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Abstract—The ensemble classifier, based on Fisher Linear
Discriminant base learners, was introduced specifically for ste-
ganalysis of digital media, which currently uses high-dimensional
feature spaces. Presently it is probably the most used method
to design supervised classifier for steganalysis of digital images
because of its good detection accuracy and small computa-
tional cost. It has been assumed by the community that the
classifier implements a non-linear boundary through pooling
binary decision of individual classifiers within the ensemble. This
paper challenges this assumption by showing that linear classifier
obtained by various regularizations of the FLD can perform
equally well as the ensemble. Moreover it demonstrates that
using state of the art solvers linear classifiers can be trained more
efficiently and offer certain potential advantages over the original
ensemble leading to much lower computational complexity than
the ensemble classifier. All claims are supported experimentally
on a wide spectrum of stego schemes operating in both the spatial
and JPEG domains with a multitude of rich steganalysis feature
sets.

Index Terms—Ensemble classifier, linear classifier, regulariza-
tion, steganalysis, steganography.

I. INTRODUCTION

The objective of steganography is to hide a secret message
within an innocuous looking cover object, such as a digital
image, obtaining thus a stego object that can be sent overtly
through an insecure channel. The related field that aims
at detecting the presence of the hidden message is called
steganalysis. Both fields have experienced a rapid development
during the previous two decades [1].

Currently, the best detectors for modern steganographic
methods are based on supervised learning; the general ap-
proach consists of selecting a suitable set of features that
can reveal the presence of hidden data, and then training a
classifier using supervised machine learning, to distinguish
between the classes of cover and stego features. To improve
the detection accuracy of modern steganographic schemes,
the feature dimension had to be substantially increased: re-
cently proposed rich models may contain more than 30.000
features [4], [5]. This feature dimensionality (together with
correspondingly large training sets) make it difficult to train
the widely popular Gaussian Support Vector Machine (SVM),
a popular choice among steganalysts before the introduction
of rich media models.

The FLD ensemble classifier [6] has been proposed as a
much more scalable alternative for classifier construction with
large training sets and high dimensional feature spaces. This
classifier is non-linear because of its employment of the ma-
jority voting rule. Recently, it has recently been proposed [7]
to replace the majority voting with a statistical test optimal
within a multivariate Gaussian model of the base learners’
projections to achieve a better control over the error rates and
to extend the ensemble training to unknown payload and multi-
class steganalysis [8]. However, by doing so, the ensemble
became a linear classifier. For binary classification measured
using the classical minimal total classifier error under equal
priors, the performance of this version of the ensemble was
shown to be essentially the same as for the original ensemble.
This observation motivated the current paper.

As recognized in [16], sub-space sampling in FLD ensemble
can be viewed as a way to regularize the linear classifier. Thus,
it makes sense to study other regularizations and compare
their performance with the ensemble. The potential benefit
is simplifying the training and lowering its complexity and
potentially improving the performance when merging qualita-
tively different feature spaces of highly unequal dimension.

The present paper is organized as follows. In Section II, we
provide a brief description of the original FLD ensemble clas-
sifier as well as its linear form cast within hypothesis testing
theory. Then, in Section III introduces several approaches for
regularizing linear classifiers as alternatives to the ensemble.
The results of all numerical results appear in Section IV which
includes wide spectrum of steganographic methods and with
a diverse set of steganalysis features. Section V summarizes
the present work and concludes the paper.

II. FLD ENSEMBLE CLASSIFIER

To explain the contribution of this paper, in this section we
review the original FLD ensemble as well as its recent linear
reformulation. We use the following notational conventions.
Matrices will be represented with capital bold letters X,
vectors are denoted with lower case bold letters x, scalars
with lower case letters x, and sets and probability distributions
with calligraphic capital letters X . The FLD ensemble clas-
sifier was originally proposed [6] as an alternative to support
vector machines, a scalable machine learning tool that can be



efficiently used to build accurate detectors in high dimensional
feature spaces and large training data sets. Since the FLD is
a well-known tool, it is only briefly described in this section.
The reader is referred to [9] for a more detailed presentation.

Let f ∈ Rd be a (row) vector of d features extracted
from one image. Let the training sets of cover and stego
image features be matrices of size N trn × d denoted Ctrn

and Strn whose components are ctrnn,i and strnn,i , respectively.
The FLD assumes that among these two classes, the features
are i.i.d. with means µc and µs, row vectors of size 1 × d,
and covariance matrices Σc and Σs of size d× d. Among all
linear decision rules defined by:

C :

{
H0 if f ·wT − b < 0

H1 if f ·wT − b > 0,
(1)

where f is a feature (row) vector to be classified and b is
a threshold, the FLD finds the vector of weights w ∈ Rd

that maximizes the following Fisher separability criterion (also
called Fisher ratio):

F (w) =
w(µc − µs)

T(µc − µs)w
T

w(Σc + Σs)wT
. (2)

Few calculations show that the maximization of F (w)
from the training data, Ctrn and Strn, leads to the following
weighting vector w:

w = (µ̂s − µ̂c)
(
Σ̂c + Σ̂s

)−1
(3)

with µ̂ci =
1

Ntrn

Ntrn∑
n=1

ctrnn,i , µ̂si =
1

Ntrn

Ntrn∑
n=1

strnn,i ,

Σ̂cn,i
=

1

Ntrn − 1

Ntrn∑
n=1

(ctrnn,i − µ̂ci)(c
trn
n,j − µ̂cj ) ,

and Σ̂sn,i
=

1

Ntrn − 1

Ntrn∑
n=1

(strnn,i − µ̂si)(s
trn
n,j − µ̂sj ).

In practice, the inversion of the “between class” covariance
matrix, Σ̂c + Σ̂s, is seldom performed directly but almost
always using a regularization by adding λId to improve
numerical stability: Σ̂c+Σ̂s+λId, with Id the identity matrix
of size d×d. In fact, when the feature-space dimensionality d
is of a similar order of magnitude that the number of samples
N trn, the empirical between-class covariance matrix is often
ill-conditioned.

The FLD ensemble is a set of L base learners imple-
mented as FLDs trained on uniformly randomly selected dsub-
dimensional subsets F1, . . . ,FL of the feature space. This
approach to diversify base learners was firstly used with
decision trees in [24]. The ensemble reaches its final decision
by fusing the decisions of all L individual base learners using
majority voting. The ensemble training scales well w.r.t. the
feature dimensionality and the training set size because one
can select dsub << d. The hyper-parameters dsub and L are
determined by a search using either a cross-validation set or

by bootstrapping (the latter choice was selected in the original
publication [6]).

Recently [7], [8], the FLD ensemble was reformulated
within the hypothesis testing theory. In particular, the majority
voting rule was replaced with a likelihood ratio. Below, we
briefly explain the main idea. Denoting the weight vector of the
ith base learner as w(i), we define v ∈ RL, v = (v1, . . . , vL),
vi = f ·w(i)T, the vector of L projections of the feature vector
f on all L weight vectors, w(1), . . . ,w(L). An assumption has
been made about v that it follows a multivariate Gaussian
(MVG) distribution N (µ0,Σ0) and N (µ1,Σ1) on cover and
stego features. After normalizing the projection vector by
ṽ = (v−µ0)Σ

−1/2
0 and under the shift hypothesis Σ0 = Σ1,

ṽ ∼ N (0, IL) and ṽ ∼ N (θ1, IL) on cover and stego images.
The majority voting decision can thus be replaced with a LRT
in the form:

L :

{
H0 if Λlr(ṽ) < τ

H1 if Λlr(ṽ) > τ,
(4)

where τ is a threshold that can be selected, for example, to
maximize the test power while satisfying a prescribed false-
alarm rate, and

Λlr(ṽ) =
θ1ṽ

T

‖θ1‖2
, (5)

is the likelihood ratio. Note that, in contrast with the majority
voting, this decision rule makes the classifier linear and the
sole difference to the single FLD using all features is how the
linear classifier is constructed.

III. FROM ENSEMBLE TO LINEAR CLASSIFIER

As briefly summarized in the previous section, replacing
the majority-voting rule in the FLD ensemble with a LRT
turns the ensemble into a linear classifier. And, as shown
in [7], [8], this linear classifier can achieve essentially the
same performance as the non-linear FLD ensemble [6] at
least in classification problems in steganalysis. Indeed, if the
decision boundary in high-dimensional rich image models is
close to linear, we will not see any large difference between
linear and non-linear classifiers. Being aware of this caveat,
we hypothesize that at least in current classification problems
in digital image steganography, it appears that linear classifiers
can achieve essentially the same classification accuracy as
the original FLD ensemble employing majority voting. It
thus becomes meaningful to ask whether there exist simpler
approaches based on the FLD that use alternative methods for
its regularization that might offer advantages over the original
ensemble, such as a lower training complexity.

To this end, we study the following four linear classifiers: an
`2 regularization of the reciprocal Fisher ratio, ridge regression
that is a least square estimation with `2 regularization, an
alternative implementation of ridge regression using LSMR
optimization method [11], and a least square estimation with
`1 regularization, known as LASSO.
`2 regularization of the Fisher ratio. This is achieved by

replacing the maximization of the Fisher ratio (2) with

w = arg minF (w)−1 + λ‖w‖22. (6)



It is shown in Appendix that this `2 regularization leads to the
same weight vector w as the vector obtained using Tikhonov
regularization of the between-class covariance matrix (3):

w = (µ̂s − µ̂c)
(
Σ̂c + Σ̂s + λId

)−1
.

Ridge-regression, also referred to Tikhonov regularization
based on least square estimation [10]. To formally describe
this classifier, let us denote the matrix of all training samples:

X =

(
Ctrn

Strn

)
,

and, similarly, let us define the label vector y ∈ R2Ntrn

that
represents the class of the samples from matrix X :

y =
(
−1− 1− 1 . . .− 1− 1︸ ︷︷ ︸

Ntrn

11 . . . 11︸ ︷︷ ︸
Ntrn

)T
.

The ridge regression aims at finding a weighting vector wrr

that minimizes the squared error between the label y and the
linearly estimated label:

wrr = arg min
w∈Rd

‖y −X wT‖22 + λ‖w‖22. (7)

Few calculations show that, see for instance [10], that an
explicit solution of Eq. (7) is given by:

wrr = (XTX + λId)−1XTy.

Interestingly, the weighting vector given by the ridge regres-
sion corresponds to the weighting vector of the regularized
FLD provided that the features have a zero-mean (see Ap-
pendix A). We note however that, because we did not center
the features, the solution of the ridge regression does not
correspond to the weighting vector of the regularized FLD.

Solving linear least square with LSMR. Note that all
optimization problems above can be obtained by solving the
appropriate system of linear equations. The main advantage of
this approach is the fact that there exist numerous optimization
methods for solving large linear systems efficiently. These
methods are iterative and are associated with a stopping
criterion either on the solution wrr or the residual y−X w′rr.
To this end, we implemented the ridge regression using a large
linear system optimization method called LSMR [11] due to its
low computational complexity and low memory requirements.1

We note that this approach needs to find two parameters – the
regularization parameter λ and the tolerance used in LSMR,
which controls the trade off between computational efficiency
and optimality of the found solution. In this paper, we simply
fix λ = 10−8 (as we saw negligible sensitivity w.r.t. this
parameter) and search for the tolerance to obtain the best
detection accuracy.

LASSO regularization, Equations (7) and (6) can be
viewed as `2 regularized optimizations. The machine learning
community frequently uses an `1 regularization because it
has the added benefit of producing sparse solutions (solutions

1LSMR (Least Square Minimun-Residual) function can be downloaded
from Stanford University’s Systems Optimization Laboratory.

where only some items of w are non-zero), thus identifying a
sufficient set of features for linear classifiers (`1 regularization
is also called the Least Absolute Shrinkage and Selection
Operator (LASSO)). In this work, we used `1 in Eq. (7), which
leads to the following minimization problem:

arg min‖y −X wT‖22 + λ‖w‖1. (8)

While there is no analytic solution to the LASSO regulariza-
tion problem (8), efficient convex optimization methods can
be applied [25].2

IV. NUMERICAL RESULTS

Before discussing the numerical results, we briefly present
the common core of all experiments.
All results presented in this paper are obtained on BOSSbase
1.01 [12] of 10, 000 512× 512 gray-scale images. For gener-
ality, both spatial domain and JPEG domain steganographic
schemes have been used together with spatial domain and
JPEG domain feature sets.3 For spatial domain, four embed-
ding algorithms have been used, namely, HUGO [13] with
bounding distortion (HUGO-BD), Wavelet Obtained Weights
(WOW) [14], Spatial UNIversal WAvelet Relative Distortion
(S-UNIWARD) [2], and the recent scheme based on statistical
detectability [15], [17]. For steganalysis, we used four spatial
domain feature sets: the second-order Subtractive Pixel Adja-
cency Matrix (SPAM) [3] of dimensionality 686, the Spatial
Rich Model (SRM) [4] as well as its selection-channel-aware
version (maxSRM) [18], both made of 34, 671 features, and
the version with a single quantization (SRMQ1) containing
12, 753 features.
For the JPEG domain, we used both non-side informed algo-
rithms and side-informed algorithms. For the first type, we
used nsF5 [19], Entropy-Based Steganography (EBS) [20],
Uniform Embedding Distortion (UED) [21], and JPEG do-
main UNIWARD [2],referred to as J-UNIWARD. Three algo-
rithms have been used for side-informed JPEG steganography:
Perturbed Quantization (PQ) [19], the side-informed version
of EBS (SI-EBS) [20], and side-informed UNIWARD, SI-
UNIWARD [2]. Five feature set that target JPEG domain
embedding have been used: CF? [6], of dimension 7, 850,
the Cartesian-calibrated JPEG Rich Model (CC-JRM) [5] used
alone and used in union with SRMQ1, referred to as JSRM [5],
whose dimensionality is 35, 263, the recent Discrete Cosine
Transform Residual (DCTR) [22], consisting of 8, 000 features
based on undecimated DCT coefficients, and the PHase Aware
pRojection Model (PHARM) [23], made of 12, 600 features.

In this paper, the detection accuracy is measured as the
total probability of error under equal Bayesian priors PE =
1/2 (PFA + PMD), with PFA and PMD the empirical prob-
ability of false alarm and missed detection respectively. The
detection accuracy is also always averaged over 10 splits on
the testing set (a 50/50 split for training and testing was used).

2In the present paper we used Matlab R© lasso function.
3All feature extractors and most embedding algorithms used can be down-

loaded from the DDE website at http://dde.binghamton.edu/download.
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(a) CF? features with UED embedding scheme at payload R = 0.3.
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(b) SRMQ1 features with J-UNIWARD embedding, payload R = 0.3.
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(c) CC-JRM features with SI-EBS embedding scheme, payload R = 0.3.
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(d) SRM features with WOW embedding scheme, payload R = 0.2.

Fig. 1: Evolution of PE as a function of the regularization parameter λ (or tolerance of LSMR) for several embedding algorithms
and several feature sets.

First, Figure 1 contrasts the detection accuracy of the
proposed linear classifier with the ensemble classifier. We
note that the detection accuracy PE is plotted as a function
of the regularization parameter λ. Note that, as explained in
the previous section, for the ridge-regression, that uses the
LSMR large linear system optimization, we search for the
tolerance, which controls the stopping criterion of the iterative
minimization search, since the regularization parameter λ has
negligible influence for this methods. Four different cases
with different steganographic algorithms and feature sets are
presented in Figure 1. The conclusions that follow can be
observed across other combinations of feature sets and embed-
ding algorithms. First, note that the LASSO performs poorly in
general but has the important advantage to be rather insensitive
to the regularization parameters: the detection accuracy is
almost always at its best for λ ∈ (10−15, 10−5). Similarly,
we note that both the FLD classifier and the ridge regression
with a large system optimization can achieve roughly similar
performance as the ensemble classifier. We also note that
the FLD classifier almost always achieves the best detection
accuracy for λ ≈ 10−6; this fact can be used when searching
for the best regularization parameter in cross-validation. On
the other hand, the regularization parameter for which the
the ridge regression, as well as its approximation, achieve the
lowest PE depends on the feature set and the steganographic

algorithm.

Except for LASSO, for which we set λ = 10−10, the
optimal value of the regularization parameter (or tolerance for
LSMR) was determined by a simple grid search. For the large
linear system optimization for ridge regression, because it has
a very low computational complexity, we modified the code
so that it outputs the solutions obtained for various tolerance
values. This allowed us to keep the same computational
complexity as the smallest tolerance value, which we set
to 10−6 in this paper, as this corresponds to the case with
highest number of iterations. A larger value may be used to
further decrease the computational time, see Figure 1). The
tolerance value for which the PE is the smallest on the cross-
validation subset is used for testing. For the FLD and the ridge
regression, the computational time is slightly lower for larger
regularization parameters. Hence, we start the one dimensional
search with a rather large regularization parameter, typically
λ = 10−6 for the FLD and λ = 10−1 for ridge regression.
However, the implementation has to be a trade-off between
computational time and detection accuracy. For the FLD and
ridge-regression (using off-the-shelf solver) we wanted to keep
the computational time manageable, though sometimes rather
important, as the cost of poor convergence in few cases, see for
instance the results obtained for UED embedding scheme and
PHARM features in Table I. We would like to acknowledge



TABLE I: Detection accuracy of the ensemble classifier compared with the proposed linear classifiers for various embedding
schemes. Detection accuracy is measured as total probability of error PE .

Embedding algorithm / feature set Ensemble classifier [6] FLD classifier Ridge Regression LSMR Optimization [11] LASSO
HUGO-BD [13], R = 0.2 / SPAM [3] .4409± .0021 .4414± .0017 .4409± .0021 .4405± .0027 .4598± .0015
S-UNIWARD [2], R = 0.2 / SRMQ1 [4] .3283± .0033 .3364± .0029 .3450± .0211 .3342± .0029 .3671± .0038
WOW [14], R = 0.2 / SRM [4] .3196± .0031 .3289± .0021 .3402± .0039 .3267± .0023 .3694± .0051
MiPOD [15], R = 0.2 / maxSRMd2 [18] .3237± .0038 .3321± .0036 .3343± .0101 .3307± .0029 .3669± .0048
UED [21], R = 0.3 / CF? [6] .1890± .0043 .2181± .0823 .1909± .0046 .1925± .0049 .2875± .0047
J-UNIWARD [2], R = 0.3 / SRMQ1 [5] .3112± .0045 .3197± .0032 .3317± .0074 .3185± .0023 .3950± .0034
UED [21], R = 0.2 / PHARM [23] .1742± .0034 .4950± .0041 .4959± .0026 .1748± .0024 .5000± .0000
SI-UNIWARD [2], R = 0.4 / DCTR [22] .4261± .0029 .4355± .0196 .4292± .0041 .4298± .0021 .4899± .0135
SI-EBS [20], R = 0.3 / CCJRM [5] .2517± .0035 .2608± .0025 .2614± .0061 .2592± .0023 .3019± .0042
SI-UNIWARD [2], R = 0.3 / JSRM [5] .4582± .0020 .4630± .0026 .4608± .0030 .4616± .0031 .4764± .0042

TABLE II: Computation time (in seconds) of the ensemble classifier compared with the proposed linear classifiers, same settings
as in Table I. Computations were carried out on a 16-physical-core Intel R© Xeon R© E5 @ 2.60GHz with RAM 256GB.

Embedding algorithm / feature set Ensemble classifier [6] FLD classifier Ridge Regression LSMR Optimization [11] LASSO
HUGO-BD [13], R = 0.2 / SPAM [3] 17.67 0.66 0.76 0.91 3.63
S-UNIWARD [2], R = 0.2 / SRMQ1 [4] 123.7 58.75 99.72 7.62 56.71
WOW [14], R = 0.2 / SRM [4] 281.7 1270 1132 22.33 130.7
MiPOD [15], R = 0.2 / maxSRMd2 [18] 101.6 931.3 951.9 25.87 157.07
UED [21], R = 0.3 / CF? [6] 328.4 32.52 30.97 31.06 92.30
J-UNIWARD [2], R = 0.3 / SRMQ1 [5] 282.6 87.49 98.04 5.95 53.69
UED [21], R = 0.2 / PHARM [23] 279.6 102.9 52.86 6.44 29.79
SI-UNIWARD [2], R = 0.4 / DCTR [22] 86.66 27.68 19.87 7.50 23.05
SI-EBS [20], R = 0.3 / CCJRM [5] 350.8 381.9 301.8 17.56 177.3
SI-UNIWARD [2], R = 0.3 / JSRM [5] 73.62 1280 672.7 32.56 197.7

that this implementation of the linear classifier may certainly
be largely improved. Nevertheless, the results presented in
Tables I and II show that even such simplistic approaches
already show very promising results.
Table I compares the detection accuracy of the ensemble
classifier (with optimal values of dsub and L), the FLD,
the ridge regression, and the large system optimization for
ridge regression using the LSMR and the LASSO. All these
classifiers were used with the optimally found regularization
parameter λ (or tolerance) as described above. Table I shows
that for a majority of the cases, the linear classifiers perform
slightly worse than the ensemble classifier: the difference in
terms of PE is between 0.05% and 0.8% for ridge regression
implemented using LSMR optimization algorithm. Note also
that the LASSO always performs significantly worse.
Table II compares the computational time of the same clas-
sifiers with the same settings. Note that for feature sets of
medium dimensionality (typically up to 15, 000 features) the
ensemble classifier always requires a much higher computa-
tional time than all its competitors. However, for larger feature
sets (see the results with SRM, maxSRM, CC-JRM, and
JSRM) the computational time of FLD and ridge regression as
well as the memory requirements become prohibitively large
since a very large matrix has to be stored and inverted. In fact,
most of the computational time of both the FLD and ridge
regression come from the inversion of a matrix of size d× d,
which has the complexityO(d3). Let us recall, for comparison,
that the ensemble has a complexity O(N trnLd2sub + Ld3sub).
By contrast we note that the ridge regression solved using
LSMR iterative optimization methods has a complexity of
O(N itN trn×d), with N it the number of iterations [11]. This
should be contrasted with the loss of detection accuracy.

V. CONCLUSION

The main contribution of this paper is to show that the power
of the FLD ensemble classifier widely used in steganalysis
does not come from the non-linearity of the majority voting
rule but from the natural regularization process of the ensemble
when training on random subsets of features. This paper also
shows that, if correctly regularized, a simple FLD classifier or
a ridge regression may achieve almost the same performance.
However, their naive implementation by using off-the-shelf
solvers (e.g. in Matlab) leads to very high complexity for
large feature sets. As a remedy, we have demonstrated on
ridge regression that state-of-the-art optimization algorithms
allow us to achieve almost the same detection accuracy as an
ensemble classifier for a computational time up to 10 times
smaller. Further work can be done to further improve the
detection accuracy and the computational complexity.
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APPENDIX
REGULARIZATION OF FLD

In this appendix, we show that an L2-regularization of the
reciprocal Fisher ratio, which is the optimization problem:



arg minw F (w)−1 +λ ‖w‖2, is equivalent to regularizing the
between class covariance matrix Σ = Σc + Σs in classical
FLD by adding λ′Id to it before inversion.

To this end, we write the reciprocal Fisher ratio (2) as
1/F (w) = wΣwT/wΓwT, where we used for compactness
Γ = (µc − µs)

T(µc − µs). We note that from the definition
of Γ, ΓxT is a multiple of (µc −µs)

T for any vector x. We
now differentiate the objective function w.r.t. w to find the
minimum:

d

dw

F (w)−1+λw·wT

2
=

ΣwTwΓwT−ΓwTwΣwT

(wΓwT)2
+λw.

Setting this expression to zero and multiplying by wΓwT

gives us an equation for w

(Σ + λa2(w))wT = c(w)(µc − µs)
T, (9)

where a(w) = w(µc − µs)
T and c(w) = wΣwT/a(w) are

scalars. Since w can be normalized so that a(w) = 1, Eq. (9)
the projection vector w is obtained by

w = (Σ + λ)−1(µc − µs)
T,

which is the same as the regularization of the inverse covari-
ance Σ in classical FLD.

APPENDIX
RELATIONSHIP BETWEEN LEAST-SQUARE AND FLD

This appendix recalls the relationship between ridge regres-
sion and FLD. The FLD projection vector w is given by :

w = (µ̂s − µ̂c) (Σ̂c + Σ̂s)
−1.

The mean of cover features may be easily obtained by
µ̂c = 1

N CtrnT ·1N with 1N a (column) vector of ones. Hence,

recalling that the matrix of all training data is: X =

(
Ctrn

Strn

)
,

and recalling that it is assumed, without loss of generality, that
the label for cover is 1 and −1 for stego, it is straightforward
that:

(µ̂c − µ̂s)
T

=
1

N
XTy.

Additionally, assuming, without loss of generality, that the
features are normalized so that the columns of X have
a zero mean, or equivalently µ̂c = −µ̂s, it is then
obvious (by a block-wise matrix product) that XTX =(
CtrnT

Ctrn + StrnT

Strn
)

= (N − 1)
(
Σ̂c + Σ̂s

)
Thus the linear least square regression (XTX)−1XTy

can be rewritten, up to a scaling factor, as:

(µ̂c − µ̂s)
(
Σ̂c + Σ̂s

)−1
.

REFERENCES
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