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Steganography with Multiple JPEG Images of the
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Abstract—It is widely recognized that incorporating
side-information at the sender can significantly improve
steganographic security in practice. Currently, most
side-informed schemes utilize a high quality “precover”
image that is subsequently processed and then jointly
quantized and embedded with a secret. In this paper,
we investigate an alternative form of side-information
– a set of multiple JPEG images of the same scene –
for applications when the sender does not have access
to a precover. The additional JPEG images are used to
determine the preferred polarity of embedding changes
to modulate the costs of changing individual DCT
coefficients in an existing embedding scheme. Tests
on real images with synthesized acquisition noise and
on real multiple acquisitions obtained with a tripod-
mounted and hand-held digital camera show a rather
significant improvement in empirical security with re-
spect to steganography utilizing a single JPEG image.
The proposed empirically determined modulation of
embedding costs is justified using Monte Carlo simu-
lations by showing that qualitatively the same modu-
lation minimizes the Bhattacharyya distance between
a quantized generalized Gaussian model of cover and
stego DCT coefficients corrupted by AWG acquisition
noise.

Index Terms—Steganography, side-information, pre-
cover, acquisition, security, steganalysis, JPEG

I. Introduction
Steganography is typically cast using three characters –

Alice and Bob, who communicate by hiding their messages
in cover objects, and the steganalyst, the Warden, whose
goal is to discover the presence of secrets. Since empirical
cover sources [1], such as digital media, are too complex to
be exhaustively described using tractable statistical mod-
els, both the steganographer and the Warden have to work
with approximations. This has fundamental consequences
for the steganographer, who is unable to achieve perfect
security, as well as for the Warden, who inevitably builds
sub-optimal detectors.

The steganographer seems to have a fundamental ad-
vantage because she may have access to more information
than the Warden and thus partially compensate for the
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lack of the cover model. For example, Alice may have
a high quality representation of the cover image called
precover [2] and embed her secret while processing the
precover and/or converting it to a different format. The
first example of this technique is the embedding-while-
dithering steganography [3], which embeds secrets when
converting a true-color image to a palette format. By
far the most common side-informed steganography today
hides in JPEG images using non-rounded DCT coeffi-
cients [4], [5], [6], [7], [8], [9], [10].
Most consumer electronic devices, such as cell phones,

tablets, and low-end digital cameras, however, save their
images only in the JPEG format and thus do not give the
user access to non-rounded DCT coefficients. In this case,
Alice can utilize a different type of side-information – she
can take multiple JPEG images of the same scene. This
research direction has not been developed as much mostly
due to the difficulty of acquiring the required imagery and
modeling the differences between acquisitions. Prior work
on this topic includes [11], [12], [13] where the authors
made multiple scans of the same printed image on a flat-
bed scanner and then attempted to model the acquisition
noise. Unfortunately, this requires acquiring a potentially
large number of scans, which makes this approach rather
labor intensive. Moreover, differences in the movement of
the scanner head between individual scans lead to slight
spatial misalignment that complicates using this type of
side-information properly. Because this problem is espe-
cially pronounced when embedding in the pixel domain,
in this paper we work with multiple images acquired in
the JPEG format as we expect quantized DCT coefficients
to be naturally more robust to small differences between
acquisitions. Since our intention is to design a practical
method, we avoid the difficult and potentially extremely
time consuming task of modeling the differences between
acquisitions [11], [12], [13] and make the approach work
well even when mere two images are available to Alice.
In another relevant prior art[14], the authors proposed
embedding by stitching patches from multiple acquisitions
in a predefined pattern. The individual patches are not
modified and are therefore statistically indistinguishable
from the original images. However, as the authors dis-
cussed in their paper there are likely going to be detectable
differences between individual patches and inconsistencies
at their boundaries. Furthermore, the required number of
acquisitions quickly grows with the length of the secret
message. By using 150 acquisitions of the same scene
(scans), the authors were able to embed only 0.157 bits
per non-zero AC coefficient on average.
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In the next section, we introduce background infor-
mation and notation used throughout the paper. Sec-
tion III contains a brief summary of existing side-informed
steganography with a high quality precover. In Section IV,
the new steganographic method that uses two or more
JPEG images at the sender is described. Starting with the
embedding costs of an existing cost-based JPEG steganog-
raphy, they are modulated based on the preferred direc-
tion deduced from the second JPEG image of the same
scene. The method is first subjected to tests on BOSSbase
images with simulated acquisition noise in Section V to
see the gain in the ideal case with a simple acquisition
noise. To gain insight about the security of the proposed
scheme in real-life conditions, in Section VI we describe
two new datasets called BURSTbase and BURSTbaseH
with images obtained with a tripod-mounted and hand-
held digital camera, respectively. Evidence is provided
that the differences between the two closest exposures in
BURSTbase are due to heteroscedastic acquisition noise.
In Section VII, we first report the results of experiments
on BURSTbase for J-UNIWARD costs [9] across a wide
range of quality factors and payloads and contrasted with
J-UNIWARD and SI-UNIWARD to see the gain w.r.t.
using only a single JPEG image and the comparison to
other type of side-information. We also investigate how
the gain in security decreases with increased differences
between exposures. This section continues with a summary
of experiments on BURSTbaseH images with hand-held
camera on both J-UNIWARD and UED-JC [8]. Although
the security gain is smaller than for BURSTbase, when
the steganographer rejects bad bursts, a significant se-
curity gain is still observed w.r.t. steganography with a
single JPEG. Finally, the appendix contains analysis that
explains the shape of the experimentally determined mod-
ulation of costs. The paper is concluded in Section VIII.

This manuscript is an expanded version of an abbrevi-
ated version of this work published at IEEE ICASSP [15].
In particular, this 13-page manuscript extends the 4+1-
page conference paper in the following important aspects:

1) The proposed method is introduced in a more gen-
eral setting applicable to any cost-based embedding
scheme operating in the JPEG domain. Likewise,
it is implemented and tested for other embedding
schemes besides J-UNIWARD, such as the UED-JC
steganography [8].

2) The qualitative dependence of the modulation factor
for adjusting the costs of DCT coefficients on the
JPEG quality factor is explained with Monte Carlo
simulations by employing a generalized Gaussian
model of DCT coefficients.

3) The database used in the main bulk of experiments,
the BURSTbase, is analyzed in detail to put forward
evidence that the two closest images from BURST-
base indeed differ primarily in the acquisition noise
with heteroscedastic properties.

4) The experimental section was substantially ex-
panded with a) experiments on images taken with

a hand-held camera to show the practicality of the
proposed method, b) experiments on simulated ac-
quisition noise to show that in this ideal case the
proposed method can outperform even side-informed
steganography with a single high-quality precover
(this gain is explained by contrasting steganography
with precover and with two JPEGs w.r.t. the number
of correctly and incorrectly determined directions of
changes to be modulated), c) experiments on the
UED-JC embedding algorithm to show the general-
ity of the proposed methodology, and d) experiments
showing that by rejecting bad bursts the steganog-
rapher can retain a rather significant advantage of
embedding with two JPEGs w.r.t. a single JPEG.

5) Specific ideas for technology transfer of the proposed
method are put forward.

II. Preliminaries
In this section, we introduce basic terminology, notation,

and concepts used throughout the paper.
For simplicity and WLOG, we will work with 8-bit

M × N grayscale images with pixels z = (zij) ∈ RM×N ,
R = {0, . . . , 255}, with both M and N multiples of 8.
During JPEG compression, z is divided into disjoint blocks
of 8 × 8 pixels, z(u,v)

ij , 1 ≤ i, j ≤ 8, 1 ≤ u ≤ M/8,
1 ≤ v ≤ N/8, where (u, v) is the block index. Dis-
crete cosine transform (DCT) is then applied to each
block, resulting in 8× 8 blocks of DCT coefficients d(u,v)

ij ,
d(u,v) = DCT(z(u,v)), where d(u,v) and z(u,v) are 8 × 8
matrices of DCT coefficients and pixels in the (u, v)th
block, respectively. The next step in JPEG compression
involves dividing d(u,v)

ij by quantization steps qij , c(u,v)
ij =

d
(u,v)
ij /qij , and rounding to integers x(u,v)

ij = Q1(c(u,v)
ij ),

where Q1(·) quantizes to {−1023, . . . , 1024} and q = (qij)
is the luminance quantization matrix. The quantized DCT
coefficients x(u,v)

ij are then losslessly encoded, appended
with a header, and saved as a JPEG file.
Throughout this paper, we will use indices i, j to index

DCT coefficients in an image as well as in a specific (u, v)th
block. Thus, in xij , the range of indices i, j is over the
entire M ×N image while in x(u,v)

ij it is restricted to 1 ≤
i, j ≤ 8. We believe that this switching from global to
block-based indexing is natural, it simplifies the language,
and should not become a source of confusion.

A generalized Gaussian distribution with density

fGG(x;µ, α, b) = α

2bΓ(1/α) exp
(
−
∣∣∣∣x− µb

∣∣∣∣α) , (1)

where µ, α, b are the mean, shape, and width parameters,
will be denoted G(µ, α, b).
Images acquired using an imaging sensor are noisy

measurements of the true scene r by which we understand
the image rendered by the camera lens. The randomness in
the form of noise or imperfections is introduced by several
separate mechanisms [16], which include the shot noise
(photonic noise), dark current, and electronic and readout
noise. Note that defective pixels and the photo-response
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Figure 1. Relative number of correctly and incorrectly determined
embedding directions for steganography informed by the values of
non-rounded DCT coefficients (precover) and by two JPEG images.
See Section V for details.

non-uniformity are deterministic imperfections that are
fixed for a given camera. Formally, z = r + ξ ∈ RM×N ,
where ξ is the acquisition noise and r is a parameter that
is unknown to both Alice and the Warden but technically
not random. An additive white Gaussian (AWG) model
ξij ∼ N (0, σ2

a) is rather accurate for RAW sensor cap-
ture of a uniformly lit scene but only an approximation
for images with natural content where the variance is
a linear function of pixel intensity (the heteroscedastic
noise [17], [18]). For a sensor capable of registering color,
color interpolation and correction introduce dependencies
among neighboring values of ξij and across color channels.
Additional local dependencies are introduced by filtering
that may be applied inside the camera, such as denoising
and sharpening, and by lens distortion correction, making
the statistical properties of the random field ξij extremely
complicated.

III. Steganography with precover

With the exception of YASS [19], all modern embedding
schemes for JPEG images, whether or not they use pre-
cover, are implemented within the paradigm of distortion
minimization. The steganographer first specifies the cost
of modifying each cover element (DCT coefficient) and
then embeds the payload so that the expected value of the
total induced distortion (the sum of costs of all changed
cover elements) is as small as possible. Syndrome-trellis
codes [20] can achieve this goal near the corresponding
rate–distortion bound.

The costs of changing the quantized JPEG coefficient
x

(u,v)
ij by +1 and −1 will be denoted ρ

(u,v)
ij (+1) and

ρ
(u,v)
ij (−1), respectively. The total cost (distortion) of

embedding is D(x,y) =
∑
xij 6=yij

ρij(yij − xij), where
yij ∈ {xij − 1, xij , xij + 1} are quantized DCT coefficients
from the stego image. An embedding scheme operating
at the rate–distortion bound (with minimal D) embeds a
payload of R bits by modifying the DCT coefficients with

probabilities [20]:

β±ij = P{yij = xij ± 1} = e−λρij(±1)

1 + e−λρij(+1) + e−λρij(−1) (2)

where λ is determined from the payload constraint

R =
∑
ij

h3(β+
ij , β

−
ij), (3)

with h3(x, y) = −x log2 x− y log2 y − (1− x− y) log2(1−
x− y) the ternary entropy function in bits.

One of the most secure schemes for JPEG images called
J-UNIWARD [9] uses symmetric costs ρij(+1) = ρij(−1)
for all i, j. Alice can prohibit the embedding from modi-
fying xij , e.g., by +1, by setting ρij(+1) = Cwet, where
Cwet is a very large number, the so-called “wet cost” [21].

Side-informed steganography relates to embedding
schemes where the sender has some additional information
that is used to adjust the costs. For JPEG steganography,
the side-information may be in the form of an uncom-
pressed image or, equivalently, the unquantized precover
values cij . Since cij are not available to the Warden,
Alice has a fundamental advantage. As shown in [22], cij
partially compensates for the lack of knowledge of the
cover model when it is highly non-stationary.

While it is currently not known how to use side-
information in an optimal fashion for embedding, nu-
merous heuristic schemes were proposed in the past [5],
[23], [7], [8], [9], [10], [6]. Typically, the rounding error
eij = cij − xij , −1/2 ≤ eij ≤ 1/2, is used to mod-
ulate the embedding costs ρij by 1 − 2|eij | ∈ [0, 1]. In
SI-UNIWARD [9], for example, the costs are:

ρij(sign(eij)) = (1− 2|eij |)ρ(J)
ij (4)

ρij(−sign(eij)) = Cwet, (5)

where ρ
(J)
ij are J-UNIWARD costs. In other words,

SI-UNIWARD is a binary embedding scheme that either
leaves a DCT coefficient unmodified (rounds cij to xij)
or rounds it to the “other side” in the direction of xij ,
in which case the J-UNIWARD cost associated with this
change is modulated. The intuition behind the modulation
is clear: when |eij | ≈ 1/2, a small perturbation could cause
cij to be rounded to the other side. Such coefficients are
thus assigned a proportionally smaller cost. On the other
hand, the costs are unchanged when eij ≈ 0, as it takes a
larger perturbation to change the rounded value.

In [10], a ternary version of SI-UNIWARD was studied
where the authors argued that, as the rounding error eij
becomes small, the embedding rule should be allowed to
change the coefficient both ways. This ternary version of
SI-UNIWARD uses the following costs:

ρij(sign(eij)) = (1− 2|eij |)ρ(J)
ij (6)

ρij(−sign(eij)) = ρ
(J)
ij . (7)
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Figure 2. Optimal modulation factorm(Q) as a function of the JPEG quality factorQ. Left: BOSSbase 1.01 images with simulated acquisition
noise. Right: BURSTbase.
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averaged over all 9, 310 bursts from BURSTbase. See Section VI for
notation and further details.

IV. Steganography with multiple JPEGs
In this section, we describe the proposed scheme for

embedding in JPEG images when the sender possesses
more than one acquisition of (approximately) the same
scene. We start with the embedding algorithm for two
acquisitions and then discuss the possibilities for its gener-
alization to more than two acquisitions. The main embed-
ding algorithm is explained with a pseudo-code to allow
faster understanding of the main concept and ease the
implementation for practitioners.

Before we start, we wish to discuss some important
philosophical issues. In reality, it is in principle impossible
to obtain two independent samplings of one object (Her-
aclitus’ “You could not step twice into the same river”
by Plato in Cratylus, 402a) because of small differences

in exposure time, physical shaking of the camera, and
small differences in the scene itself, e.g., due to wind
and the amount and direction of illumination. In this
article, for brevity we nevertheless abuse the language
a little while being aware of the fact that in reality the
images will inevitably contain differences other than those
due to acquisition noise. One mission of this paper is to
investigate whether, despite these obvious limitations, it is
possible to make use of the other acquisitions to improve
steganographic security.
The proposed method can be applied to any cost-based

scheme that embeds in quantized DCT coefficients of a
JPEG file. In fact, it is not limited to the JPEG format and
could be applied to other lossy formats, such as the JPEG
2000. We restrict ourselves to JPEG images in this article
because it is by far the most ubiquitous image format in
current use.

A. Two exposures
First, we describe the embedding algorithm when two

JPEG versions of the cover image are available. We denote
the quantized DCT coefficients in both images by x(1)

ij and
x

(2)
ij and pronounce, for example, the first image as the

cover JPEG and consider x(2)
ij as side-information.

Pronouncing x(1)
ij as cover and x(2)

ij as side-information,
the sender first computes from x

(1)
ij the costs of changing

the ijth DCT coefficient by −1 and +1: ρ(0)
ij (−1) and

ρ
(0)
ij (+1). The costs can be computed using, e.g., an exist-

ing cost-based embedding scheme, such as J-UNIWARD
or one of the versions of UED. The proposed embedding
scheme keeps these costs when x(1)

ij = x
(2)
ij and modulates

the costs otherwise. This can be explained by finding the
new costs ρij(±1) via the following two-step procedure:

Step 1 : set ρij(±1) = ρ
(0)
ij (±1) (8)

Step 2 : x(1)
ij 6= x

(2)
ij ⇒ ρij (sij) = m(Q)ρ(0)

ij (sij) , (9)

where sij = sign(x(2)
ij − x

(1)
ij ) (10)

where m(Q) ∈ [0, 1] is a modulation factor that depends
on the quality factor 1 ≤ Q ≤ 100. To ease the understand-
ing of the embedding method and its implementation,
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Algorithm 1 shows the pseudo-code for the embedding
algorithm.

The value of the modulation factor m(Q) will be de-
termined experimentally for each tested quality factor
Q and cover source by a search over m(Q) ∈ [0, 1] to
obtain the smallest minimal total probability of error,
PE = minPFA(PMD + PFA)/2, where PMD and PFA are
missed-detection and false-alarm rates of a detector imple-
mented using a low-complexity linear classifier [24] with
the Gabor Filter Residual (GFR) features [25] on the
training set. The GFR features were selected for the design
because they are known to be highly effective against
modern JPEG steganography, including J-UNIWARD and
all versions of UED [26], [8]. Experiments show that m(Q)
should generally be increasing in Q. The experimental
Sections V and VII and the appendix contain further
details on the specific form m(Q).
Our final note of this section concerns a naming con-

vention. An embedding scheme with two JPEGs with
J-UNIWARD (UED-JC) costs will be abbreviated as
J2-UNIWARD (and UED2-JC).

B. Multiple exposures
In this section, we discuss several possibilities for ex-

tending the embedding algorithm to the case when Al-
ice acquires k > 2 JPEG images of the same scene,
x

(1)
ij , . . . , x

(k)
ij .

With increased k, it may become possible to obtain a
more accurate estimate of the noise-free scene rij (Sec-
tion II), for example, as a maximum-likelihood r̂

(ML)
ij =

(x(1)
ij + · · · + x

(k)
ij )/k or a MAP estimate by leveraging

a prior on x
(u,v)
ij , 1 ≤ i, j ≤ 8, with u, v the 8 × 8

block index, estimated for the given source. The estimates,
however, will likely be biased since spatial misalignment
between exposures and differences other than due to the
acquisition noise will likely increase with k, making it not
clear whether the additional exposures are an asset.

Moreover, it is not clear how the embedding should
incorporate such estimates. Using r̂ij as a “high-quality
precover” and applying standard side-informed steganog-
raphy, such as SI-UNIWARD, is questionable because
the rounded values [r̂ij ] form a different source with a
suppressed acquisition noise. On the other hand, using r̂ij
as a “high-quality precover” for one of the JPEGs, e.g.,
x

(1)
ij , would lead to “rounding errors” eij = r̂ij − x(1)

ij out
of the range [−1/2, 1/2] and would thus require a revisit
of the established cost modulation (4) and (6).

In the end, and based on our experiments in Sec-
tions VII-A and VII-B, it appears that the best way to
use multiple images in practice is to simply select a pair
of two closest images among the k exposures and apply
the algorithm described in the previous section.

V. Study with simulated acquisition noise
Our first experimental evaluation involves tests on im-

ages with simulated acquisition noise. These are included

Algorithm 1 Pseudo-code for side-informed embedding
with two JPEGs.
1: Input: Two quality factor Q JPEG images with

quantized DCT coefficients x(1)
ij and x

(1)
ij , 1 ≤ i ≤

M , 1 ≤ j ≤ N
2: Output: Stego JPEG image with DCT coeffi-

cients y(1)
ij

3: Compute costs ρ(0)
ij (−1), ρ(0)

ij (+1) of DCT coeffi-
cients from JPEG x

(1)
ij (the cover)

4: for i = 1, . . . ,M do
5: for j = 1, . . . , N do
6: ρij(±1) = ρ

(0)
ij (±1)

7: sij = sign(x(2)
ij − x

(1)
ij )

8: IF x
(1)
ij 6= x

(2)
ij THEN ρij(sij) = m(Q)ρ(0)

ij (sij)
9: end for

10: end for
11: Embed message in x

(1)
ij using costs ρij using

STCs to obtain stego JPEG file with DCT
coefficients yij

12: Recipient reads the secret message using STCs
from the stego JPEG file yij

because they constitute the “ideal” (and unachievable
in practice) situation when no other differences between
the exposures exist besides a very simple form of the
acquisition noise. These results will be contrasted with real
multiple exposures.
The mother database was BOSSbase 1.01 [27] contain-

ing 10,000 8-bit grayscale 512 × 512 PGM images. Two
different realizations of Gaussian noise N (0, 1) were added
to the images, producing two simulated acquisitions z(l)

ij ,
l = 1, 2, which were subsequently compressed with a
range of JPEG quality factors to obtain the values of
rounded DCT coefficients x(l)

ij , l = 1, 2, for each image in
the database. Each JPEG image x(1)

ij was then embedded
with relative payload R = 0.4 bits per non-zero AC DCT
coefficient (bpnzac) using J2-UNIWARD. The values of
the optimal modulation factor m(Q) as a function of Q
for this source are shown in Figure 2 left.
Figure 3 shows PE, which is the detection error PE

averaged over ten random splits of the database into
training and testing parts as a function of the JPEG
quality factor. We do not show the statistical spread
of the detection error as it is very small and in most
cases covered by the markers. In all experiments in this
manuscript, the largest encountered standard deviation of
the detection error was 0.0122 and the average was 0.0042.
The classifier was a low-complexity linear classifier [24] and
the feature set is the Gabor Filter Residual (GFR) [25]
rich model known to be highly effective against modern
steganographic schemes. For comparison, the figure also
contains the detection error for J-UNIWARD (with x(1)

ij as
covers) and SI-UNIWARD (with c(1)

ij as side-information).
For a simulated acquisition noise, the side-information
in the form of two JPEG images significantly increases
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empirical security w.r.t. embedding with a single JPEG
(J-UNIWARD). It seems even more valuable for qual-
ity factors Q & 80 than non-rounded DCT coefficients
(SI-UNIWARD). We next shed some light on why this is
the case.

The value x(2)
ij can only be useful to Alice when x(2)

ij 6=
x

(1)
ij , which will happen increasingly more often with

smaller quantization steps qij (larger JPEG quality). This
type of side-information is different from the non-rounded
values c

(1)
ij . It informs Alice about the direction along

which the costs should be modulated and less about the
magnitude of the rounding error e(1)

ij = c
(1)
ij −x

(1)
ij . To bet-

ter understand the difference between these two types of
side-information, we conducted the following experiment.

A generalized Gaussian model G(0, 0.4, 0.1) was adopted
for the distribution of DCT coefficients of the noise-free
scene r. These parameters roughly correspond to medium
spatial frequencies in BOSSbase 1.01 [27] images. Then,
we generated 2 × NMC independent realizations from
G(0, 0.4, 0.1), r(1)

k and r(2)
k , k ∈ {1, . . . , NMC}, NMC = 106.

Next, NMC independent realizations from N (0, 1) were
added to both vectors,1 divided by q ∈ {1, . . . , 15} and
rounded to integers, c(l)

k = (r(l)
k + ξ

(l)
k )/q, x(l)

k = [c(l)
k ],

l = 1, 2. We then counted how often the different side-
information correctly informed us about the sign of the
rounding error (direction of the stego changes).

We will say that side-information c
(1)
k correctly de-

termines the direction of steganographic changes with
respect to the noise-free scene if the embedding modi-
fies the quantized cover value x(1)

k towards the noise-free
scene r

(1)
k , which will happen when the rounding error

e
(1)
k = c

(1)
k − x

(1)
k has the same sign as r(1)

k /q − x
(1)
k , or

when (c(1)
k − x

(1)
k )(r(1)

k /q − x
(1)
k ) > 0. It determines the

direction incorrectly if this product is negative.2 Similarly,
we will say that side-information x

(2)
k determines the

correct direction with respect to the noise-free scene if
(x(2)
k − x

(1)
k )(r(1)

k /q − x
(1)
k ) > 0. When this product is

negative, it determines the direction incorrectly. When it
is zero (x(2)

k = x
(1)
k ), the side-information is not useful.

Figure 1 shows the relative number of correctly and
incorrectly determined embedding directions based on
side-information in the form of one non-quantized DCT
coefficient c(1)

k (Precover) and two quantized coefficients
x

(1)
k and x(2)

k (Two JPEGs). The most interesting part of
the figure is for small values of q. Two quantized images are
much more conservative in the sense that they determine
the direction incorrectly much less frequently than from
one non-rounded value. On the other hand, with increasing
q, the two quantized images find fewer correct directions.
For small values of q = 1, 2, 3 (more generally, for large
values of σa/q), two JPEG images provide more useful
side-information about the preferred changes compared to
the non-rounded DCTs. This is in qualitative agreement

1σa = 1 approximately corresponds to acquisition noise with
1/60th sec. exposure at 100 ISO with Canon 6D.

2We can ignore the zero-probability event r(1)
k
/q = x

(1)
k

.
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Figure 5. Gray dots: MSE(z(1), z(2)) vs. average grayscale of z(1)

across images from BURSTbase. Circles: acquisition noise variance
estimated from images of gray wall. Both at ISO 200.

with Figure 3 that shows that J2-UNIWARD indeed out-
performs SI-UNIWARD for high quality factors (small q).
Note that for side-information with non-rounded values

c
(1)
k , the sum of the relative number of correctly and
incorrectly determined directions is one while this is not
the case for two quantized coefficients because “ties”
x

(1)
k = x

(2)
k occur with non-zero probability.

VI. Datasets for experiments
In general, it is difficult to acquire two images of the

same scene because the camera position may slightly
change between the exposures even when mounted on a
tripod due to vibrations caused by the shutter. Another
potential source of differences is slightly varying exposure
time and changing light conditions between exposures.
To test the real-life performance of the proposed side-
informed steganography in Section VII, we prepared two
new datasets: BURSTbase with images obtained with
a camera mounted on a tripod and BURSTbaseH with
images shot from hand.

A. BURSTbase
To eliminate possible impact of flicker of artificial lights,

all images were acquired in daylight, both indoor and
outdoor, and without a flash. Canon 6D, a DSLR camera
with a full-frame 20 MP CMOS sensor, set to ISO 200
was used in a burst mode. The shutter was operated with
a two-second self-timer to further minimize vibrations due
to operating the camera. To prevent the camera from
changing the settings during the burst, it was used in
manual mode. All images were acquired in the RAW CR2
format and then exported from Lightroom 5.7 to 24-bit
TIFF format with no other processing applied.
We acquired 133 bursts, each containing 7 images. To

increase the number of images for experiments, the 5472×
3648 TIFF images were cropped into 10× 7 equidistantly
positioned tiles with 512×512 pixels. This required a slight
overlap between neighboring tiles (7 pixels horizontally
and 35 pixels vertically). These 70× 133 = 9, 310 smaller
images were then converted to grayscale in Matlab using
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’rgb2gray’ and saved in a lossless raster format to facil-
itate experiments with a range of JPEG quality factors.
We call this database of 7×9, 310 uncompressed grayscale
images ’BURSTbase’.

For each pair of different images from each burst, we
computed the mean square error (MSE) between them and
then selected the pair with the smallest MSE, denoting
one of them randomly as z(1)

ij and the other z(2)
ij . The

remaining five images from the burst were denoted z
(k)
ij ,

k = 3, . . . , 7, so that the MSE between z(1)
ij and z(k)

ij forms
a non-decreasing sequence in k. We analyzed images from
BURSTbase sorted in this manner to determine how much
the differences between images are due to acquisition noise
or slight spatial misalignment. Figure 4 shows the MSE
between z

(1)
ij and z

(k)
ij , k = 2, . . . , 7, averaged over the

entire BURSTbase. For the closest pairs, MSE(z(1), z(2)) ≈
5, which would correspond to σ2

a = 5 if the differences
were solely due to AWG noise with variance σ2

a. This
closely matches the variance estimated from a single image
of content-less scenes with medium gray. This reasoning
indicates that z(2) and z(3) are on average reasonably well
aligned with z(1) while z(k), k ≥ 4, are increasingly more
affected by small spatial shifts.

To obtain additional evidence that the differences be-
tween the two closest images from each burst are due to
acquisition noise rather than slight spatial misalignment,
we conducted another experiment in which we studied
the MSE as a function of luminance. This was done to
capture the dependence of the acquisition noise variance
on luminance – it follows the heteroscedastic model further
modified by tonal curve adjustment. To map out the
dependence, we took RAW images of a uniform gray
wall in the exposure priority mode with a wide range of
exposures while all other settings were kept unchanged (at
ISO 200). These flat-field images were then exported from
Lightroom to 24-bit TIFF images, converted to grayscale
using Matlab’s ’rgb2gray’, and cropped to the central
512 × 512 region. To isolate only the acquisition noise,
a third-degree polynomial fit for each pixel on a sliding
32×32 block was subtracted from the pixels to remove any
leftover gradual fall-off of luminance towards the image
edges due to vignetting. Figure 5 shows the MSE as a func-
tion of the average image grayscale across BURSTbase,
with the circles corresponding to variance–grayscale pairs
from images of gray wall. The data is in qualitative agree-
ment with the maximum variance for pixels with grayscale
around 100. The decreased variance for grayscales below
100 is most likely due to the tonal adjustment done by
cameras to avoid magnifying noise in underexposed areas.

B. BURSTbaseH
Since most casual photographers do not shoot from a

tripod, we prepared a second dataset with images shot
from hand to see whether the proposed modulation of costs
still provides a boost under this more realistic and less
ideal conditions. A different set of images was acquired
using the same Canon 6D camera on a different day, this

Table I
Maximum and average MSE between two closest exposures
from each burst in BURSTbaseH when constraining it to a

fraction γ of best bursts.

γ 1 0.5 0.2 0.1
max MSE 3790 100.1 25.42 12.94
avg MSE 254.23 39.10 13.32 7.81

time with the camera being hand-held instead of mounted
on a tripod. A total of 154 bursts of 7–13 images were
obtained that were processed and then cropped into 10,780
smaller 512×512 images in the same manner as described
in the previous section. To distinguish this source from
BURSTbase, we call this database BURSTbaseH (H as in
Hand-held).
The average MSE between the two closest images from

each burst was 254.23, which is significantly larger than
for BURSTbase (5.05). This tells us that the images
are on average misaligned by a large amount, which is
likely to have a significant impact on the security of the
proposed scheme. The steganographer, however, can reject
bad bursts and/or take another one and only embed in
images from bursts that are not grossly misaligned. In fact,
many mobile devices today are capable of taking bursts,
such as for HDR photography or to reduce high-ISO noise.
The authors envision a mobile app that would leverage
this capability for the purpose of increasing the security
of steganographic communication. Another possibility to
obtain well-aligned multiple exposures is to extract con-
secutive frames from short M-JPEG video clips. This, too,
could be achieved with a mobile app.
Based on the considerations spelled out in the previous

paragraph, in the next section we experiment with subsets
of BURSTbaseH consisting of a fraction γ ∈ [0, 1] of
images with the smallest MSE for the closest pair. For
example, in BURSTbaseH with γ = 0.5, we selected
10,780/2 = 5,390 bursts with the smallest MSE, eliminat-
ing thus half of the bursts with the worst misalignment.
Table I shows the average MSE between the closest pair
of images when constraining BURSTbaseH to the fraction
of γ ∈ {0.1, 0.2, 0.5, 1} best bursts. Note that the average
MSE between the two closest exposures from each burst
in BURSTbaseH with γ = 0.1 is rather close to the MSE
between the closest images of BURSTbase.

VII. Experiments
In this section, we first study the empirical security of

J2-UNIWARD on BURSTbase across a range of quality
factors and payloads and contrast it with J-UNIWARD
and SI-UNIWARD. We also assess how the security boost
of the second exposure changes with increased differences
between exposures. In the second round of experiments,
we assess the performance of the proposed scheme in more
realistic conditions when the bursts are taken with a hand-
held camera instead of mounted on a tripod (BURST-
baseH). On tests with J2-UNIWARD and UED2-JC, we
show that when bad bursts are rejected embedding with
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two JPEGs still provides a significant performance boost
with respect to embedding in single JPEGs despite rather
large spatial misalignments.

Since the feedback from a detector utilizing the GFR
feature set was used to determine the modulation factor, it
is essential that we test J2-UNIWARD with other feature
sets to evaluate its security. Thus, all experiments in
this section were executed with a low-complexity linear
classifier trained with the merger of the GFR features, the
spatial rich model (SRM) [28], and the cartesian-calibrated
JPEG Rich Model (ccJRM) [29].

A. BURSTbase

The modulation factor m(Q) (10) found experimentally
as described in Section IV is shown in Figure 2 right.
All our experiments in this subsection were executed with
m(Q) approximated by a following ramp function:

m(Q) = max{0.075, 0.02167×Q− 1.55}. (11)

The appendix contains a simple qualitative argument
explaining why the modulation factor follows a ramp
function.

Figure 6 left shows PE as a function of the JPEG quality
factor for payload 0.2 bpnzac together with the results
for J-UNIWARD (with x(1)

k as covers) and SI-UNIWARD
(with c

(1)
k as side-information). For real acquisitions, the

side-information in the form of two JPEG images signifi-
cantly increases empirical security w.r.t. embedding with
a single JPEG (J-UNIWARD). In contrast with the exper-
iments with simulated acquisition noise, however, the em-
pirical security is not better than when non-rounded DCT
coefficients are used as side-information (SI-UNIWARD).
For completeness, in Figure 6 right we report the detection
error as a function of the quality factor for five payloads
and in Table II we report all numerical values, including
the results obtained with STCs with constraint height
h = 10 rather than with an embedding simulator to see
the coding loss.

To assess how sensitive J2-UNIWARD is w.r.t. small dif-
ferences between exposures, we implemented it with x(1)

ij as
cover and x(k)

ij , k = 3, . . . , 7 as side-information, essentially
using the second closest (k = 3), the third closest (k = 4),
etc., image instead of the closest image. As apparent from
Figure 4, with increasing k the MSE increases and thus
the security boost should start diminish. Figure 7 shows
PE as a function of the quality factor across k = 2, . . . , 7
together with the value of J-UNIWARD. While the gain
of the second image indeed decreases with increased MSE,
this decrease is rather gradual and very small for higher
quality factors. This experiment proves that the second
exposure provides useful side-information even when small
spatial shifts are present opening thus the possibility to
improve steganography even when multiple exposures are
acquired with a hand-held camera rather than mounted
on a tripod, a topic studied in the next section.

Table II
Empirical security PE of embedding schemes, M,
J-UNIWARD (J), J2-UNIWARD (J2), J2-UNIWARD

implemented using STCs (J2c), and SI-UNIWARD (SI) on
BURSTbase for a range of payloads, R, and quality factors.

Quality factor Q
R M 65 75 85 87 90 92 95
0.1 SI 0.4991 0.4973 0.4897 0.4892 0.4952 0.4984 0.4525

J 0.3508 0.3541 0.3766 0.4892 0.4121 0.4087 0.4421
J2 0.4897 0.4659 0.4610 0.4633 0.4560 0.4523 0.4433
J2c 0.4550 0.4591 0.4326 0.4289 0.4149 0.4138 0.4155

0.2 SI 0.4815 0.4811 0.4761 0.4753 0.4812 0.4811 0.4498
J 0.1946 0.1953 0.2258 0.2301 0.2840 0.2787 0.3622
J2 0.4620 0.4275 0.4178 0.4128 0.4161 0.4100 0.3796
J2c 0.4146 0.4186 0.4179 0.4119 0.4103 0.3959 0.3695

0.3 SI 0.4501 0.4456 0.4406 0.4437 0.4506 0.4520 0.4200
J 0.1010 0.0975 0.1179 0.1256 0.1771 0.1660 0.2647
J2 0.4245 0.3827 0.3729 0.3723 0.3733 0.3560 0.3196
J2c 0.3740 0.3709 0.3626 0.3524 0.3569 0.3346 0.2990

0.4 SI 0.4056 0.3989 0.3976 0.3963 0.4118 0.4037 0.4201
J 0.0528 0.0469 0.0592 0.0627 0.0980 0.0906 0.1776
J2 0.3734 0.3394 0.3144 0.3084 0.3218 0.2932 0.2647
J2c 0.3356 0.3244 0.2949 0.2862 0.2976 0.2649 0.2380

0.5 SI 0.3552 0.3446 0.3392 0.3361 0.3571 0.3491 0.3779
J 0.0280 0.0234 0.0289 0.0291 0.0506 0.0444 0.1076
J2 0.3062 0.2989 0.2501 0.2383 0.2569 0.2168 0.2043
J2c 0.2777 0.2815 0.2210 0.1991 0.2231 0.1848 0.1779

Table III
Empirical security PE of embedding schemes, M,

J-UNIWARD (J), J2-UNIWARD (J2) and SI-UNIWARD (SI) on
BURSTbaseH for a range of payloads, R, and quality

factors for γ = 0.1.

Quality factor Q
R M 65 75 85 87 90 92 95
0.2 SI 0.4788 0.4706 0.4744 0.4697 0.4736 0.4739 0.4541

J 0.2596 0.2600 0.2729 0.2769 0.2769 0.2996 0.3887
J2 0.3786 0.3963 0.4084 0.4163 0.4250 0.4176 0.4260

0.4 SI 0.4372 0.4305 0.4186 0.4275 0.4442 0.4541 0.4363
J 0.1267 0.1131 0.1000 0.1043 0.1356 0.3887 0.2399
J2 0.2583 0.0075 0.3020 0.2956 0.3274 0.4260 0.3518

B. BURSTbaseH
To investigate the security of the proposed tech-

nique under more realistic setting, we experimented with
J2-UNIWARD and UED2-JC on BURSTbaseH with γ ∈
{0.1, 0.2, 0.5, 1} for a range of quality factors and pay-
loads. For J2-UNIWARD, we reused the modulation factor
m(Q) determined on BURSTbase (Eq. (11)). Although
we did perform a search for the best modulation factor
for UED2-JC, the detection error was rather insensitive
to m(Q) as long as it was sufficiently small. In all our
experiments with UED2-JC, the modulation factor was

Table IV
Empirical security PE of embedding schemes, M, UED-JC

(U), UED2-JC (U2), and SI-UED-JC (SI) on BURSTbaseH for
two payloads and two JPEG quality factors for γ = 0.1.

Quality factor Q
R M 75 95
0.2 SI 0.2185 0.2893

U 0.0462 0.1318
U2 0.1995 0.3547

0.4 SI 0.0970 0.2477
U 0.0250 0.0706
U2 0.1032 0.1884
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Figure 6. Empirical security PE of J2-UNIWARD as a function of the JPEG quality factor Q on BURSTbase. Left: Comparison with
previous art for R = 0.2 bpnzac. Right: J2-UNIWARD PE for R ∈ {0.1, 0.2, 0.3, 0.4, 0.5} bpnzac, embedding simulated at rate–distortion
bound.
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Payload R = 0.4 bpnzac.
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Figure 8. Empirical security PE of J-UNIWARD, J2-UNIWARD, and SI-UNIWARD as a function of γ best bursts from BURSTbaseH.
JPEG quality factor 75, left column 0.2 bpnzac, right column 0.4 bpnzac.
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Figure 9. Empirical security PE of J-UNIWARD, J2-UNIWARD, and SI-UNIWARD as a function of JPEG quality factor Q for γ = 0.1
best bursts from BURSTbaseH. Left column 0.2 bpnzac, right column 0.4 bpnzac.
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Figure 10. Empirical security PE of UED-JC, UED2-JC, and SI-UED-JC as a function of γ best bursts from BURSTbaseH for two JPEG
quality factors and two payloads.
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Figure 11. Modulation factor versus average quantization step q (real
acquisitions).

set as m(Q) = 0.01 for all tested payloads and quality
factors.
Figure 8 shows the detection error PE for two payloads

for JPEG quality factor 75 for all four values of γ for
J-UNIWARD, J2-UNIWARD, and SI-UNIWARD with the
same steganalysis detector as in the previous section.
Figure 9 contains the detection error for the same three
embedding schemes as a function of JPEG quality factor
for γ = 0.1. Both figures demonstrate a substantial gain
in security of J2-UNIWARD w.r.t. J-UNIWARD. While
this gain is understandably smaller for the images of
BURSTbaseH, it becomes substantial in comparison with
embedding with a single JPEG image as the number of
rejected bursts increases. The numerical values of PE of
all experiments are provided in Table III.

In Figure 10, we display the detection error as a func-
tion of γ for two payloads and two quality factors for
the UED-JC embedding algorithm. Here, the bad burst
rejection is even more effective than for J2-UNIWARD.
For quality factor 95, UED2-JC even outperforms UED
informed by the precover (SI-UED-JC) for all γ < 1.
Substantial security gain is observed even for γ = 0.5,
e.g., when every other burst is rejected on average, across
all payloads and quality factors.

VIII. Conclusions
We introduce a novel steganographic method with side-

information at the sender in the form of a second JPEG
image of the same scene. The second exposure is used to
infer the preferred direction of steganographic embedding
changes in the first exposure (cover). This information is
incorporated in any cost-based steganography by decreas-
ing the embedding costs of such preferred changes with a
multiplicative modulation factor.
The proposed methodology is first studied on

J-UNIWARD costs with multiple exposures simulated
by adding AWG noise to BOSSbase 1.01 images. This
experiment revealed that, under such ideal conditions,
the proposed method with two JPEG images of the
same scene exhibits empirical security comparable with
and sometimes even better than SI-UNIWARD informed
by the uncompressed precover. This observation was
attributed to the fact that for larger quality factors two
JPEGs better inform the sender about the preferred
embedding change direction than one uncompressed
image.
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Figure 12. Optimal modulation factor mij(q,R) as a function of the quantization step q for relative payload R = 0.4 determined by
minimizing the Bhattacharyya distance between cover and stego distributions on generalized Gaussian models of DCT coefficients. Left: low
frequency DCT modes (i, j), 3 ≤ i+ j ≤ 4 (second and third minor diagonal), Middle: medium frequency DCT modes (i, j), 5 ≤ i+ j ≤ 10,
Right: high frequency DCT modes (i, j), 11 ≤ i+ j ≤ 16.

To evaluate the proposed method in real-life condi-
tions, we created two new datasets: BURSTbase with
multiple exposures obtained by a tripod-mounted camera
and BURSTbaseH with images shot with a hand-held
camera. Detailed analysis of the differences between the
two closest exposures from BURSTbase confirmed that
they differ mostly by the acquisition noise, while images
from BURSTbaseH are generally significantly much more
spatially misaligned due to camera shake.

For BURSTbase, we observed a quite significant in-
crease in empirical security with respect to steganography
with a single cover image that gracefully decreased with
increased spatial misalignment between images. On the
other hand, because of the comparatively larger misalign-
ments between images shot with a hand-held camera
the security improvement on BURSTbaseH was under-
standably smaller. However, we demonstrated for both
J-UNIWARD and UED-JC, that the sender can still sig-
nificantly gain on empirical security by rejecting a portion
of “bad bursts”, which testifies about the practicality of
the proposed embedding scheme.

Finally, the dependence of the experimentally deter-
mined modulation factor on the quality factor is justified
using Monte Carlo simulations by adopting generalized
Gaussian model for DCT coefficients and measuring the
impact of cost modulation on statistical detectability in
terms of the Bhattacharyya distance between cover and
stego distributions. Optimal modulation derived from this
model qualitatively matches the modulation obtained ex-
perimentally on real multiple exposures.

Further improvement is likely possible by optimizing the
embedding cost modulation for the average grayscale of
the DCT block because the acquisition noise amplitude
depends on luminance. We plan to further study how the
embedding should utilize more than two (quantized and
unquantized) acquisitions of the same scene, possibly by
extending the approach proposed in [30]. We anticipate
that the proposed methodology will also work with mul-
tiple exposures obtained as consecutive frames from video
clips. Finally, we note that the proposed approach is not
limited to JPEG domain and will likely work for side-
informed embedding in other domains [10].

Appendix
In this appendix, we provide some insight into why the

experimentally-found optimal modulation factor follows

the ramp function (11) depicted in Figure 2. First, in
Figure 11 we redraw the modulation factor shown in
Figure 2 right as a function of the average quantization
step q = 1/15

∑
i+j≤5 qij instead of the quality factor Q.

We only average the first five diagonals of the quantization
matrix because this is where the vast majority of differ-
ences between two JPEG files occur (x(1)

ij 6= x
(2)
ij ). This

figure tells us that the modulation factor should be smaller
for larger quantization steps and vice versa. This important
observation is validated via the following experiment.
A total of 100 random images from BOSSbase 1.01

were selected. A generalized Gaussian distribution (1) was
fitted using the method of moments [31] to each AC
DCT mode (i, j) across all 100 images, obtaining thus
63 values of the shape and width parameters αij , bij ,
1 ≤ i, j ≤ 8, i + j > 2. For each AC DCT mode
(i, j) and for each quantization step q, we twice generated
NMC = 108 independent realizations from G(0, αij , bij),
denoting them r

(1)
k and r

(2)
k , k ∈ {1, . . . , NMC}, and

NMC independent realizations ξ(1)
k and ξ(2)

k from N (0, 1),
the acquisition noise. The non-rounded DCT coefficients
and their rounded values were computed and denoted
c

(l)
k = (r(l)

k + ξ
(l)
k )/q and x

(l)
k = [c(l)

k ], l = 1, 2. Next, we
simulated J2-UNIWARD with x

(1)
k as the cover and x

(2)
k

as the side-information with ρ(J)
ij = 1 for all i, j modulated

as in (10). The embedding was simulated with change
probabilities as explained in Section III for a fixed relative
payload R = 0.4 measured w.r.t. the number of non-zero
coefficients, N0 =

∣∣∣{k|x(1)
k 6= 0}

∣∣∣, giving us the stego object
yk ∈ {x(1)

k − 1, x(1)
k , x

(1)
k + 1}. The impact of embedding

on the cover model was measured by computing the
complement of the Bhattacharyya coefficient3 between the
sample cover and stego distributions, p(x),p(y):

B(p(x),p(y)) = 1−
∑
r

√
p

(x)
r p

(y)
r where (12)

p(x)
r = 1

NMC

NMC∑
k=1

[x(1)
k = r], r ∈ Z (13)

p(y)
r = 1

NMC

NMC∑
k=1

[yk = r], r ∈ Z. (14)

3Since the Bhattacharyya distance is Bdist = − log(1 − B), B
reaches its minimum exactly when Bdist does.
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Above, [P ] denotes the Iverson bracket, [P ] = 1 when
P is true and 0 when P is false. The exact range of
index r depends on the specific realizations generated.
The Bhattacharyya coefficient was selected for its good
numerical stability w.r.t. unpopulated bins.

Since the quantized cover and stego DCT coefficients
x

(1)
k and yk depend on the DCT mode (i, j), the quanti-

zation step q, and relative payload R, the sample distri-
butions p(x),p(y) and thus B(p(x),p(y)) also depend on
these parameters. The optimal value of the modulation
parameter, mij(q,R), was determined for each DCT mode
(i, j) by minimizing B(p(x),p(y)) over m ∈ [0, 1]:

mij(q,R) = arg min
m∈[0,1]

B(p(x),p(y)). (15)

The optimal values of the modulation parameter as a
function of the quantization step q are shown in Figure 12
for low, mid, and high-frequency DCT modes for payload
R = 0.4. The error bars are across the DCT modes
from the frequency band. We observe that the modulation
mainly depends on q and stays approximately constant
over DCT modes for each frequency band. The dependence
on the quantization step q is qualitatively and quanti-
tatively similar to Figure 11, validating thus our design
choice.
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