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ABSTRACT empirical source [10], such optimized schemes may, paradox

Thi ‘ h to defini ddit ically, end up being more detectable if the Warden desigas th
'S _paper presents a new approach 1o detining additVgeiactor “outside of the model” [11], which brings us back to

%he main and rather difficult problem — modeling the source.

ot ) : . All of today’s most secure steganographic schemes for
one pixel is weighted and then aggregated using the recips. .. . . " ) . i ;
N : A . digital images use heuristically defined distortion fuoot
rocal Holder norm to define the individual pixel costs. In

contrast to other adaptive embedding schemes, the agg that constrain the embedding changes to those parts of the

re- -
gation rule is designed to force the embedding changes tlmage that are difficult to model (e.g., complex textures or
highly textured or noisy regions and to avoid clean edges.

%oisy” areas). In the JPEG domain, by far the most suc-
Consequently, the new embedding scheme appears marke&IS/SSfu! appfoa"h Is built around distortion funcu_ons thaa-
. . 2 sdre distortion w.r.t. the raw, uncompressed image [9, 15,
more resistant to steganalysis using rich models. The lactu

a : . ; A
embedding algorithm is realized using syndrome-trell 16]. A natural way to define the distortion function in the
to minimize the expected distortion for a given payload.

spatial domain is to assign pixel costs by measuring the im-
pact of changing each pixel in a feature (model) space us-
ing a weighted norm. Making the weights dependent on the
pixel's local neighborhood introduces desirable conteliajpa
tivity. An example of this approach is the embedding algo-
Designing steganographic algorithms for empirical coverithm HUGO [14], which employs the SPAM feature model.
sources, such as digital images, is very challenging dugeto t To the best knowledge of the authors, and based on the recent
fundamental lack of accurate models. The most successfgteganalysis study[[6], HUGO is currently the most secure al
approach today avoids estimating the cover source distribworithm for embedding in the spatial domain even though its
tion because this task is infeasible for complex and highlysecure payload has been substantially lowered by modern at-
non stationary sources. Instead, the steganography pnobleacks initiated during the BOSS competition [5] that employ
is formulated as source coding with fidelity constrainit [2] —high-dimensional rich models.

the sender embeds her message while minimizing an appro- |n this paper, we approach the task of building distortion
priately defined distortion. Practical algorithms that @b functions in the spatial domain using a different stratdgy.
near the theoretical payload—distortion bound are availab stead of using a weighted norm in some steganalytic model
for a very general class of distortion functionsl[4, 2]. With to compute the pixel costs, we employ a bank of directional
this framework, the only task left to the sender is esséntial high-pass filters to obtain the so-called directional reaisl,

in the output of directional high-pass filters after chaggin

1. INTRODUCTION

the design of the distortion function.
In an attempt to relate distortion with statistical detbdta
ity, the authors of [3] parametrized the distortion funotand

which are related to the predictability of the pixel in a cer-
tain direction. By measuring the impact of embedding on
every directional residual and by suitably aggregatinge¢he

then searched for such values of the parameters that gave tingpacts, we force the embedding cost to be high where the
smallest detectability evaluated as a margin betweenedasscontent is predictable in at least one direction (smoothsare
within a selected feature space (cover model). However, urand along edges) and low where the content is unpredictable

less the cover model is a complete statistical descriptthref
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in every direction (e.g., in textured or noisy areas). Tlseilte
ing algorithm thus becomes highly adaptive and bettertsesis
steganalysis using rich models.

After introducing basic notation in Sectibh 2, we list three
steganographic methods with which new schemes will be
compared using an empirical measure of security. In Sec-
tion [3, we describe the distortion function, including the
filter banks for computing the directional residuals and the



Sectior[% is to assess the effect of various design elementsKB

on security and select the setting that provides the highest

empirical security. In Sectidd 5, we subject the new scheme ( 1 2 1 )
KO —

aggregation rule. The purpose of the exploratory analyfsis o o ( -1 2 -1 )
K —

to steganalysis in the wavelet domain where the embedding Sobel 0 0 0
costs are computed. The paper is concluded in Section 6. -1 -2 -1

, K@ = (K(l))T

WDFB-H h = Haar wavelet decomp. low-pass

2. PRELIMINARIES g = Haar wavelet decomp. high-pass
WDFB-D h = Daubechies 8 wavelet decomp. low-pass
Capital and lower-case boldface symbols stand for matrices 0.5

and vectors, respectively. The symb&s = (X,;),Y = _ogwjj‘t'

(Yi;) €{0,...,255}"*"2 will always be used an 8-bit gray- '
scale cover (and the corresponding stego) imagemyith ny g = Daubechies 8 wavelet decomp. high-pass

pixels. For matrixX, X™ is its transposeX*" is X rotated 0.2
by 180 degrees, ar&| is the matrix of absolute values. -0.5

KV =h-g" K =g.h"T, K® =g.g"

2.1. Empirical security
. Table 1. Filter banks used in this paper.
All experiments are conducted on BOSSbase ver. [1.0 [5]

with 10 000 images. The steganographic security is evalu-
ated empirically using binary classifiers trained on a giverfor this mainly to simplify the design. Since the embedding
cover source and its stego version embedded with a fixed paggorithm will be forced to concentrate the embedding medifi
load. With the exception of Sectidd 5, we use the Spatiatations into highly textured/noisy areas, using the Gilibs ¢
Rich Model (SRM) [6] consisting 0106 symmetrized sub- struction [2] with non-additive distortion functions mage
models with a total dimension 8fL, 671. All classifiers were an additional beneficial impact on security. The authors con
implemented using the ensemble|[12] with Fisher linear distemplate investigating this direction as part of futuresggsh.
criminants as base learners. Security is quantified usieg th  Having defined the pixel costs;, embedding a (pseudo)
ensemble’s “out-of-bag” (OOB) errdfoog, Which is an un-  random sequence of bits with minimal expected distorfign (1
biased estimate of the testing error “averaged” over meltip is equivalentto source coding with a fidelity criterion. Aapr
bootstrap samples of the image source during training [12]. tical algorithm, based on Syndrome-Trellis Codes (STCs),
that embeds near the payload—distortion bound was pro-
2.2. Steganography methods posed in[[4]. It works in the dual domain to better cover
the range of small payloads typically needed for steganog-
We compare the proposed methods with HUGO, the Edggaphy. The STC Toolbox, which we also use in this paper

Adaptive (EA) algorithm [[1B], and Least Significant Bit to implement all our schemes, can be downloaded from
Matching (LSBM). We used the embedding simulator [5] fornt t p: 77 dde. bi nghant on. edu/ downl oad/ syndr ome/ .

HUGO operating at the theoretical payload—distortion libun
with default settingsy = 1, o = 1, and the switch --T with

T = 255 to remove the weakness reported|in/[11]. LSBM
was simulated at the ternary entropy bound. The code for th

EA algorithm with its custom coding scheme was obtaine -1. Directional Filters

from the authors. As already reported by its authors, the distortion functién
HUGO concentrates the embedding changes primarily in tex-
3. DISTORTION EUNCTION DESIGN tures and edges. However, the content along an edge can
usually be well modeled using locally polynomial models,
We restrict our design to additive distortion in the form: which aids the detection[7] 6] 8]. Thus, whenever possible

the embedding algorithm should embed into textured/noisy
areas that are not easily modellable in any direction. T® thi

ni no . . . . .
end, we evaluate the smoothness in multiple directiongyusin
Y) = y )X — Yy \ - :
DX, Y) ;;p” (X, i) [ Xi5 = Yigl, @ iiter bankB,, = {K®, ... K™} consisting of» multiple

directional high-pass filters represented by their kernels
wherep;; are the costs of changing pixal;; to Y;;. The malized so that all,-norms|K¥||, are the same. Theth
additivity means that we do not consider the effects of indivesidualR(®), k = 1, ..., n, is computed aR*) = K*«X,
vidual embedding changes influencing each other. We opteahere %’ is a convolution mirror-padded so th&(*) has


http://dde.binghamton.edu/download/syndrome/

againn; x no elements. (The mirror-padding prevents intro-
ducing embedding artifacts at image boundary.) If the resid
ual vaIuesRl(f“) are large for some¢j and for allk, it means
that the local content at pixe};; is not smooth in any direc-
tion and thus difficult to model.

Since we want to detect edges in all directions, it is natu- ‘ ‘ ‘
ral to use established edge detectors for the filter banlks (se
Table[1). The non-directional 'KB’ filter[]1] is often used p
in steganalysis, while the Sobel operator is a common edge. . .
detector. Wavelet-based Directional Filter Banks ’WDFB-HgE'g' 1. Eoos as a function of the Holder-norm paramefer
and 'WDFB-D’ use the Haar and Daubechies 8-tap waveletsv.vhen embedding at 0.4 bpp with the WDFB.
The computation of the residual coincides with the firselev

SRM EooB
o

—

ot

I

/

wavelet decomposition with no decimation. The wavelet 0.5 ‘ :

banks consist of three filter& (1) K2 K®) using which ——HUGO

the LH, HL, and HH directional residuals are obtained. Given 04l —+— KB

the wavelet’s 1-D low-pass decomposition filkeand a high- ' Sobel

pass decomposition filteg, the 2-D directional filters are WDFB-H

computed as shown in Talile 1. § 0.3 —o—WDFB-D ||
S

3.2. Aggregating embedding suitability 5 0ol
7 )

The embedding should prefer changing large values of direc-

tional residuals, where the textures and edges are, and pre-
serve the small values, where the content is predictable. To 0.1
this end, we compute a weighted difference betwRé&n and

the same residual after changing only one pixeljgtienoted 0 | |
R{)): 0 0.050.1

| |
0.2 0.3 0.4 0.5
Payload (bpp)

(@)

gi(al'c) = ‘R(k)‘ * ‘R(k) - szkg)] R(k)‘ * ‘K(k)‘ - (2) Fig. 2. Evaluating the security of several different filter banks
using the OOB estimate of the testing erBgos.

The quantitygi(f), which we call embedding “suitability,” is

formally a correlation between the absolute value of theecov

residual with the absolute value of the residual changeeeSin -~ We restrict the embedding changest, | X;; —Y;;| = 1.

R® _ REZ)] is the spatially shifted directional filtai (F), Note that due to the gbsolute valgelﬂl (2), both changestresul
(k) ) ) in the same embedding cost, which allows us to use the more
§;;* can be computed for all pixels at once (equality). powerful multi-layered version of STCs][4] also availabie i
Next, we compute the embedding copls by aggregat-  he STC Toolbox (see Sectién 4.4 for a discussion of how
ing all suitabilitiesgi(f), k =1,...,n. Since we wish to re- (ifferent coding schemes affect the security).

strict the embedding changes to those pixels with complex
content in every direction, the aggregation rgle R* —
Ry, pij = p(gf;), . ,gff)) is required to have the following
properties:

4. EXPERIMENTS

In this section, we first assess how various design parame-
Al. The larger the values O'Ei(f)L the smaller thep,; ters, such ag, the filter ba_mk,_a_nd CQ(_1|ng, affect securlty._
should be. Then, the most secure setting is identified and compared with
HUGO, EA, and LSBM.
A2. If there exists: € {1,...,n} such thaEi(f) = 0, then

pij = +00. 4.1. Aggregation rule

. A S|mp_l'e function thgt meer both requirements is the "®T0 obtain an insight as to which value pfshould be used
ciprocal Hélder norm withp < 0:

in the aggregation ruld3), in Figl 1 we pléioos(p) for
" -~ the WDFB when embedding the payload of 0.4 bpp (bits per
p(_p) _ Z |§_(l_c)|p _ 3) pixel). While forp < 0 the security appears almost constant,
Y — for p > 0 the requirement A2 is longer valid — the costs at



smooth edges decrease, which lowers the security. A simi- 0.5 : :
lar dependence of security grnwas observed for other filter —o— WOW ternary sim.
banks. Thus, for concreteness and simplicity, we fix theevalu ---- WOW ternary STC

of the parametegstop = —1. 0.4 —— WOW binary sim. [
-->--WOW binary STC
o —e— HUGO sim.
4.2. Assessing filter banks L§ 0.3

Fig.[2 shows the OOB error estimate for filter banks IistedE
in Table[1. The WDFB-D achieves the best steganographien 0.2
security by a large margin. We call this embedding algo-

rithm WOW (Wavelet Obtained Weights). All the other filters 0.1
achieve comparable security with HUGO, even the WDFB-H

with support of size onlg x 2.

Encouraged with the success of the Daubechies 8-tap 0 pe— : :
wavelet-based filter bank, we experimented with severaroth 00.050.1 0.2 0.3 0.4 0.5
wavelet bases, including the Biorthogonal 44 waveletsy onl Payload (bpp)

to achieve very similar results in terms of thigop.

_ _ Fig. 4. OOB error estimate of the testing errdfoog, for
4.3. Comparison to prior art WOW implemented using binary and ternary STCs versus

simulated optimal embedding. Note the large gain of ternary

Fig.[3 shows the comparison between WOW and three othedTcg yersus their binary version. Also note that the coding
algorithms using the SRM model (left) and a model con- 4 is quite small.

structed using dependencies in the wavelet domain (see Sec-

tion[3 for more details). The improvement over HUGO is T - - 'li
especially apparent for large payloads 8.4tbpp, theEoos ; ;
of WOW is almost twice as high as that of HUGO.

4.4. The effect of coding

As already mentioned in Sectibn B.2, since the c@sts (3) tlo no
depend on the direction of the embedding change, WOW can
use the ternary multi-layered version of STCs. Eig. 4 shows
that the gain of using the ternary STCs over their binary ver-
sion is quite significant. At the same time, the coding loss
of STCs w.r.t. optimal embedding operating at the payload—
distortion bound is rather small.

The last comment above might suggest that HUGO might
be improved using ternary embedding instead of binary. How-
ever, since HUGO embeds only in the direction of smaller
distorsion and allows interaction among modificationssit i .
not clear how to implement ternary embedding and what the |

security impact would be. e =y m
y i = .

4.5. WOW adaptivity ) v “f 5&';

In Fig.[8, we contrast the placement of embedding <:hangesL — ---—:-u- 444 e

for HUGO and for WOW. The selected cover image has nu- | : L ¢ TR

merous horizontal and vertical edges and also some texturecO 0.1 0.2 0.3 0.4 0.5 0.6

areas. While HUGO embeds with high probability into the ) - _
pillar edges as well as the horizontal lines above the gillar Fig- 5. Embedding probability for payload.4 bpp using
WOW embeds solely into the textured areas as dictated by tHéUGO (bottom left) and WOW (bottom right) fories x 128
aggregation rulé{3). grayscale cover image (top).
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Fig. 3. Comparing statistical detectability of WOW and threeestaft-the-art embedding algorithms using the SRM (left) and
wavelet-domain dependencies (right).

5. STEGANALYSIS IN WAVELET DOMAIN finite dynamic range¢\"” « round (truncT(cgj’S) /q)),

: where ¢ is a quantization step anttuncrp(z) = =z for
The most successful steganalysis attacks have always been6 [~T, 7], truncr(z) = T - sign(x) otherwise. The

built in the embedding domain. Although WOW embeds in® S o Ls)
the spatial domain, which is well covered by the SRM, thehorizontal co-occurrence matrix is denoted(ag" hd =
costs are computed in a transform domain. The goal of thiéds , ..., ds)e {~T,...,T}*, c{') = {(i,j) cEij) =
section is to investigate whether WOW can be attacked in th ls ls ls . :
wavelet domain bygforming features that capture dependeris-l’cl('-,jll = da, Cl('-,j422 = ds, CEJ'J23 - d4}’ with the vertical
cies among wavelet coefficients. matrix Cfiv’l’s) defined analogically.

Inspired by how steganalysis features are built in the We built three co-occurrence matrices for each level
JPEG domain, we explored the following four logical pos-I/ € {1,2,3}. In Fig.[8a), denoted by a triangle is the co-
sibilities graphically shown in Fig.]6: 4-D co-occurrence occurrenceC(™” 2 ¢ 4 ¢V The squares
ma_tr_lces built from four cqnsecutlve wavelet goefﬂments e correspond ton’l) a Cilv,l,LH) n Cilh,l,HL)’ while the
ploiting dependencies a) intra band (IaB), b) inter levglac (
mix of intra level and inter level, and d) intra level, intertg. ~ Circles markCy ,
The laB features are similar in spirit to the SRM provided the N this paper, we used’ = 2, which gave each co-
wavelet coefficients are interpreted as noise residualsceSi occurrence matriCy") the dimensionality of27" + 1)* =
the laB features were much more successful in detecting25. Sincei € {1,2,3} andl € {1,2,3}, the total number
WOW when compared to the other three possibilities b)—d)of co-occurrence matrices s giving the final feature vector
we 0n|y provide detailed discussion for case a)_ a dimenSionality of25 x 9 = 5, 625. A brief Study on the

The coefficients were computed using the standard unde&ffect of the quantization stepe [0.2,5] on Eoop showed
imated discrete wavelet decomposition with the Daubechies that the best performance was usually obtainedgfee 1.

wavelet (to steganalyze in the domain where WOW compute$hus, in all our experiments, we sgt= 1.
its costs). Fig.[3 (right) shows the results of steganalysis using the

Let Sts) — {C(}l},s)} 1 € {1,2,3}, s € {LH,HL, HH} laB features. WOW still achieves better security than any
(%] il b) b 1 ) ) 1 .
be the undecimatedth subband in thdth level of the Other tested method. The overall detection performance of
the laB features is, however, inferior to the SRM (left).

3.0) & Cgh,l,HH) +C£iv,l,HH).

wavelet transform. Assuming that, = 251, ny, = 22
for someky, ks € Z, the range of subscripts fmﬁ.’s) is
i={1,...,2" "+ andj = {1,... 2k~1+1}, 6. CONCLUSION

The steganalytic features are four-dimensional co-oece
matrices formed by groups of four horizontally and vertical This paper confirms what has been suspected before — restrict
adjacent coefficients after truncation and quantizatiom to ing the embedding changes to textures while avoiding “¢lean
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