
Efficient Wet Paper Codes

aJessica Fridrich, aMiroslav Goljan, and bDavid Soukal

aDept. of Electrical and Computer Engineering, bDept. of Computer Science
SUNY Binghamton, Binghamton, NY 13902-6000, USA

{fridrich,mgoljan,dsoukal1}@binghamton.edu

Abstract. Wet paper codes were proposed as a tool for constructing steg-
anographic schemes with an arbitrary selection channel that is not shared be-
tween the sender and the recipient. In this paper, we describe new approaches
to wet paper codes that enjoy low computational complexity and improved em-
bedding efficiency (number of message bits per embedding change). Some ap-
plications of wet paper codes to steganography and data embedding in binary
images are discussed.

1 Introduction

The placement of embedding changes in the cover object is called the selection chan-
nel [1]. This channel is often constructed from a secret shared between the sender and
the recipient (e.g., pseudo-random straddling [2]) and may also depend on the cover
object itself (adaptive embedding [3]). In general, it is in the interest of both commu-
nicating parties not to reveal any information or as little as possible about the embed-
ding changes as this knowledge can help an attacker [4]. Since the sender’s main
objective is to minimize the detectability of the hidden data, he may construct the
selection channel using the knowledge of the cover and any other available side in-
formation, such as a high-resolution (or unquantized) version of the cover [5]. An-
other possibility is to determine the best selection channel by iteratively running
known steganalysis algorithms on the stego object. An obvious problem here is that
the recipient may not be able to determine the same selection channel and read the
message because he does not have access to the cover object or any side information.

The non-shared selection channel in steganography has been called “writing on
wet paper” [5–7]. To explain the metaphor, imagine that the cover object X is an
image that was exposed to rain and the sender can only slightly modify the dry spots
of X (the selection channel) but not the wet spots. During transmission, the stego
image Y dries out and thus the recipient does not know which pixels the sender used
(the recipient has no information about the dry pixels). Codes for writing on wet
paper that are suitable for steganographic applications (in the sense explained below)
are called wet paper codes (WPCs).

The problem of non-shared selection channels in steganography is equivalent to
“writing in memory with defective cells” introduced by Tsybakov et al. [8]. A mem-
ory contains n cells out of which n–k cells are permanently stuck at either 0 or 1. The

writing device knows the locations and status of the stuck cells. The task is to write as
many bits as possible into the memory (up to k) so that the reading device, that does
not have any information about the stuck cells, can correctly read the data. Clearly,
writing on wet paper is formally equivalent to writing in memories with stuck cell
(stuck cells = wet pixels).

The defective memory is a special case of the Gelfand-Pinsker channel with in-
formed sender [9]. The Shannon capacity of defective memory with n–k stuck cells is
asymptotically k/n per cell, a fact that is also easily established using random binning
[10]. A generalized version of this channel that allows for randomly flipped cells in
addition to stuck cells was studied by Heegard et al. [11,12] who proposed partitioned
linear block codes, later recognized as instances of nested linear codes [10], and
proved that these codes achieve Shannon capacity. However, in passive warden steg-
anography, which is the subject of this paper, we will only need codes for the noise-
free case.

For memory cells drawn from an alphabet of q symbols, maximum distance sepa-
rable (MDS) codes, such as Reed-Solomon codes, can be used to construct a parti-
tioned linear code achieving the channel capacity [10]. Each coset of a [n, n–k, k+1]
linear MDS code contains all symbol patterns of any n–k stuck cells. Since this code
contains qk cosets, they can be indexed with all possible messages consisting of k
symbols. One can then communicate k message symbols by first selecting an appro-
priate coset and finding in this coset a word with the same pattern of stuck n–k cells
as in the memory. Since this word is compatible with the memory defects, it can be
written to the memory. The k message symbols are extracted from the index of the
coset to which the word belongs. This approach, however, would be inefficient for
our application. By grouping bits into q-ary symbols, the number of stuck symbols
could drastically increase when the number of stuck bits is not small, which is often
the case in steganographic applications.

There are three main differences in requirements between coding for defective
memory and coding for wet paper steganography. First, the number of wet pixels can
be quite large (e.g., 90% or more). Second, the number of wet pixels varies signifi-
cantly with the stego method and for different instances of the cover object. This
makes it difficult to assume an upper bound on the rate r = k/n without sacrificing
embedding capacity. Third, fortunately, steganographic applications are often run off
line and do not require real time performance. It is quite acceptable to spend 2 sec-
onds to embed a 10000-bit payload, but it is not acceptable to spend this time writing
data into memory.

With these differences in mind, in [5,6] the authors proposed variable-rate random
linear codes and showed that these codes asymptotically (and quickly) reach the
channel capacity. They also described a practical implementation using Gaussian
elimination on disjoint pseudo-random subsets of fixed size. We briefly summarize
this approach to WPCs in Section 2. In the first method of this paper in Section 3, we
follow the same approach but propose a different realization by imposing certain
stochastic structure on the columns of the parity check matrix to be able to utilize the
apparatus of LT codes [13]. This approach offers greatly simplified implementation,
lower computational complexity, and improved embedding efficiency. In Section 4,
we apply the method of Section 2 to very small blocks with a goal to further improve

the embedding efficiency for short messages in a manner somewhat similar to matrix
embedding [15]. A few applications of WPCs in steganography and fragile water-
marking are discussed in Section 5. The paper is summarized in Section 6.

2 Random Linear Codes for Writing on Wet Paper

Let us assume that the cover object X consists of n elements n
iix 1}{ = , xi∈J, where J is

the range of discrete values for xi. For example, for an 8-bit grayscale image repre-
sented in the spatial domain, J = {0, 1, …, 255} and n is the number of pixels in X.
The sender selects k changeable elements xj, j∈C ⊂ {1, 2, …, n}, |C|=k, which is the
selection channel. The changeable elements may be used and modified independently
from each other by the sender to communicate a secret message to the recipient, while
the remaining elements are not modified during embedding.

It is further assumed that the sender and the recipient agree on a public symbol
function S, which is a mapping S: J→F , where F is a finite field of q symbols. Al-
though we do not consider it in this paper, S could in principle depend on the element
position in X and a secret stego key shared by the sender and the recipient. For sim-
plicity, the reader can assume that F is the Galois Field GF(2) and S(x) the LSB of x
(Least Significant Bit).

During embedding, the sender either leaves the changeable elements xj, j∈C, un-
modified or replaces xj with some element yj to modify its symbol from S(xj) to S(yj).
The vector of cover object symbols bx = (S(x1), …, S(xn))T changes to by =
(S(y1), …, S(yn))T, where “T” denotes transposition. To communicate m symbols
s = (s1, …, sm)T, si∈ F , the sender modifies the changeable elements xj, j∈C, so that

Dby= s , (1)

where D is an m×n matrix with elements from F shared by the sender and the recipi-
ent. Thus, similar to the coset coding approach by Heegard [11], the recipient reads
the message as the syndrome of the received symbol vector by with the parity check
matrix D. Heegard chose D to guarantee that (1) has a solution for any pattern of n–k
stuck cells. In [5,6], the authors showed that the high volatility of k among steg-
anographic schemes and over different covers can be well handled by randomizing
Heegard’s approach and choosing D as a pseudo-random m×n matrix D generated
from a stego key.

To study the solvability of (1) for pseudo-random matrices D, (1) is rewritten to

Dv = s – Dbx (2)

using the variable v = by–bx with non-zero elements corresponding to the symbols the
sender must change to satisfy (1). In (2), there are k unknowns vj, j∈C, while the
remaining n – k values vi, i∉C, are zeros. Thus, on the left hand side, the sender can
remove from D all n – k columns i, i∉C, and also remove from v all n – k elements vi
with i∉C. Keeping the same symbol for v, (2) now becomes

Hv = z, (3)

where H is an m×k matrix consisting of those columns of D corresponding to indices
C, v is an unknown k×1 vector, and z = s – Dbx is the k×1 right hand side. Thus, the
sender needs to solve a system of m linear equations with k unknowns in F . The
probability that (1) will have a solution for an arbitrary message s is equal to the
probability that rank(D)=m. The rank of random rectangular matrices over finite
fields was studied in [14]. In particular, the probability P(rank(D)=m) = 1–O(qm–k)
with decreasing m, m < k, k fixed.

Let us assume that the sender always tries to embed as many symbols as possible
by adding rows to D while (3) still has a solution. It can be shown [6] that for random
binary matrices whose elements are iid realizations of a random variable that is uni-
formly distributed in {0,1}, the average maximum message length mmax that can be
communicated in this manner is

mmax = k + O(2–k/4) (4)

as k goes to infinity, k < n. A similar result can be established in the same manner for
a finite field F with q symbols. Thus, this variable-rate random linear code asymp-
totically (and quickly) reaches the Shannon capacity of our channel.

The main complexity of this communication is on the sender’s side, who needs to
solve m linear equations for k unknowns in F. Assuming that the maximal length
message m = k is sent, the complexity of Gaussian elimination for (3) is O(k 3), which
would lead to impractical performance for large payloads, such as k > 105. In [5], the
authors proposed to divide the cover object into n/nB disjoint random subsets (deter-
mined from the shared stego key) of a fixed, predetermined size nB and then perform
the embedding for each subset separately. The complexity of embedding is propor-
tional to n/nB(knB/n)3 = nr3nB

2, where r = k/n is the rate, and is thus linear in the num-
ber of cover object elements, albeit with a large constant.

By imposing a special stochastic structure on the columns of D, we show in the
next section that it is possible to use the LT process to solve (3) in a much more effi-
cient manner with a simpler implementation that fits well the requirements for steg-
anographic applications formulated in the introduction.

3 Realization of Wet Paper Codes Using the LT Process

3.1 LT Codes

In this section, we briefly review LT codes and their properties relevant for our appli-
cation, referring the reader to [13] for more details. LT codes are universal erasure
codes with low encoding and decoding complexity that asymptotically approach the
Shannon capacity of the erasure channel. For simplicity, we only use binary symbols
noting that the codes can work without any modification with l-bit symbols. The best
way to describe the encoding process is using a bipartite graph (see an example in

W = 8

w = 5

E1

E2

E3

E4

E5

E6

E7

E8

Fig. 1) with w message bits on the left and W encoding bits on the right. Each encod-
ing bit is obtained as an XOR of approximately O(ln(w/δ)) randomly selected mes-
sage bits that are connected to it in the graph. The graph is generated randomly so that
the degrees of encoding nodes follow so-called robust soliton distribution (RSD). The
probability that an encoding node has degree i, is (ρi +τi)/β, where

1 1

1 2,...,
(1)

i

i
w

i w
i i

ρ

 ==
 =
 −

,
/() 1,..., / 1

ln(/) / /
0 / 1,...,

i

R iw i w R
R R w i w R

i w R w
τ δ

= −
= =
 = +

,
1

w

i i
i

β ρ τ
=

= +∑ , (5)

and R = c ln(w/δ) w for some suitably chosen constants δ and c. It is possible to
uniquely determine all w message bits with probability better than 1–δ from an arbi-
trary set of W encoding bits as long as

2(ln (/)).W w w O w wβ δ> = + (6)

1 0 1 0 0
1 0 0 0 1
1 1 0 0 0
0 1 1 1 0
1 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 1 0 0 1

 =

A

Fig. 1. Left: Bipartite graph with 5 message symbols and 8 encoding symbols. Right: Its bi-
adjacency matrix.

The encoding bits can also be obtained from message bits using matrix multiplication
in GF(2) with the bi-adjacency binary matrix A (Fig. 1). The decoding can be obvi-
ously done by solving a system of W linear equations with w unknowns – the message
bits. The RSD allows solving the linear system by repeating the following simple
operation (the LT process):

Find an encoding bit that has only one edge (encoding bit E7 in Fig. 1). Its asso-
ciated message bit (M3) must be equal to this encoding bit. As the message bit is
now known, we can XOR it with all encoding bits that are connected to it (E1 and
E4) and remove it and all its edges from the graph. In doing so, new encoding

M1

M2

M3

M4

M5

nodes of degree one (E1) may be created. This process is repeated till all message
bits are recovered.

The decoding process fails if, at some point, there are no encoding bits of degree 1,
while there are still some undetermined message bits. The RSD was derived so that
the probability of failure of the LT process to recover all message bits is smaller than
δ. The decoding requires on average O(w ln(w/δ)) operations.

3.2 Matrix LT Process

We can consider the LT process as a method for a fast solution of an over-determined
system of equations Ax = y with a random matrix A for which the Hamming weights
of its rows follow the RSD. However, we cannot use it directly to solve (3) because
(3) is under-determined and we are seeking one solution, possibly out of many solu-
tions. In addition, because H was obtained from D by removing columns, H inherits
the distribution of Hamming weights of columns from D but not the distribution of its
rows. However, as explained in detail below, the LT process can be used to quickly
bring H to the upper triangular form simply by permuting its rows and columns. Once
in this form, (3) is solved using a back substitution.

The LT process on the bipartite graph induces the following row/column swapping
process on its bi-adjacency matrix A. For an n-dimensional binary vector r, let wj(r)
denote the Hamming weight of (rj, …, rn) (e.g., w1(r) ≡ w(r) is the usual Hamming
weight of r). We first find a row r in A with w1(r) = 1 (say, the 1 is in the j1-th col-
umn) and exchange it with the first row. Then, we exchange the 1st and the j1-th un-
knowns (swapping the 1st and j1-th columns). At this point in the LT process, the
value of the unknown No. 1 is determined from the first equation. In the matrix proc-
ess, however, we do not evaluate the unknowns because we are only interested in
bringing A to a lower triangular form by permuting its rows and columns. Continuing
the process, we search for another row r with w2(r) = 1 (say, the 1 is in the j2-th col-
umn). If the LT process proceeds successfully, we must be able to do so. We swap
this row with the second row and swap the 2nd and j2-th columns. We continue in this
way, now looking for a row r with w3(r) = 1, etc. At the end of this process, the per-
muted matrix A will be lower diagonal with ones on its main diagonal.

Returning to the WPC of Section 2, we need to solve the system Hv = z with m
equations for k unknowns, m < k. By applying the above process of row and column
permutations to HT, we bring H to the form [U, H′], where U is a square m×m upper
triangular matrix with ones on its main diagonal and H′ is a binary m×(k–m) matrix.
We can work directly with H if we replace in the algorithm above the word ‘row’
with ‘column’ and vice versa1. In order for this to work, however, the Hamming
weights of columns of H must follow the RSD and the message length m must satisfy
(from (6))

2(ln (/))k m m O m mβ δ> = + . (7)

1 To distinguish this process, which pertains to a binary matrix, from the original LT process

designed for bi-partite graphs, we call it the “matrix LT process”.

This means that there is a small capacity loss of 2(ln (/))O m m δ in exchange for
solving (3) quickly using the matrix LT process. This loss depends on the public
parameters c and δ. Since the bounds in Luby’s analysis are not tight, we experi-
mented with a larger range for δ, ignoring its probabilistic interpretation. We discov-
ered that it was advantageous to set δ to a much larger number (e.g., δ = 5) and, if
necessary, repeat the encoding process with a slightly larger matrix D till a successful
pass through the LT process is obtained. For c = 0.1, the capacity loss was about 10%
(β = 1.1) of k for k=1500 with probability of successful encoding about 50%. This
probability increases and capacity loss decreases with increasing k (see Table 1).

To assess the encoding and decoding complexity, let us assume that the maximal
length message is sent, m ≈ k/β. The density of 1’s in D (and thus in H) is
O(ln(k/δ)/k). Therefore, the encoding complexity of the WPC implemented using the
LT process is O(n ln(k/δ) + k ln(k/δ)) = O(n ln(k/δ)). The first term arises from evalu-
ating the product Dbx, while the second term is the complexity of the LT process.
This is a significant savings compared to solving (3) using Gaussian elimination. The
decoding complexity is O(n ln(k/δ)), which corresponds to evaluating the product
Dby.

Table 1. Running time (in seconds) for solving k×k and k×βk linear systems using Gaussian
elimination and matrix LT process (c = 0.1, δ = 5); P is the probability of a successful pass.

k Gauss LT β P
1000 0.023 0.008 1.098 43%

10000 17.4 0.177 1.062 75%
30000 302 0.705 1.047 82%

100000 9320 3.10 1.033 90%

The performance comparison between solving (3) using Gaussian elimination and

the matrix LT process is shown in Table 1. The steeply increasing complexity of
Gaussian elimination necessitates dividing the cover object into subsets as in [5]. The
LT process, however, enables solving (3) for the whole object at once, which greatly
simplifies implementation and decreases computational complexity at the same time.
In addition, as will be seen in Section 4, the matrix LT process can modified to im-
prove the embedding efficiency.

3.3 Communicating the Message Length

Note that for the matrix LT process, the Hamming weights of columns of H (and thus
D) must follow the RSD that depends on m, which is unavailable to the decoder.
Below, we show a simple solution to this problem, although other alternatives exist.

Let us assume that the parameter m can be encoded using h bits (in practice, h~20
should be sufficient). Using the stego key, the sender divides the cover X into two
pseudo-random disjoint subsets Xh and X–Xh and communicates h bits using elements
from Xh and the main message using elements from X–Xh. We must make sure that Xh

will contain at least h changeable elements, which can be arranged for by requesting
that |Xh| be a few percent larger than h/rmin, where rmin is the minimal value of the rate
r=k/n that can be typically encountered (this depends on the specifics of the steg-
anographic scheme and properties of the covers). Then, using the stego key the
sender generates a pseudo-random h×|Xh| binary matrix Dh with density of 1’s equal
to ½. The sender embeds h bits in Xh by solving the WPC equations (3) with matrix
Dh using a simple Gaussian elimination, which will be fast because Dh has a small
number of rows. The message bits are hidden in X–Xh using the matrix LT process
with matrix D generated from the stego key using the parameter m.

The decoder first uses his stego key (and the knowledge of h and rmin) to determine
the subset Xh and the matrix Dh. Then, the decoder extracts m (h bits) as the syndrome
(1) with matrix Dh and the symbol vector obtained from Xh. Knowing m, the decoder
now generates D and extracts the message bits as a syndrome (1) with matrix D and
the symbol vector obtained from X–Xh.

4 Embedding Efficiency

The number of embedding changes in the cover object influences the detectability of
hidden data in a major manner. The smaller the number of changes, the smaller the
chance that any statistics used by an attacker will be disrupted enough to mount a
successful attack. Thus, schemes with a higher embedding efficiency (number of
random message bits embedded per embedding change) are less likely to be success-
fully attacked than schemes with a lower embedding efficiency.

The first general methodology to improving embedding efficiency of data hiding
schemes was described by Crandall [15] who proposed an approach using covering
codes (Matrix Embedding). This idea was later made popular by Westfeld in his F5
algorithm [2]. A formal equivalence between embedding schemes and covering codes
is due to Galand and Kabatiansky [16]. From their work, we know that the number of
messages that can be communicated by making at most l changes in a binary vector of
length k is bounded from above by 2kh(l/k), where h(x) = – xlog2(x) – (1–x)log2(1–x),
assuming k→∞ and l/k = const.<1/2. Additionally, they pointed out that embedding
schemes based on random linear coverings asymptotically achieve this bound, which
means that the bound is tight.

Using this result, we can now derive an upper bound on the embedding efficiency,
which is defined as the ratio between the payload length m and the number of embed-
ding changes l. Let H be the m×k binary matrix from (3). Assuming the Hamming
weight of v is at most l (i.e., we perform up to l embedding changes out of k possible
changes), we have for the payload length m, m ≤ k h(l/k), or

1
/

h (/)
m m k
l m k−
≤ , (8)

where h–1 is the inverse of h on [0,1/2].

4.1 Block Minimal Method

In general, the problem of finding a solution to (3) with the minimum Hamming
weight is an NP complete problem. For a very small m, however, it is possible to find
the minimal Hamming weight solution quickly using brute force. This suggests ap-
plying the method of Section 2 on small blocks. The sender and receiver agree on a
small integer p (e.g., p<20) and using the stego key divide the cover object into nB =
m/p disjoint random blocks of cardinality n/nB = pn/m. Each block will contain on
average rpn/m = pk/m changeable elements (for simplicity we assume the quantities
above are all integers). The sender will use a random binary p×pn/m matrix DB for
embedding up to p bits in each block as follows.

Let HB be a submatrix of DB with columns corresponding to changeable elements
and C1 be the set of unique columns of HB. Note that HB will in general be different
for different blocks. For two sets C, C' of binary vectors from {0,1}p, we define
C ⊕ C' = {x∈{0,1}p| x = c + c', c∈C, c'∈C'}, arithmetic in GF(2). Messages s∈C1 can
be communicated using one change, messages s∈C2=C1⊕C1–C1 using two changes,
in general, messages s∈Ci=Ci–1⊕C1–(C1∪…∪Ci–1) using i changes2. If 1

p
i=∪ Ci =

{0,1}p, which happens if and only if rank(HB)=p, the system HBv = z will have a solu-
tion for all z∈{0,1}p. The probability of this is 1–O(2p(1–k/m)), which quickly ap-
proaches 1 with decreasing message length m (for p and k fixed) or with increasing p
(for m and k fixed) because m < k.

The average number of changes, lp, in each block can be obtained as

1

(, ,) {| |} 2 {| |}
p

p
p i

i

l r k m E iE C−

=

= = ∑v , (9)

where the expected value is taken over random messages and p×pn/m matrices DB
from which columns are selected with probability r (to obtain HB). Since the number
of columns in HB is approximately pk/m, lp is mostly a function of the ratio k/m rather
than the specific values of r, k, or m. From Fig. 2, we see that the embedding effi-
ciency p/lp increases with shorter messages (larger k/m) for a fixed p and it also in-
creases in a curious non-monotonic manner with increasing p for k/m fixed. In gen-
eral, one should use as large p as possible. In theory, when p=m, we would obtain the
optimal solution with the smallest Hamming weight. However, a practical limit on the
largest usable p is imposed by a rapidly increasing computational complexity. The
most expensive operation in determining the set Ci is the term Ci–1⊕C1, which may
require up to p22p–2 bit XOR operations. To obtain reasonable running times, we rec-
ommend p ≤ 18 (see Table 2 generated on a PC equipped with a 3.5GHz Pentium IV).
We also note that the WPC based on random linear codes (Section 2) or LT process
(Section3) achieves embedding efficiency of only about 2.

2 The symbol ‘–‘ stands for the set difference.

Table 2. Embedding time (in seconds) for n=106, k=5×104 for Block Minimal method.

k/m 2 3 4 5 6 7 8 9 10
p=16 2.86 1.72 1.24 0.92 0.76 0.64 0.52 0.42 0.43
p=17 8.80 5.38 3.78 3.01 2.50 2.18 1.60 1.53 1.45
p=18 27.92 17.53 12.41 9.67 7.87 7.54 5.87 5.66 4.83

2 4 6 8 10 12 14 16 18 20 2

3

4

5

6

7

8

9

k/m

p/lp

Bound
p = 18
p = 17
p = 16
p = 15
p = 14
p = 13
p = 12
p = 11
p = 10
p = 9
p = 8
p = 7
p = 6
p = 5
p = 4

Fig. 2. Embedding efficiency for Block Minimal method as a function of k/m for various p and
r=1/20. The upper bound is given by (8).

For small k/m, the probability that rank(HB)<p may become large enough to encoun-
ter a failure to embed in certain blocks. For example, for p = 18 and k/m = 2,
Prob(rank(HB)<18) ≈ 0.003. We note that this problem is not an issue for k/m>3 as
this probability is very small. The encoder needs to communicate the number of bits
embedded in each block. Let us assume k, n, and m are fixed. For the i-th block, let pi
be the largest integer for which the first pi rows of HB form a matrix of rank pi. Fur-
thermore, let f(q), q = p, p–1, …, 0, be the probability distribution of pi over the
blocks and random matrices HB. The information necessary to communicate pi is H(f),
the entropy3 of f. The average number of bits that can be encoded per block is thus
E(f)–H(f) ≤ p because E(f) ≤ p. Thus, the pure payload m’ = m(E(f)–H(f))/p that can be
embedded is slightly smaller than m. From Table 3, we see that this loss is negligible
for k/m ≥ 2. It also limits the Block Minimal method to cases with k/m > 1.4 (i.e., the

3 In practice, the compressed bit-stream will be slightly larger than H(f). Since f is not known to

the decoder beforehand, adaptive coders, such as adaptive arithmetic coder, should be used.

method cannot be used when the payload is longer than roughly 70% of the maximal
embeddable message).

Table 3. Capacity loss for n=106, k=50000, p=18, for Block Minimal method.

k/m 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 3
k/m’ 1.42 1.42 1.44 1.49 1.56 1.63 1.72 1.81 1.90 2.006 3.000

From the practical point of view, the sequence pi should be compressed and then
embedded, for example, one bit per block, as the first bit in each block. The decoder
first extracts p bits from each block, decompresses the bit sequence formed by the
first bits from each block, reads pi for all blocks, and then discards p–pi bits from the
end of each block message chunk.

In Fig. 3, we show the embedding efficiency p/lp as a function of k/m for p=18 and
compare the performance to other approaches. The graph takes into account the ca-
pacity loss discussed in the paragraph above.

2 4 6 8 10 12 14
2

3

4

5

6

7

8

9

k/m

LTC
Matrix Embedding (1,2q–1,q)
Upper bound
Block Minimal (p=18)

p/lp

Fig. 3. Embedding efficiency as a function of the ratio k/m for n = 106, k = 5×104. The curves
show the upper bound (8), Matrix Embedding for q = 1, …, 6 (assuming all n elements can be
changed or k = n), Block Minimal, and the LTC algorithm (see Section 4.2).

We note that this approach can be considered as some stochastic form of matrix
embedding. In matrix embedding, all cover elements can be modified, which means
the encoder can for example choose DB to be the p×(2p–1) parity check matrix of a
binary Hamming code [2] and always have at most one embedding change
(C1={0,1}p) to embed p bits in 2p–1 pixels – matrix embedding (1, 2p–1, p). In our
application, however, we work with HB, which is obtained as a submatrix of DB de-
fined by the selection channel. Thus, we cannot guarantee that C1={0,1}p and have to
allow more than one embedding change.

4.2 Improving Embedding Efficiency with LT Process (LTC algorithm)

In this section, we present a few simple modification of the matrix LT process with
the goal to decrease the Hamming weight of the obtained solution without signifi-
cantly increasing the computational complexity. Recalling Section 3.2, if the columns
of D follow the RSD, the system Hv = z can be brought to the form [, '] =� �U H v z ,
where U is an m×m upper triangular matrix, 'H is a binary m×(k–m) matrix, and v� ,
�z are correspondingly permuted vectors v and z. By setting iv� = 0 for i > m and solv-

ing the rest using back substitution, we have w() ≈v� m/2 (assuming random message
bits independent of the cover), which gives an embedding efficiency of roughly 2.

There are several avenues to be explored to improve the embedding efficiency.
First, the shorter the message, the more choices will the encoder have for selecting the
columns in the matrix LT process and thus “steer” the algorithm to decrease w()�v .
Second, the RSD was derived for the case when k=βm. It is quite possible that for
shorter messages, some other distribution will be more suitable for our goal. Note that
this problem does not have any equivalent for the erasure codes because there is no
need to collect more than the minimal necessary number of symbols for decoding. We
postpone the question of the column weight distribution to our future research and in
this section only briefly investigate the first option.
Recall that in the i-th step in the matrix LT process on H, we select a column c in H
with wi(c) = 1. The set of columns c with wi(c) = 1 will be called ripple at the i-th step
(note the difference in terminology as used in [13]). Note that if 0,iz =� for all i > i0,
the matrix LT process can be stopped after i0 steps because we can set 0iv =� , i > i0.
Also, the smaller the index i0, the more zeros there will be in �v . Thus, in our choice
of columns from the ripple we should prefer columns c, where the 1 is in row j for
which jz� = 1. This way, all 1’s in �z will hopefully be “depleted” sooner, producing
a smaller i0 and thus a solution with a smaller Hamming weight. To further utilize the
remaining degree of freedom in our choice of columns from the ripple, it is advanta-
geous to prefer denser columns in steps i<i0, while preferring sparser columns in steps
i≥i0. An explanation of this “recipe” is skipped due to lack of space in this paper.

Because the LT process has no effect on w()�z = w(z), we must have i0 ≥ w(z). In
the best case when i0 = w(z), the expected value of w()�v will be approximately
w(z)/2 (assuming U is random). Because the expected value of w(z) taken over ran-
dom messages is m/2, we cannot obtain better embedding efficiency than 4.

To further improve the efficiency, we observe that the smaller the w(z), the
smaller the w()�v . Thus, it might be possible to reduce w(z) before the LT process
starts by adding selected columns of H to z. Keeping in mind that we need to preserve
the low computational complexity of the matrix LT process, we propose the follow-
ing simple and intuitive preprocessing step. Before starting the matrix LT process, we
search for a column c in H such that w(z–c) < w(z) – log2(m). If such columns exist,
we choose the one leading to the smallest Hamming weight w(z–c). We subtract c
from z, remove it from H, assign 1 to the corresponding component of v, and search
for another column. This is repeated until no such column can be found. The term

log2(m) is our ad hoc choice that gave us a good compromise between a small in-
crease in computational complexity and performance improvement. Note that the
embedding rate can now grow without a limit for increasing k/m because the prob-
ability of finding a well-fitting column increases with increasing k/m.

The embedding efficiency of the LTC algorithm, that includes some other minor
improvements not described in this paper, is shown in Fig. 3. Its computational com-
plexity is roughly comparable to the matrix LT process of Section 3.

We note that there are other simple measures that can be adopted to further im-
prove the performance of the matrix LT process. For example, our preliminary ex-
periments indicate that allowing occasional row adding during the matrix LT process
has the potential to improve the embedding efficiency as well as significantly in-
crease the probability of a successful pass. This issue is part of our future research.

We close this section with an observation that in steganography there is another
possibility to minimize the impact of embedding changes different from increasing
the embedding efficiency. Depending on the selection criteria applied by the sender,
each changeable element can be assigned a numerical value, or changeability score,
that somehow captures how undetectable the modification of that element is. For
example, elements in highly textured areas of the cover image may have a higher
score than elements in less textured areas. For short messages of length m, one may
be better off (depending on the score distribution) narrowing the set of changeable
elements from k to those k’ = βm elements with the highest score instead of maximiz-
ing the embedding efficiency with k changeable elements, k >> m.

5 Applications in Steganography

Wet paper codes free the sender from having to consider the problem of communicat-
ing the selection channel to the recipient and thus they give him complete freedom in
choosing the placement of embedding modifications. In adaptive steganography, for
example, because the act of embedding itself modifies the cover, special care usually
needs to be taken to make sure that the recipient identifies the same selection channel.
WPCs not only solve this problem but also allow the sender to use selection channels
that are in principle unavailable to the recipient and thus any attacker, such as chan-
nels determined from a high-resolution (or unquantized) version of the cover (see
Perturbed Quantization Steganography [5] for more details).

Public key steganography [1] also benefits from WPCs because they enable mes-
sage extraction without revealing any information about the selection channel. Thus,
the matrix D can be made public to allow everybody to extract from the stego object a
message potentially encrypted using an asymmetric cryptography without revealing
any information about the placement of the embedding changes. Additionally, be-
cause each message bit is extracted as an XOR of many elements (e.g., ln(k/δ) ele-
ments for the implementation using the matrix LT process), the “power of parity” [1]
further helps mask the presence of secret message.

Another interesting application is the possibility to construct steganographic
methods that cannot be subjected to brute force stego key searches of the type [17]
because the embedding can contain an element of true randomness.

Lastly, we mention data hiding in binary images. In [18], the sender first identifies
the set of “flippable” pixels that can be modified for embedding. Because the act of
embedding itself modifies the pixel “flippability” status, the set of flippable pixels
can not be shared with the recipient. To solve this problem, Wu proposed block em-
bedding combined with random shuffling. The block embedding however, leaves
most of the flippable pixels unused, leaving only a fraction of the embedding capacity
for the payload. Because this situation exactly corresponds to writing on wet paper,
the capacity of this data embedding method can be dramatically improved using
WPCs [19]. In this application, the WPCs with improved embedding efficiency (Sec-
tion 4) are particularly important as they help decrease the visual impact of embed-
ding.

6 Summary

Wet paper codes enable steganography with non-shared (arbitrary) selection chan-
nels. In this paper, we describe a new approach (the matrix LT process) to wet paper
codes using the apparatus developed for irregular low-density parity check erasure
codes called LT codes. The new approach offers greatly simplified implementation
and a substantially decreased computational complexity. We also present a few sim-
ple modifications of the matrix LT process to improve the embedding efficiency
while preserving its low computational complexity. Additionally, we introduce an-
other, different, approach to wet paper codes called Block Minimal embedding that
provides significantly improved embedding efficiency and also enjoys low computa-
tional complexity suitable for steganographic applications. Finally, we briefly discuss
a few applications to steganography and data embedding.

Acknowledgements

The work on this paper was supported by Air Force Research Laboratory, Air Force
Material Command, USAF, under the research grants number FA8750-04-1-0112 and
F30602-02-2-0093. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation there on.
The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies, either expressed or
implied, of Air Force Research Laboratory, or the U. S. Government. Special thanks
belong to Petr Lisoněk for directing our attention to LT codes.

References

1. Anderson, R.J. and Petitcolas, F.A.P.: “On the Limits of Steganography”. IEEE Journal of
Selected Areas in Communications. Special Issue on Copyright and Privacy Protection, vol.
16(4) (1998) 474−481

2. Westfeld, A. “High Capacity Despite Better Steganalysis (F5–A Steganographic Algo-
rithm)”. In: Moskowitz, I.S. (ed.): Information Hiding. 4th International Workshop. Lecture
Notes in Computer Science, vol. 2137. Springer-Verlag, Berlin Heidelberg New York
(2001) 289–302

3. Karahan, M., Topkara, U., Atallah, M., Taskiran, C., Lin, E., and Delp, E.: “A Hierarchical
Protocol for Increasing the Stealthiness of Steganographic Methods”. Proc. ACM Multime-
dia and Security Workshop. Magdeburg Germany (2004) 16–24

4. Westfeld, A. and Böhme, R.: “Exploiting Preserved Statistics for Steganalysis”. In:
Fridrich, J. (ed.): Information Hiding. 6th International Workshop. Lecture Notes in Com-
puter Science, vol. 3200. Springer-Verlag, Berlin Heidelberg New York (2004) 67–81

5. Fridrich, J., Goljan, M., and Soukal, D.: “Perturbed Quantization Steganography with Wet
Paper Codes”. Proc. ACM Multimedia and Security Workshop. Magdeburg Germany
(2004) 4–15

6. Fridrich, J., Goljan, M., Lisoněk, P., and Soukal, D.: “Writing on Wet Paper”, (journal
version) to appear in IEEE Trans. on Sig. Proc. Special Issue on Media Security (2005)

7. Fridrich, J., Goljan, M., Lisoněk, P., and Soukal, D.: “Writing on Wet Paper”, Proc. SPIE,
Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents
VII. San Jose (2005) 328–340

8. Kuznetsov, A.V. and Tsybakov, B.S.: “Coding in a Memory with Defective Cells”. Probl.
Inform. Transmission, vol. 10. (1974) 132–138

9. Gelfand, S.I. and Pinsker, M.S.: “Coding for Channel with Random Parameters”. Probl.
Pered. Inform. (Probl. Inform. Transm.), vol. 9(1). (1980) 19–31

10. Zamir, R., Shamai, S., and Erez, U.: “Nested Linear/Lattice Codes for Structured Multiter-
minal Binning”. IEEE Trans. Inf. Th., vol. 48(6). (2002) 1250–1276

11. Heegard, C.: “Partitioned Linear Block Codes for Computer Memory with ‘Stuck-at’ De-
fects”. IEEE Trans. Inf. Th. vol. 29. (1983) 831–842

12. Heegard, C. and El-Gamal, A.: “On the Capacity of Computer Memory with Defects”.
IEEE Trans. Inf. Th., vol. 29. (1983) 731–739

13. Luby, M.: “LT Codes”, Proc. The 43rd Annual IEEE Symposium on Foundations of Com-
puter Science. (2002) 271–282

14. Brent, R.P., Gao, S., and Lauder, A.G.B.: “Random Krylov Spaces Over Finite Fields”.
SIAM J. Discrete Math. vol. 16(2). (2003) 276–287

15. Crandall, R.: “Some Notes on Steganography”. Posted on Steganography Mailing List.
http://os.inf.tu-dresden.de/~westfeld/crandall.pdf (1998)

16. Galand, F. and Kabatiansky, G.: “Information Hiding by Coverings”. Proc. ITW2003. Paris
France (2003) 151–154

17. Fridrich, J., Goljan, M., Soukal, D., and Holotyak, T.: “Forensic Steganalysis: Determining
the Stego Key in Spatial Domain Steganography”. Proc. SPIE, Electronic Imaging, Secu-
rity, Steganography, and Watermarking of Multimedia Contents VII. San Jose (2005) 631–
642

18. Wu, M., Tang E., and Liu B., “Data Hiding in Digital Binary Image”. Proc. Conf. on Mul-
timedia & Expo (CD version). New York (2000)

19. Wu, M., Fridrich, J., Goljan, M., and Gou, H.: “Data Hiding in Digital Binary Images: A
Revisit”. Proc. SPIE, Electronic Imaging, Security, Steganography, and Watermarking of
Multimedia Contents VII. San Jose (2005) 194–205

