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Abstract. Wet paper codes were proposed as a tool for constructing steg-
anographic schemes with an arbitrary selection channel that is not shared be-
tween the sender and the recipient. In this paper, we describe new approaches 
to wet paper codes that enjoy low computational complexity and improved em-
bedding efficiency (number of message bits per embedding change). Some ap-
plications of wet paper codes to steganography and data embedding in binary 
images are discussed. 

1 Introduction 

The placement of embedding changes in the cover object is called the selection chan-
nel [1]. This channel is often constructed from a secret shared between the sender and 
the recipient (e.g., pseudo-random straddling [2]) and may also depend on the cover 
object itself (adaptive embedding [3]). In general, it is in the interest of both commu-
nicating parties not to reveal any information or as little as possible about the embed-
ding changes as this knowledge can help an attacker [4]. Since the sender’s main 
objective is to minimize the detectability of the hidden data, he may construct the 
selection channel using the knowledge of the cover and any other available side in-
formation, such as a high-resolution (or unquantized) version of the cover [5]. An-
other possibility is to determine the best selection channel by iteratively running 
known steganalysis algorithms on the stego object. An obvious problem here is that 
the recipient may not be able to determine the same selection channel and read the 
message because he does not have access to the cover object or any side information. 

The non-shared selection channel in steganography has been called “writing on 
wet paper” [5–7]. To explain the metaphor, imagine that the cover object X is an 
image that was exposed to rain and the sender can only slightly modify the dry spots 
of X (the selection channel) but not the wet spots. During transmission, the stego 
image Y dries out and thus the recipient does not know which pixels the sender used 
(the recipient has no information about the dry pixels). Codes for writing on wet 
paper that are suitable for steganographic applications (in the sense explained below) 
are called wet paper codes (WPCs).  

The problem of non-shared selection channels in steganography is equivalent to 
“writing in memory with defective cells” introduced by Tsybakov et al. [8]. A mem-
ory contains n cells out of which n–k cells are permanently stuck at either 0 or 1. The 



writing device knows the locations and status of the stuck cells. The task is to write as 
many bits as possible into the memory (up to k) so that the reading device, that does 
not have any information about the stuck cells, can correctly read the data. Clearly, 
writing on wet paper is formally equivalent to writing in memories with stuck cell 
(stuck cells = wet pixels). 

The defective memory is a special case of the Gelfand-Pinsker channel with in-
formed sender [9]. The Shannon capacity of defective memory with n–k stuck cells is 
asymptotically k/n per cell, a fact that is also easily established using random binning 
[10]. A generalized version of this channel that allows for randomly flipped cells in 
addition to stuck cells was studied by Heegard et al. [11,12] who proposed partitioned 
linear block codes, later recognized as instances of nested linear codes [10], and 
proved that these codes achieve Shannon capacity. However, in passive warden steg-
anography, which is the subject of this paper, we will only need codes for the noise-
free case. 

For memory cells drawn from an alphabet of q symbols, maximum distance sepa-
rable (MDS) codes, such as Reed-Solomon codes, can be used to construct a parti-
tioned linear code achieving the channel capacity [10]. Each coset of a [n, n–k, k+1] 
linear MDS code contains all symbol patterns of any n–k stuck cells. Since this code 
contains qk cosets, they can be indexed with all possible messages consisting of k 
symbols. One can then communicate k message symbols by first selecting an appro-
priate coset and finding in this coset a word with the same pattern of stuck n–k cells 
as in the memory. Since this word is compatible with the memory defects, it can be 
written to the memory. The k message symbols are extracted from the index of the 
coset to which the word belongs. This approach, however, would be inefficient for 
our application. By grouping bits into q-ary symbols, the number of stuck symbols 
could drastically increase when the number of stuck bits is not small, which is often 
the case in steganographic applications. 

There are three main differences in requirements between coding for defective 
memory and coding for wet paper steganography. First, the number of wet pixels can 
be quite large (e.g., 90% or more). Second, the number of wet pixels varies signifi-
cantly with the stego method and for different instances of the cover object. This 
makes it difficult to assume an upper bound on the rate r = k/n without sacrificing 
embedding capacity. Third, fortunately, steganographic applications are often run off 
line and do not require real time performance. It is quite acceptable to spend 2 sec-
onds to embed a 10000-bit payload, but it is not acceptable to spend this time writing 
data into memory. 

With these differences in mind, in [5,6] the authors proposed variable-rate random 
linear codes and showed that these codes asymptotically (and quickly) reach the 
channel capacity. They also described a practical implementation using Gaussian 
elimination on disjoint pseudo-random subsets of fixed size. We briefly summarize 
this approach to WPCs in Section 2. In the first method of this paper in Section 3, we 
follow the same approach but propose a different realization by imposing certain 
stochastic structure on the columns of the parity check matrix to be able to utilize the 
apparatus of LT codes [13]. This approach offers greatly simplified implementation, 
lower computational complexity, and improved embedding efficiency. In Section 4, 
we apply the method of Section 2 to very small blocks with a goal to further improve 



the embedding efficiency for short messages in a manner somewhat similar to matrix 
embedding [15]. A few applications of WPCs in steganography and fragile water-
marking are discussed in Section 5. The paper is summarized in Section 6. 

2 Random Linear Codes for Writing on Wet Paper 

Let us assume that the cover object X consists of n elements n
iix 1}{ = , xi∈J, where J is 

the range of discrete values for xi. For example, for an 8-bit grayscale image repre-
sented in the spatial domain, J = {0, 1, …, 255} and n is the number of pixels in X. 
The sender selects k changeable elements xj, j∈C ⊂ {1, 2, …, n}, |C|=k, which is the 
selection channel. The changeable elements may be used and modified independently 
from each other by the sender to communicate a secret message to the recipient, while 
the remaining elements are not modified during embedding. 

It is further assumed that the sender and the recipient agree on a public symbol 
function S, which is a mapping S: J→F , where F  is a finite field of q symbols. Al-
though we do not consider it in this paper, S could in principle depend on the element 
position in X and a secret stego key shared by the sender and the recipient. For sim-
plicity, the reader can assume that F  is the Galois Field GF(2) and S(x) the LSB of x 
(Least Significant Bit). 

During embedding, the sender either leaves the changeable elements xj, j∈C, un-
modified or replaces xj with some element yj to modify its symbol from S(xj) to S(yj). 
The vector of cover object symbols bx = (S(x1), …, S(xn))T changes to by = 
(S(y1), …, S(yn))T, where “T” denotes transposition. To communicate m symbols 
s = (s1, …, sm)T, si∈ F , the sender modifies the changeable elements xj, j∈C, so that 

 
Dby= s ,          (1) 

 
where D is an m×n matrix with elements from F  shared by the sender and the recipi-
ent. Thus, similar to the coset coding approach by Heegard [11], the recipient reads 
the message as the syndrome of the received symbol vector by with the parity check 
matrix D. Heegard chose D to guarantee that (1) has a solution for any pattern of n–k 
stuck cells. In [5,6], the authors showed that the high volatility of k among steg-
anographic schemes and over different covers can be well handled by randomizing 
Heegard’s approach and choosing D as a pseudo-random m×n matrix D generated 
from a stego key. 

To study the solvability of (1) for pseudo-random matrices D, (1) is rewritten to 
 

Dv = s – Dbx          (2) 
 
using the variable v = by–bx with non-zero elements corresponding to the symbols the 
sender must change to satisfy (1). In (2), there are k unknowns vj, j∈C, while the 
remaining n – k values vi, i∉C, are zeros. Thus, on the left hand side, the sender can 
remove from D all n – k columns i, i∉C, and also remove from v all n – k elements vi 
with i∉C. Keeping the same symbol for v, (2) now becomes 



 
Hv = z,           (3) 

 
where H is an m×k matrix consisting of those columns of D corresponding to indices 
C, v is an unknown k×1 vector, and z = s – Dbx is the k×1 right hand side. Thus, the 
sender needs to solve a system of m linear equations with k unknowns in F . The 
probability that (1) will have a solution for an arbitrary message s is equal to the 
probability that rank(D)=m. The rank of random rectangular matrices over finite 
fields was studied in [14]. In particular, the probability P(rank(D)=m) = 1–O(qm–k) 
with decreasing m, m < k, k fixed. 

Let us assume that the sender always tries to embed as many symbols as possible 
by adding rows to D while (3) still has a solution. It can be shown [6] that for random 
binary matrices whose elements are iid realizations of a random variable that is uni-
formly distributed in {0,1}, the average maximum message length mmax that can be 
communicated in this manner is 

 
mmax = k + O(2–k/4)         (4) 

 
as k goes to infinity, k < n. A similar result can be established in the same manner for 
a finite field F  with q symbols. Thus, this variable-rate random linear code asymp-
totically (and quickly) reaches the Shannon capacity of our channel. 

The main complexity of this communication is on the sender’s side, who needs to 
solve m linear equations for k unknowns in F. Assuming that the maximal length 
message m = k is sent, the complexity of Gaussian elimination for (3) is O(k 3), which 
would lead to impractical performance for large payloads, such as k > 105. In [5], the 
authors proposed to divide the cover object into n/nB disjoint random subsets (deter-
mined from the shared stego key) of a fixed, predetermined size nB and then perform 
the embedding for each subset separately. The complexity of embedding is propor-
tional to n/nB(knB/n)3 = nr3nB

2, where r = k/n is the rate, and is thus linear in the num-
ber of cover object elements, albeit with a large constant. 

By imposing a special stochastic structure on the columns of D, we show in the 
next section that it is possible to use the LT process to solve (3) in a much more effi-
cient manner with a simpler implementation that fits well the requirements for steg-
anographic applications formulated in the introduction. 

3 Realization of Wet Paper Codes Using the LT Process 

3.1  LT Codes 

In this section, we briefly review LT codes and their properties relevant for our appli-
cation, referring the reader to [13] for more details. LT codes are universal erasure 
codes with low encoding and decoding complexity that asymptotically approach the 
Shannon capacity of the erasure channel. For simplicity, we only use binary symbols 
noting that the codes can work without any modification with l-bit symbols. The best 
way to describe the encoding process is using a bipartite graph (see an example in 
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Fig. 1) with w message bits on the left and W encoding bits on the right. Each encod-
ing bit is obtained as an XOR of approximately O(ln(w/δ)) randomly selected mes-
sage bits that are connected to it in the graph. The graph is generated randomly so that 
the degrees of encoding nodes follow so-called robust soliton distribution (RSD). The 
probability that an encoding node has degree i, is (ρi +τi)/β, where 
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and R = c ln(w/δ) w  for some suitably chosen constants δ and c. It is possible to 
uniquely determine all w message bits with probability better than 1–δ from an arbi-
trary set of W encoding bits as long as 
 

2( ln ( / )).W w w O w wβ δ> = +        (6) 

 
             

 

1 0 1 0 0
1 0 0 0 1
1 1 0 0 0
0 1 1 1 0
1 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 1 0 0 1

 
 
 
 
 
 =  
 
 
 
  
 

A  

Fig. 1. Left: Bipartite graph with 5 message symbols and 8 encoding symbols. Right: Its bi-
adjacency matrix. 
 
The encoding bits can also be obtained from message bits using matrix multiplication 
in GF(2) with the bi-adjacency binary matrix A (Fig. 1). The decoding can be obvi-
ously done by solving a system of W linear equations with w unknowns – the message 
bits. The RSD allows solving the linear system by repeating the following simple 
operation (the LT process): 

Find an encoding bit that has only one edge (encoding bit E7 in Fig. 1). Its asso-
ciated message bit (M3) must be equal to this encoding bit. As the message bit is 
now known, we can XOR it with all encoding bits that are connected to it (E1 and 
E4) and remove it and all its edges from the graph. In doing so, new encoding 
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nodes of degree one (E1) may be created. This process is repeated till all message 
bits are recovered. 

The decoding process fails if, at some point, there are no encoding bits of degree 1, 
while there are still some undetermined message bits. The RSD was derived so that 
the probability of failure of the LT process to recover all message bits is smaller than 
δ. The decoding requires on average O(w ln(w/δ)) operations. 

3.2 Matrix LT Process 

We can consider the LT process as a method for a fast solution of an over-determined 
system of equations Ax = y with a random matrix A for which the Hamming weights 
of its rows follow the RSD. However, we cannot use it directly to solve (3) because 
(3) is under-determined and we are seeking one solution, possibly out of many solu-
tions. In addition, because H was obtained from D by removing columns, H inherits 
the distribution of Hamming weights of columns from D but not the distribution of its 
rows. However, as explained in detail below, the LT process can be used to quickly 
bring H to the upper triangular form simply by permuting its rows and columns. Once 
in this form, (3) is solved using a back substitution. 

The LT process on the bipartite graph induces the following row/column swapping 
process on its bi-adjacency matrix A. For an n-dimensional binary vector r, let wj(r) 
denote the Hamming weight of (rj, …, rn) (e.g., w1(r) ≡ w(r) is the usual Hamming 
weight of r). We first find a row r in A with w1(r) = 1 (say, the 1 is in the j1-th col-
umn) and exchange it with the first row. Then, we exchange the 1st and the j1-th un-
knowns (swapping the 1st and j1-th columns). At this point in the LT process, the 
value of the unknown No. 1 is determined from the first equation. In the matrix proc-
ess, however, we do not evaluate the unknowns because we are only interested in 
bringing A to a lower triangular form by permuting its rows and columns. Continuing 
the process, we search for another row r with w2(r) = 1 (say, the 1 is in the j2-th col-
umn). If the LT process proceeds successfully, we must be able to do so. We swap 
this row with the second row and swap the 2nd and j2-th columns. We continue in this 
way, now looking for a row r with w3(r) = 1, etc. At the end of this process, the per-
muted matrix A will be lower diagonal with ones on its main diagonal. 

Returning to the WPC of Section 2, we need to solve the system Hv = z with m 
equations for k unknowns, m < k. By applying the above process of row and column 
permutations to HT, we bring H to the form [U, H′], where U is a square m×m upper 
triangular matrix with ones on its main diagonal and H′ is a binary m×(k–m) matrix. 
We can work directly with H if we replace in the algorithm above the word ‘row’ 
with ‘column’ and vice versa1. In order for this to work, however, the Hamming 
weights of columns of H must follow the RSD and the message length m must satisfy 
(from (6)) 

 
2( ln ( / ))k m m O m mβ δ> = + .       (7) 

                                                           
1 To distinguish this process, which pertains to a binary matrix, from the original LT process 

designed for bi-partite graphs, we call it the “matrix LT process”. 



 
This means that there is a small capacity loss of 2( ln ( / ))O m m δ  in exchange for 
solving (3) quickly using the matrix LT process. This loss depends on the public 
parameters c and δ. Since the bounds in Luby’s analysis are not tight, we experi-
mented with a larger range for δ, ignoring its probabilistic interpretation. We discov-
ered that it was advantageous to set δ to a much larger number (e.g., δ = 5) and, if 
necessary, repeat the encoding process with a slightly larger matrix D till a successful 
pass through the LT process is obtained. For c = 0.1, the capacity loss was about 10% 
(β = 1.1) of k for k=1500 with probability of successful encoding about 50%. This 
probability increases and capacity loss decreases with increasing k (see Table 1). 

To assess the encoding and decoding complexity, let us assume that the maximal 
length message is sent, m ≈ k/β. The density of 1’s in D (and thus in H) is 
O(ln(k/δ)/k). Therefore, the encoding complexity of the WPC implemented using the 
LT process is O(n ln(k/δ) + k ln(k/δ)) = O(n ln(k/δ)). The first term arises from evalu-
ating the product Dbx, while the second term is the complexity of the LT process. 
This is a significant savings compared to solving (3) using Gaussian elimination. The 
decoding complexity is O(n ln(k/δ)), which corresponds to evaluating the product 
Dby. 

 
Table 1. Running time (in seconds) for solving k×k and k×βk linear systems using Gaussian 
elimination and matrix LT process (c = 0.1, δ = 5); P is the probability of a successful pass. 

k Gauss    LT     β    P 
1000 0.023 0.008 1.098 43% 

10000 17.4 0.177 1.062 75% 
30000 302 0.705 1.047 82% 

100000 9320 3.10 1.033 90% 
 
The performance comparison between solving (3) using Gaussian elimination and 

the matrix LT process is shown in Table 1. The steeply increasing complexity of 
Gaussian elimination necessitates dividing the cover object into subsets as in [5]. The 
LT process, however, enables solving (3) for the whole object at once, which greatly 
simplifies implementation and decreases computational complexity at the same time. 
In addition, as will be seen in Section 4, the matrix LT process can modified to im-
prove the embedding efficiency. 

3.3  Communicating the Message Length 

Note that for the matrix LT process, the Hamming weights of columns of H (and thus 
D) must follow the RSD that depends on m, which is unavailable to the decoder. 
Below, we show a simple solution to this problem, although other alternatives exist.  

Let us assume that the parameter m can be encoded using h bits (in practice, h~20 
should be sufficient). Using the stego key, the sender divides the cover X into two 
pseudo-random disjoint subsets Xh and X–Xh and communicates h bits using elements 
from Xh and the main message using elements from X–Xh. We must make sure that Xh 



will contain at least h changeable elements, which can be arranged for by requesting 
that |Xh| be a few percent larger than h/rmin, where rmin is the minimal value of the rate 
r=k/n that can be typically encountered (this depends on the specifics of the steg-
anographic scheme and properties of the covers). Then, using the stego key the 
sender generates a pseudo-random h×|Xh| binary matrix Dh with density of 1’s equal 
to ½. The sender embeds h bits in Xh by solving the WPC equations (3) with matrix 
Dh using a simple Gaussian elimination, which will be fast because Dh has a small 
number of rows. The message bits are hidden in X–Xh using the matrix LT process 
with matrix D generated from the stego key using the parameter m. 

The decoder first uses his stego key (and the knowledge of h and rmin) to determine 
the subset Xh and the matrix Dh. Then, the decoder extracts m (h bits) as the syndrome 
(1) with matrix Dh and the symbol vector obtained from Xh. Knowing m, the decoder 
now generates D and extracts the message bits as a syndrome (1) with matrix D and 
the symbol vector obtained from X–Xh. 

4    Embedding Efficiency 

The number of embedding changes in the cover object influences the detectability of 
hidden data in a major manner. The smaller the number of changes, the smaller the 
chance that any statistics used by an attacker will be disrupted enough to mount a 
successful attack. Thus, schemes with a higher embedding efficiency (number of 
random message bits embedded per embedding change) are less likely to be success-
fully attacked than schemes with a lower embedding efficiency. 

The first general methodology to improving embedding efficiency of data hiding 
schemes was described by Crandall [15] who proposed an approach using covering 
codes (Matrix Embedding). This idea was later made popular by Westfeld in his F5 
algorithm [2]. A formal equivalence between embedding schemes and covering codes 
is due to Galand and Kabatiansky [16]. From their work, we know that the number of 
messages that can be communicated by making at most l changes in a binary vector of 
length k is bounded from above by 2kh(l/k), where h(x) = – xlog2(x) – (1–x)log2(1–x), 
assuming k→∞ and l/k = const.<1/2. Additionally, they pointed out that embedding 
schemes based on random linear coverings asymptotically achieve this bound, which 
means that the bound is tight.  

Using this result, we can now derive an upper bound on the embedding efficiency, 
which is defined as the ratio between the payload length m and the number of embed-
ding changes l. Let H be the m×k binary matrix from (3). Assuming the Hamming 
weight of v is at most l (i.e., we perform up to l embedding changes out of k possible 
changes), we have for the payload length m, m ≤ k h(l/k), or  

1
/

h ( / )
m m k
l m k−
≤ ,          (8) 

where h–1 is the inverse of h on [0,1/2]. 



4.1  Block Minimal Method 

In general, the problem of finding a solution to (3) with the minimum Hamming 
weight is an NP complete problem. For a very small m, however, it is possible to find 
the minimal Hamming weight solution quickly using brute force. This suggests ap-
plying the method of Section 2 on small blocks. The sender and receiver agree on a 
small integer p (e.g., p<20) and using the stego key divide the cover object into nB = 
m/p disjoint random blocks of cardinality n/nB = pn/m. Each block will contain on 
average rpn/m = pk/m changeable elements (for simplicity we assume the quantities 
above are all integers). The sender will use a random binary p×pn/m matrix DB for 
embedding up to p bits in each block as follows. 

Let HB be a submatrix of DB with columns corresponding to changeable elements 
and C1 be the set of unique columns of HB. Note that HB will in general be different 
for different blocks. For two sets C, C' of binary vectors from {0,1}p, we define 
C ⊕ C' = {x∈{0,1}p| x = c + c', c∈C, c'∈C'}, arithmetic in GF(2). Messages s∈C1 can 
be communicated using one change, messages s∈C2=C1⊕C1–C1 using two changes, 
in general, messages s∈Ci=Ci–1⊕C1–(C1∪…∪Ci–1) using i changes2. If 1

p
i=∪ Ci = 

{0,1}p, which happens if and only if rank(HB)=p, the system HBv = z will have a solu-
tion for all z∈{0,1}p. The probability of this is 1–O(2p(1–k/m)), which quickly ap-
proaches 1 with decreasing message length m (for p and k fixed) or with increasing p 
(for m and k fixed) because m < k. 

The average number of changes, lp, in each block can be obtained as 
 

1

( , , ) {| |} 2 {| |}
p

p
p i

i

l r k m E iE C−

=

= = ∑v ,      (9) 

 
where the expected value is taken over random messages and p×pn/m matrices DB 
from which columns are selected with probability r (to obtain HB). Since the number 
of columns in HB is approximately pk/m, lp is mostly a function of the ratio k/m rather 
than the specific values of r, k, or m. From Fig. 2, we see that the embedding effi-
ciency p/lp increases with shorter messages (larger k/m) for a fixed p and it also in-
creases in a curious non-monotonic manner with increasing p for k/m fixed. In gen-
eral, one should use as large p as possible. In theory, when p=m, we would obtain the 
optimal solution with the smallest Hamming weight. However, a practical limit on the 
largest usable p is imposed by a rapidly increasing computational complexity. The 
most expensive operation in determining the set Ci is the term Ci–1⊕C1, which may 
require up to p22p–2 bit XOR operations. To obtain reasonable running times, we rec-
ommend p ≤ 18 (see Table 2 generated on a PC equipped with a 3.5GHz Pentium IV). 
We also note that the WPC based on random linear codes (Section 2) or LT process 
(Section3) achieves embedding efficiency of only about 2. 
 
 
 
                                                           
2 The symbol ‘–‘ stands for the set difference. 



Table 2. Embedding time (in seconds) for n=106, k=5×104 for Block Minimal method. 

k/m 2 3 4 5 6 7 8 9 10 
p=16 2.86 1.72 1.24 0.92 0.76 0.64 0.52 0.42 0.43 
p=17 8.80 5.38 3.78 3.01 2.50 2.18 1.60 1.53 1.45 
p=18 27.92 17.53 12.41 9.67 7.87 7.54 5.87 5.66 4.83 
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Fig. 2. Embedding efficiency for Block Minimal method as a function of k/m for various p and 
r=1/20. The upper bound is given by (8). 

 
For small k/m, the probability that rank(HB)<p may become large enough to encoun-
ter a failure to embed in certain blocks. For example, for p = 18 and k/m = 2, 
Prob(rank(HB)<18) ≈ 0.003. We note that this problem is not an issue for k/m>3 as 
this probability is very small. The encoder needs to communicate the number of bits 
embedded in each block. Let us assume k, n, and m are fixed. For the i-th block, let pi 
be the largest integer for which the first pi rows of HB form a matrix of rank pi. Fur-
thermore, let f(q), q = p, p–1, …, 0, be the probability distribution of pi over the 
blocks and random matrices HB. The information necessary to communicate pi is H(f), 
the entropy3 of f. The average number of bits that can be encoded per block is thus 
E(f)–H(f) ≤ p because E(f) ≤ p. Thus, the pure payload m’ = m(E(f)–H(f))/p that can be 
embedded is slightly smaller than m. From Table 3, we see that this loss is negligible 
for k/m ≥ 2. It also limits the Block Minimal method to cases with k/m > 1.4 (i.e., the 

                                                           
3 In practice, the compressed bit-stream will be slightly larger than H(f). Since f is not known to 

the decoder beforehand, adaptive coders, such as adaptive arithmetic coder, should be used.  



method cannot be used when the payload is longer than roughly 70% of the maximal 
embeddable message). 
 

Table 3. Capacity loss for n=106, k=50000, p=18, for Block Minimal method. 

k/m 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 3 
k/m’ 1.42 1.42 1.44 1.49 1.56 1.63 1.72 1.81 1.90 2.006 3.000 

 
From the practical point of view, the sequence pi should be compressed and then 
embedded, for example, one bit per block, as the first bit in each block. The decoder 
first extracts p bits from each block, decompresses the bit sequence formed by the 
first bits from each block, reads pi for all blocks, and then discards p–pi bits from the 
end of each block message chunk. 

In Fig. 3, we show the embedding efficiency p/lp as a function of k/m for p=18 and 
compare the performance to other approaches. The graph takes into account the ca-
pacity loss discussed in the paragraph above. 
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Fig. 3. Embedding efficiency as a function of the ratio k/m for n = 106, k = 5×104. The curves 
show the upper bound (8), Matrix Embedding for q = 1, …, 6 (assuming all n elements can be 
changed or k = n), Block Minimal, and the LTC algorithm (see Section 4.2). 

We note that this approach can be considered as some stochastic form of matrix 
embedding. In matrix embedding, all cover elements can be modified, which means 
the encoder can for example choose DB to be the p×(2p–1) parity check matrix of a 
binary Hamming code [2] and always have at most one embedding change 
(C1={0,1}p) to embed p bits in 2p–1 pixels – matrix embedding (1, 2p–1, p). In our 
application, however, we work with HB, which is obtained as a submatrix of DB de-
fined by the selection channel. Thus, we cannot guarantee that C1={0,1}p and have to 
allow more than one embedding change. 



4.2  Improving Embedding Efficiency with LT Process (LTC algorithm) 

In this section, we present a few simple modification of the matrix LT process with 
the goal to decrease the Hamming weight of the obtained solution without signifi-
cantly increasing the computational complexity. Recalling Section 3.2, if the columns 
of D follow the RSD, the system Hv = z can be brought to the form [ , '] =� �U H v z , 
where U is an m×m upper triangular matrix, 'H  is a binary m×(k–m) matrix, and v� , 
�z  are correspondingly permuted vectors v and z. By setting iv� = 0 for i > m and solv-

ing the rest using back substitution, we have w( ) ≈v� m/2 (assuming random message 
bits independent of the cover), which gives an embedding efficiency of roughly 2. 

There are several avenues to be explored to improve the embedding efficiency. 
First, the shorter the message, the more choices will the encoder have for selecting the 
columns in the matrix LT process and thus “steer” the algorithm to decrease w( )�v . 
Second, the RSD was derived for the case when k=βm. It is quite possible that for 
shorter messages, some other distribution will be more suitable for our goal. Note that 
this problem does not have any equivalent for the erasure codes because there is no 
need to collect more than the minimal necessary number of symbols for decoding. We 
postpone the question of the column weight distribution to our future research and in 
this section only briefly investigate the first option. 
Recall that in the i-th step in the matrix LT process on H, we select a column c in H 
with wi(c) = 1. The set of columns c with wi(c) = 1 will be called ripple at the i-th step 
(note the difference in terminology as used in [13]). Note that if 0,iz =� for all i > i0, 
the matrix LT process can be stopped after i0 steps because we can set 0iv =� , i > i0. 
Also, the smaller the index i0, the more zeros there will be in �v . Thus, in our choice 
of columns from the ripple we should prefer columns c, where the 1 is in row j for 
which jz�  = 1. This way, all 1’s in �z  will hopefully be “depleted” sooner, producing 
a smaller i0 and thus a solution with a smaller Hamming weight. To further utilize the 
remaining degree of freedom in our choice of columns from the ripple, it is advanta-
geous to prefer denser columns in steps i<i0, while preferring sparser columns in steps 
i≥i0. An explanation of this “recipe” is skipped due to lack of space in this paper. 

Because the LT process has no effect on w( )�z  = w(z), we must have i0 ≥ w(z). In 
the best case when i0 = w(z), the expected value of w( )�v  will be approximately 
w(z)/2 (assuming U is random). Because the expected value of w(z) taken over ran-
dom messages is m/2, we cannot obtain better embedding efficiency than 4. 

To further improve the efficiency, we observe that the smaller the w(z), the 
smaller the w( )�v . Thus, it might be possible to reduce w(z) before the LT process 
starts by adding selected columns of H to z. Keeping in mind that we need to preserve 
the low computational complexity of the matrix LT process, we propose the follow-
ing simple and intuitive preprocessing step. Before starting the matrix LT process, we 
search for a column c in H such that w(z–c) < w(z) – log2(m). If such columns exist, 
we choose the one leading to the smallest Hamming weight w(z–c). We subtract c 
from z, remove it from H, assign 1 to the corresponding component of v, and search 
for another column. This is repeated until no such column can be found. The term 



log2(m) is our ad hoc choice that gave us a good compromise between a small in-
crease in computational complexity and performance improvement. Note that the 
embedding rate can now grow without a limit for increasing k/m because the prob-
ability of finding a well-fitting column increases with increasing k/m. 

The embedding efficiency of the LTC algorithm, that includes some other minor 
improvements not described in this paper, is shown in Fig. 3. Its computational com-
plexity is roughly comparable to the matrix LT process of Section 3. 

We note that there are other simple measures that can be adopted to further im-
prove the performance of the matrix LT process. For example, our preliminary ex-
periments indicate that allowing occasional row adding during the matrix LT process 
has the potential to improve the embedding efficiency as well as significantly in-
crease the probability of a successful pass. This issue is part of our future research. 

We close this section with an observation that in steganography there is another 
possibility to minimize the impact of embedding changes different from increasing 
the embedding efficiency. Depending on the selection criteria applied by the sender, 
each changeable element can be assigned a numerical value, or changeability score, 
that somehow captures how undetectable the modification of that element is. For 
example, elements in highly textured areas of the cover image may have a higher 
score than elements in less textured areas. For short messages of length m, one may 
be better off (depending on the score distribution) narrowing the set of changeable 
elements from k to those k’ = βm elements with the highest score instead of maximiz-
ing the embedding efficiency with k changeable elements, k >> m. 

5    Applications in Steganography 

Wet paper codes free the sender from having to consider the problem of communicat-
ing the selection channel to the recipient and thus they give him complete freedom in 
choosing the placement of embedding modifications. In adaptive steganography, for 
example, because the act of embedding itself modifies the cover, special care usually 
needs to be taken to make sure that the recipient identifies the same selection channel. 
WPCs not only solve this problem but also allow the sender to use selection channels 
that are in principle unavailable to the recipient and thus any attacker, such as chan-
nels determined from a high-resolution (or unquantized) version of the cover (see 
Perturbed Quantization Steganography [5] for more details). 

Public key steganography [1] also benefits from WPCs because they enable mes-
sage extraction without revealing any information about the selection channel. Thus, 
the matrix D can be made public to allow everybody to extract from the stego object a 
message potentially encrypted using an asymmetric cryptography without revealing 
any information about the placement of the embedding changes. Additionally, be-
cause each message bit is extracted as an XOR of many elements (e.g., ln(k/δ) ele-
ments for the implementation using the matrix LT process), the “power of parity” [1] 
further helps mask the presence of secret message. 

Another interesting application is the possibility to construct steganographic 
methods that cannot be subjected to brute force stego key searches of the type [17] 
because the embedding can contain an element of true randomness. 



Lastly, we mention data hiding in binary images. In [18], the sender first identifies 
the set of “flippable” pixels that can be modified for embedding. Because the act of 
embedding itself modifies the pixel “flippability” status, the set of flippable pixels 
can not be shared with the recipient. To solve this problem, Wu proposed block em-
bedding combined with random shuffling. The block embedding however, leaves 
most of the flippable pixels unused, leaving only a fraction of the embedding capacity 
for the payload. Because this situation exactly corresponds to writing on wet paper, 
the capacity of this data embedding method can be dramatically improved using 
WPCs [19]. In this application, the WPCs with improved embedding efficiency (Sec-
tion 4) are particularly important as they help decrease the visual impact of embed-
ding. 

6    Summary 

Wet paper codes enable steganography with non-shared (arbitrary) selection chan-
nels. In this paper, we describe a new approach (the matrix LT process) to wet paper 
codes using the apparatus developed for irregular low-density parity check erasure 
codes called LT codes. The new approach offers greatly simplified implementation 
and a substantially decreased computational complexity. We also present a few sim-
ple modifications of the matrix LT process to improve the embedding efficiency 
while preserving its low computational complexity. Additionally, we introduce an-
other, different, approach to wet paper codes called Block Minimal embedding that 
provides significantly improved embedding efficiency and also enjoys low computa-
tional complexity suitable for steganographic applications. Finally, we briefly discuss 
a few applications to steganography and data embedding. 
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