this is
particularly noticeable by examining the entropy of the
last 8 coefficients of each block, which are up to 0.3
bpp for Λ1 but, due to conditioning, are reduced to zero
for Λ4.
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Fig. 14: Evolution of the embedding rates computed from an
i.i.d. Gaussian RAW image for each DCT mode and each sub-
lattice for different JPEG QFs. Row scan is used within each
sub-lattice. Dotted lines denote the average embedding rate
within each sub-lattice.

F. Impact of the alphabet size

The impact of the alphabet size (2K + 1) on the
implementation of J-Cov-NS is presented in Table (IV) for
different JPEG QF. We can notice that ternary embedding
(K = 1) is associated with a very detectable implementation
for QF = 95 and QF = 100. This is due to the fact that the
truncation of the modification changes alters considerably the
distribution of the stego signal which cannot mimic anymore
the ISO switch for small quantization steps. On the other hand,
heptary embedding offers detectability comparable to that of
an infinite alphabet for QF = 95 and should be used for true
embedding combined with multi-layer STC in this case. We
can also notice that for QF ≤ 85 ternary embedding offers
already the same practical security than pentary embedding.

QF /
K = 1 K = 2 K = 3 K = 5

PE in %
100 1.0 12.9 28.7 40.4
95 3.5 23.6 39.3 40.9
85 39.8 39.8 39.8 41.8
75 40.4 40.4 40.4 41.2

TABLE IV: Practical security of J-Cov-NS w.r.t. alphabet size
and different QF .

G. Complexity consideration

This embedding algorithm is computationally expensive
since the complexity of computing the conditional distribution
increases as the complexity of the Cholesky decomposition
of the covariance matrix, i.e., as O(n3) where n ≤ i × 64,
where i = 1 for Λ1, i = 5 for Λ2 and Λ3, and i = 9 for
Λ4 (see Figure 10). On a 3.5 GHz Intel Core i7, our python
implementation of simulated embedding is executed at 4000
block/s for blocks belonging to Λ1, 30 blocks/s for Λ2, 30
blocks/s for Λ3 and 10 blocks/s for Λ4. A 512 × 512 stego
image is generated in approximately 171s without using hyper-
threading.

VII. CONCLUSIONS AND PERSPECTIVES

This paper draws important conclusions both in image
processing and image steganography.

By deriving the covariance matrix of the random vector
of stego signal components in the DCT domain, we have
shown that for this basic development pipeline there are
medium range correlations between DCT coefficients, and
that for a given coefficient, it is correlated with the
coefficients belonging to the same blocks, but also with
the coefficients belonging to 8-connected blocks. Previous
works on the estimation of the covariance matrix were
conducted for denoising applications using non-local Bayesian
estimation [30], but to the best of our knowledge, it is the first
time that an analytical expression of the covariance matrix is
derived in the DCT domain (i.e. Eq. (23) and (24)), exhibiting
intra-block and inter-block correlations.

The derivation of the covariance matrix enables to generate
a stego signal that mimics the photonic noise in the DCT
domain and consequently to achieve high practical security
(PE ≥ 40% for DCTR features set) while reaching high
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capacity (> 2 bpnzAC). In order to preserve the joint
Gaussian distribution after embedding in the quantized DCT
domain, the J-Cov-NS embedding scheme needs to use a
large number of lattices (4×64) where conditional probability
mass functions are derived for each lattice. Our experimental
analysis shows that for high JPEG QF, being able to perform
conditioning is essential to achieve high practical security. A
similar synchronization strategy was also adopted for adaptive
schemes using empirical costs in [22] and [21].

In order to bridge the gap between our proposed
implementation and operational steganography, our future
works will focus on different point, such that (i) the impact
of non-linear developments, which may decrease the security
of the scheme for important non-linearities (see [12]), (ii)
decreasing the complexity by reducing the number of lattices,
and (iii) designing a similar scheme for color stego images,
which means that we will need to model correlations between
color channels.
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