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Abstract. With the increasing number of new steganographic algo-
rithms as well as methods for detecting them, the issue of comparing
security of steganographic schemes in a fair manner is of the most im-
portance. A fair benchmark for steganography should only be dependent
on the model chosen to represent cover and stego objects. In particu-
lar, it should be independent of any specific steganalytic technique. We
first discuss the implications of this requirement and then investigate
the use of two quantities for benchmarking—the KL divergence between
the empirical probability distribution of cover and stego images and the
recently proposed two-sample statistics called Maximum Mean Discrep-
ancy (MMD). While the KL divergence is preferable for benchmarking
because it is the more fundamental quantity, we point out some practi-
cal difficulties of computing it from data obtained from a test database
of images. The MMD is well understood theoretically and numerically
stable even in high-dimensional spaces, which makes it an excellent can-
didate for benchmarking in steganography. We demonstrate the bench-
mark based on MMD on specific steganographic algorithms for the JPEG
format.

1 Introduction

Up until now, the security of steganographic systems was compared by reporting
detection results for a specific blind steganalyzer [16, 24, 6]. This is clearly unde-
sirable because the comparison is dependent on the steganalyzer feature set, the
machine learning engine (SVM, neural network, etc.), and a functional assigning
a single numerical value to the ROC curve (total minimal decision error [16, 38],
probability of detection for fixed false alarm rate [26], or false alarm for prob-
ability of detection 50% [20], accuracy [13], etc.). The goal of this paper is to
provide a practical method for comparing security of steganographic systems that
is free from such arbitrary choices and thus provides a more fundamental mea-
sure of security than previously proposed measures. We interpret the selection of
the feature set as a low-dimensional model of covers and compute the stegano-
graphic security directly in the model space from empirical data obtained from
a database of cover and stego images. We consider two different measures, each
one of which has its own advantages and disadvantages–the Kullback-Leibler
divergence and the Maximum Mean Discrepancy (MMD) two-sample statistics.

In the next section, we introduce some basic concepts and explain the moti-
vation for our approach. In Section 3, we describe a method for benchmarking



steganographic systems using the KL divergence and discuss its limitations. The
MMD is introduced in Section 4. We use MMD to compute benchmark values for
selected known steganographic algorithms in Section 5. In the same section, we
discuss the experiments and compare the benchmark to results obtained using
SVMs. The paper is concluded in Section 6.

2 Steganographic security and cover models

Denoting C the set of all covers c, Cachin’s definition of steganographic security
is based on the assumption that the selection of covers from C can be described
by a random variable c on C with probability distribution function (pdf) P .
A steganographic scheme, S, is a mapping C × M × K → C that assigns a
new (stego) object, s ∈ C, to each triple (c,M,K), where M ∈ M is a secret
message selected from the set of communicable messages, M, and K ∈ K is
the steganographic secret key. Assuming the covers are selected with pdf P and
embedded with a message and secret key both randomly (uniformly) chosen from
their corresponding sets, the set of all stego images is again a random variable s

on C with pdf Q. The measure of statistical detectability is the Kullback–Leibler
divergence [5]

D(P ||Q) =
∑

c∈C
P (c) log

P (c)

Q(c)
. (1)

When D(P ||Q) < ǫ, the stego system is called ǫ-secure.

The KL divergence is a very fundamental quantity because it provides bounds
on the best possible detector one can build [8]. Thus, at least in theory, we could
benchmark steganographic schemes by deriving Q from S and P and evaluating
the KL divergence analytically. Of course, the real difficulty is that we have little
information about the probability distributions involved due to the large dimen-
sionality of the set C. This problem is typically solved by working with simplified
models of cover objects. There are basically two choices: 1) analytical models,
in which c is modeled as a sequence of iid random variables [28] (or Markov
chains [39]) and 2) high-dimensional models based on features extracted from
the cover/stego objects [32, 13, 2, 1, 43, 36, 26, 11]. The major advantage of ana-
lytical models is that we may be able to compute the distribution of stego images
and derive the relationship between the KL divergence and the amount of em-
bedded data [7]. The weakness of this approach lies in the fact that the analytical
models are too simple to capture complex cover objects, such as digital images.
Often, it is not difficult to detect the “provably secure” steganographic scheme
by using a better model of cover objects and designing appropriate test statis-
tics. As an example, we cite the successful attacks [32] on steganographic systems
that preserve first order statistics of DCT coefficients in JPEG images [33, 29,
19, 10, 39]. Since at this point, there are no analytically tractable models that
truthfully describe natural images, we turned our attention to models based on
features.



Such models far better capture the complexity of cover objects but are no
longer amenable to analytical study and thus we cannot derive the KL diver-
gence (or some other statistic) analytically. Instead, we estimate it by calculating
features from a large number of covers and stego objects. This approach, how-
ever, is not without problems. First, we have the uncomfortable dependence
on the database of test images, and second, it is not clear how many bits we
should be embedding in each image. We postpone discussion of the message
length to subsequent sections. Presumably, the issue of the size and diversity
of the database can be dealt with by including sufficiently many images. While
the database choice is crucial for spatial domain steganography, it is less critical
for steganography in JPEG images because JPEG compression removes high-
frequency details from images and thus essentially narrows down the space of
covers C. Although in this paper our covers will be digital images in the JPEG
format, the methods proposed here are by no means limited to such covers and
can be extended to other objects, such as raw images or audio.

3 Benchmarking steganographic schemes

In this section, we explain the basic ingredients of our benchmark and study the
feasibility of using the KL divergence for benchmarking.

3.1 Model selection

As explained in Section 1, we model covers through a set of numerical features
calculated from them. Formally, the model is a mapping

ψ : C → R
d (2)

that assigns a d-dimensional feature vector x = ψ(c) to every cover. This feature
vector represents the cover in R

d and we interpret ψ as the cover model. Conse-
quently, the benchmark that we propose will necessarily depend on the model.
The mapping ψ induces two random variables on R

d, ψ(c) and ψ(s), with their
corresponding pdfs p and q, reserving from now on the letter x for features from
covers and y for features from stego images.

By projecting C onto R
d for some “reasonably small” d, we obviously lose a

lot of information. It is important that we preserve those properties of covers that
typically get disturbed by steganographic embedding. Different authors proposed
different feature sets for applications in blind as well as targeted steganalysis.
In this paper, we selected the 274-dimensional feature vector described in [32].
The SVM steganalyzer based on this feature can reliably detect a large number
of current steganographic techniques and provides state-of-the-art results based
on comparative studies reported in [24, 38, 31].

3.2 Stego images

Given two steganographic schemes, S1 and S2, we wish to know which method is
more secure (less statistically detectable). This answer, however, will generally



depend on how the steganography is used. It is well possible that S1 may be more
detectable than S2 for one payload size and less detectable for a different pay-
load size. For example, methods that use matrix embedding [14] exhibit sharp
non-linear decrease in detectability with decreasing payload due to significantly
lower number of embedding changes, while other methods do not allow matrix
embedding (e.g., adaptive schemes). Moreover, some steganographic algorithms
are inherently limited to binary codes, such as methods based on perturbed
quantization [25, 15], while methods that use ±1 type of embedding can uti-
lize more powerful ternary codes [14]. Thus, one steganographic method can be
embedding significantly higher payload than some other method for the same
distortion budget. Fixing the distortion budget instead of the payload would,
however, benchmark the type of embedding operation rather than the whole
scheme.

Perhaps, we first need to ask what it is that we want our benchmark to
measure. If our goal was to evaluate the statistical detectability under conditions
that somehow simulate real-life usage, we would need to know the statistical
distribution of payloads that are typically embedded. It is, however, completely
unclear if we can assume anything reasonable about this prior distribution. A
tempting possibility is to choose an approach similar in spirit to the steganalysis
benchmark proposed by Ker [22]. The reasoning is that over multiple uses of
the stego channel, the relative change rate λ must converge to zero to avoid
detection. Because for statistically detectable stego schemes the KL divergence
is quadratic in λ, D ≈ Qλ2 as λ → 0, it was proposed in [21] to take the
constant Q for benchmarking steganalysis detectors. Adopting this approach for
benchmarking steganography, we discover that the KL divergence may become
non-quadratic in α due to matrix embedding. For example, for optimal codes

λ = H−1(α) and D ∼
(

H−1(α)
)2

.3 We acknowledge that this observation does
not preclude the possibility to benchmark steganography in the limit α→ 0, but
do not pursue this approach further in this paper.

It seems that a reasonable option is to fix the message length with respect
to the number of coefficients in the image usable for steganography. We fix the
embedding rate or relative payload, α, as the ratio between the message length in
bits and the number of non zero AC coefficients in the cover JPEG image (bpac).
Thus, for each particular image every stego method will embed the same relative
payload. By fixing ǫ > 0, we could then state that a certain steganographic
method becomes ǫ-secure at relative payload α(ǫ). This way, the benchmark will
stay compatible with the methodology accepted in previously published papers
on steganalysis (see, e.g., [16]). Fixing the relative message length also makes
intuitive sense because people might subconsciously use a bigger cover for large
messages and a smaller cover for short messages. Also, there are some heuristic
arguments that steganographic capacity might be linearly proportional to the
number of pixels. Imagine that we take many pictures with a digital camera
of exactly the same scene. Due to presence of random components, such as
the shot noise (caused by quantum properties of light), each time we take a

3 H(x) is the binary entropy function.



picture, the pixel values will slightly vary. Subsequent in-camera processing will
introduce local dependencies among the random components and thus the noise
will correspond more to a Markov random field than a collection of iid variables.
The entropy of this Markov field increases linearly4 with the number of pixels [8].
Attempts to construct stego schemes around this idea include [12, 30].

3.3 KL divergence as benchmark statistics

Given a set of D database images, we generate two sets of samples

X = (x1, . . . , xD), Y(α) = (y1, . . . , yD), (3)

where we explicitly denoted the dependence of the samples of stego images Y

on the relative message length α. We wish to emphasize that xi = ψ(ci) and
yi = ψ(si) are d-dimensional vectors (the features for cover and stego image i).
Considering X and Y as vectors of D independent realizations of the random
variables ψ(c) and ψ(s), we can estimate the KL divergence

DKL (ψ(c)‖ψ(s)) =

�
Rd

p(x) log
p(x)

q(x)

from the empirical data (3). The high dimensionality of the feature space makes
the estimation quite challenging. A practically computable benchmark cannot
rely on too large a database as that would incur impractical computing require-
ments and storage. Realistically, we need to obtain good estimates with 103−105

images. The large dimensionality eliminates most estimators of KL divergence
that we can potentially use. A good review of entropy estimators is in [3]. The
only estimator that can provide accurate results in high dimensional spaces is
the kNN estimator [4, 37], which we now briefly describe.

3.4 The kNN estimator of KL divergence

The KL divergence can be written as

DKL(p||q) =

�
Rd

p(x) log p(x) −
�
Rd

p(x) log q(x) = −H(p) +Hx(p, q), (4)

where H stands for the entropy of p and Hx(p, q) for the cross-entropy. Let
ρk(X, z) and ρk(Y, z) denote the radius of the smallest ball centered at z ∈ R

d

that contains exactly k samples from X and Y, respectively. Then,

D̂KL(p||q) = log
D

D − 1
+
d

D

(

D
∑

i=1

log ρk(X, xi) −
D
∑

i=1

log ρk(Y, xi)

)

(5)

4 Note that this argument is not in contradiction with [21] because there exist no
detectors for stego schemes that use this random field for embedding.



d 2 × 500 2 × 1000 2 × 5000 2 × 10000 2 × 50000 2 × 100000 DKL(p||q)
1 24.86% 23.62% 19.62% 16.05% 11.06% 9.41% 2
10 50.25% 41.15% 38.13% 38.14% 33.52% 32.58% 2
100 — — — 45.73% 44.10% 45.24% 2
200 — — — — 45.45% 44.40% 2
300 — — — — — 50.66% 2

Table 1. Relative error of the KL-divergence estimate for two multi-variate Gaussian
distributions for various combination of sample sizes, D, and data dimensionality d.
The number of nearest neighbors was set to k =

√
D. Some combinations of d and k

do not allow computing the KL divergence using the kNN method because it requires
k ≥ d.

is a consistent and asymptotically unbiased estimator of the KL divergence as
long as k/D → 0, k ≥ d, and k → ∞ as D → ∞. For large D, the first term
is approximately zero. The second and third terms are estimates of the entropy
H(p) and the cross-entropy Hx(p, q).

We first tested this estimator on synthetic data generated from two d dimen-
sional multivariate Gaussian distributions p = N(−µ, I) and q = N(µ, I), where
I is the identity matrix and µ = 1√

d
· 1 with 1 being the vector of d ones. Note

that DKL(p||q) = 2. Table 1 shows the estimated values from 2×500−2×100000
samples for d = 1, 10, 100, 200, 300. The estimates are clearly biased and this bias
tends to zero very slowly with increasing number of data samples (it has to go
to zero because the estimator (5) is asymptotically unbiased). The bias is due
to the estimate of the cross-entropy. While entropy can be estimated accurately
even in high-dimensional spaces with small number of data samples, the cross-
entropy is harder to estimate. This is because we need to estimate log q(x) at
x where p(x) is still large but we may not have enough data points from Y in
that region. This problem persists for other distributions, such as the Student’s
t-distribution, which seems to be a relevant model of output from some LSB
detectors [23]. With µ approaching zero, the absolute error of the estimate stays
approximately the same, producing a very large relative error of the estimated
KL divergence. This is quite undesirable because our main interest is to use the
benchmark for small payloads when the pdf of covers and stego images are close.

Without any doubts, the KL divergence in the model space is the preferable
quantity for benchmarking steganographic schemes because it provides funda-
mental information about the limits of any steganalysis method. Also, it could
be used for evaluating the suitability of models to distinguish between cover
and stego objects for a fixed steganographic method (obtaining thus an interest-
ing steganalysis benchmark). It appears, however, that we cannot simply apply
existing estimators to data sets that are typically available for steganographic
schemes (d ∼ 10 − 300 and D . 105). The effort to remedy this situation could
be directed towards deriving better behaved bias-free estimators and reducing
the dimensionality of the model space [27].



The problems with the bias of the cross-entropy estimator prompted us to
look for alternative statistics for benchmarking that exhibit more stable numeri-
cal behavior for sparse data in high-dimensional spaces. We turned our attention
to the recently proposed two-sample statistics called Maximum Mean Discrep-
ancy (MMD) [17, 18], which has properties that make it a very good candidate
for benchmarking in steganography.

4 Maximum Mean Discrepancy (MMD)

The problem of distinguishing between cover and stego features (3) is a two-
sample problem [17]. Assuming the samples X and Y were generated from dis-
tributions p and q, we need to decide between two hypotheses

H0 : p = q

H1 : p 6= q .

From available methods for the two-sample problem (see the review in, e.g., [17]),
we decided to use the Maximum Mean Discrepancy (MMD) [17, 18], because of
the following advantages relevant to our problem. MMD is numerically stable
and scales well with data dimensionality. It has been shown that MMD converges
almost independently on data dimension d with error 1/

√
D, where D is the

number of samples, which allows us to compute an accurate benchmark from
∼ 103 images. Some experimental results on artificial data sets showing this
phenomenon will be presented in Section 5 in Table 2. Second, MMD has been
well established theoretically and can be linked to other methods, such as Parzen
Windows estimates. Third, MMD’s computational complexity is O(D2), which is
fast in comparison to Support Vector Machines (SVM), which require expensive
grid-search for hyper parameters. We now outline the principles on which MMD
is constructed.

To this end, we assume that X is a separable metric space, and p,q are proba-
bility distributions defined on X . The main idea behind MMD is based on Lemma
9.3.2 of [9] stating that p = q if and only if ∀f ∈ C(X )(Ex∼pf(x) = Ex∼qf(x)),
where C(X ) is the class of continuous bounded functions on X . Because this
function class is too rich, we cannot use the lemma in finite sample setting.
The solution is to restrict the functions to a narrower class F and measure the
disparity between p and q with respect to F as

MMD[F , p, q] = sup
f∈F

(Ex∼pf(x) − Ey∼qf(y)) , (6)

or in finite sample setting,

MMD[F ,X,Y] = sup
f∈F

(

1

D

D
∑

i=1

f(xi) −
1

D

D
∑

i=1

f(yi)

)

, (7)

where X = {x1, . . . , xD}, Y = {y1, . . . , yD} are samples (3) from p and q,
respectively. To ensure that the measure (6) is useful, we have to choose F



wisely. It has to be rich to distinguish p 6= q, yet restrictive enough to provide
useful finite sample estimates. The next section shows how to construct such a
function class.

4.1 Reproducing Kernel Hilbert Spaces

The class of functions F used in MMD is built from a symmetric, positive defi-
nite5 function k : X × X 7→ R called kernel. Using the kernel, we define ∀x ∈ X
the function Kx : X 7→ R as Kx = k(x, ·). It is easy to see that the set

H0 = {
n
∑

i=1

aiKxi
|n ∈ N , ai ∈ R, xi ∈ X}

of all finite linear combinations of Kx, x ∈ X , forms a vector space of functions
X 7→ R. The vector space H0 can be endowed with a dot product defined as

〈

n
∑

i=1

aiKxi
,

m
∑

j=1

bjKyj

〉

H0

=

n
∑

i=1

m
∑

j=1

aibjk(xi, yj). (8)

The symmetry and positive definiteness of the kernel function k guarantee that
the dot product is well defined and indeed satisfies triangle inequality.

By completing the vector space H0, we construct Hilbert space H of real
valued functions on X that can be approximated by finite linear combinations
of k(x, ·) centered at finite number of points x. This Hilbert space H has one
key property. For each x ∈ X , the point evaluation functional δx : H 7→ R,
δx(f) = f(x), is a continuous linear functional6. This is because ∀x ∈ X and
∀f =

∑

aiKxi
∈ H

〈f,Kx〉H =
〈

∑

aiKxi
,Kx

〉

H
=
∑

aik(xi, x) = f(x) = δx(f), (9)

and the boundedness of δx (or continuity) follows from Cauchy-Schwartz inequal-
ity |δx(f)| = |〈f,Kx〉H| ≤ ‖f‖H ‖Kx‖H. Hilbert spaces H of functions X 7→ R

where all point evaluation functionals δx are linear and continuous are called
Reproducing Kernel Hilbert Spaces (RKHS) and (9) is called the reproducing
property. Note that since Kx ∈ H, it can be evaluated it at y ∈ X by use of the
functional δy, which yields

δy(Kx) = 〈Kx,Ky〉H = k(x, y). (10)

This property makes RKHSs very useful in the theory of SVMs [35].
We can see that an RKHS is tightly linked to its kernel. An important class

of kernels are universal kernels [40]. We call kernel k universal if X is compact
and its RKHS is dense in C(X ) in the maximum (infinity) norm ‖f − g‖∞ =
supx∈X |f(x)−g(x)|. An example of a universal kernel, which we exclusively use
in this paper, is the Gaussian kernel on X ⊂ R

d

k(x, y) = exp(−γ‖x− y‖2

2), γ > 0. (11)

5 k(zi, zj) is a positive definite matrix for all l ≥ 2 and all (z1, . . . , zl), zi ∈ X .
6 Convergence in norm in H implies point-wise convergence.



4.2 MMD

The role of a universal RKHS for MMD will become clear from the following
theorem due to [17], which is a simple consequence of Lemma 9.3.2 of [9] and
the fact that a universal RKHS is dense in C(X ).

Let F be a unit ball in a universal RKHS. Then MMD[F , p, q] = 0 if and
only if p = q.

The MMD defined over a unit ball in an RKHS accepts a particularly simple
form. In a separable Hilbert space, we can exchange expectation and dot product.
Thus,

Ex∼pf(x) = Ex∼p 〈f,Kx〉H = 〈f,Ex∼p[Kx]〉H = 〈f, µp〉H , (12)

assuming the mean value exists ‖µp‖2

F <∞. Thus, the MMD (6) becomes

MMD[F , p, q] = sup
f∈F

(Ex∼pf(x) − Ey∼qf(y)) =

= sup
‖f‖F≤1

〈f, µp − µq〉 = ‖µp − µq‖F , (13)

because the supremum is reached for f = (µp − µq)/ ‖µp − µq‖H from Cauchy-
Schwartz inequality. Estimating MMD[F , p, q] by replacing µp and µq in (13) us-

ing finite sample estimates µ̂p(x) = 1

D

∑D
i=1

k(xi, x) and µ̂q(x) = 1

D

∑D
i=1

k(yi, x)
in (7) leads to a biased estimate. An unbiased estimate based on U-statistics is

MMDu[F ,X,Y] =





1

D(D − 1)

∑

i6=j

k(xi, xj) + k(yi, yj) − k(xi, yj) − k(xj , yi)





1

2

.

(14)
From the theory of U-statistics, under hypothesis H1 MMD2

u[F ,X,Y] converges

in distribution to a Gaussian according to
√
D
(

MMD2

u − MMD2[F , p, q]
) D→

N(0, 4 · σ2
u) [17], where σ2

u is the variance of E
x
′∼p,y

′∼q[k(x, x
′

) + k(y, y
′

) −
k(x, y

′

)−k(x′

, y)]. The convergence is uniform at rate 1/
√
D. The distribution

of MMDu[F ,X,Y] under H0 can be obtained by bootstrapping (see the recom-
mendations in [18]).

4.3 Analytical calculation of MMD

We now give a specific example of an RKHS generated by the Gaussian kernel
(11) k : R × R 7→ R, k(x, y) = exp

(

−γ(x− y)2
)

by providing its orthonormal
(ON) basis [41]

{

en(y) =

√

(2γ)n

n!
yn exp(−γy2)

∣

∣

∣

∣

∣

n ≥ 0

}

.

Having an ON basis enables us to evaluate the norm in (13) as

MMD2[F , p, q] = ‖µp − µq‖2

F =

∞
∑

n=0

(bp,n − bq,n)
2
,



where bp,n = 〈µp, en〉H and similarly for q. From (12), (9), and (10)

µp(y) = 〈µp,Ky〉H = Ex∼p 〈Kx,Ky〉H = Ex∼pk(x, y) =

�
R

p(x) · k(x, y)dx

=

�
R

p(x) · exp(−γ(x− y)2)dx =
∞
∑

n=0

bp,n

√

(2γ)n

n!
yn exp(−γy2).

Multiplying the whole equation by exp(−γy2), we obtain�
R

p(x) · exp(−γ(x2 − 2xy))dx =
∞
∑

n=0

bp,n

√

(2γ)n

n!
yn.

From Taylor expansion of function
�

R
p(x) · exp(−γ(x2 − 2xy))dx at y = 0, we

have

∞
∑

n=0

bp,n

√

(2γ)n

n!
yn =

∞
∑

n=0

1

n!

∂n

∂yn

[�
R

p(x) · exp(−γ(x2 − 2xy))dx

]∣

∣

∣

∣

y=0

yn =

=

∞
∑

n=0

1

n!

[�
R

(2γ)nxnp(x) · exp(−γx2)dx

]

yn,

and thus

bp,n =

�
R

p(x) ·
√

(2γ)n

n!
xn exp(−γx2)dx =

�
R

p(x) · en(x)dx.

The coefficients bp,n are equal to the inner product of p and en in L2.
Extension of this approach to more than one dimension is possible, but

quickly becomes computationally intractable. The only exception is when the
joint pdf p and q is factorisable p(x1, . . . , xn) = p(x1)·. . .·p(xd) and q(y1, . . . , yn) =
q(x1) · . . . · q(xd), in which case it can be easily shown that

MMD2[F , p, q] =

( ∞
∑

n=0

b2p,n

)d

− 2

( ∞
∑

n=0

bp,nbq,n

)d

+

( ∞
∑

n=0

b2q,n

)d

,

where bp,n, bq,n are as above. This approach was used in Section 5.1 to calculate
exact values of MMD for artificially generated data sets.

5 Experiments

In this section, we discuss the choice of the Gaussian kernel parameter γ and
then give comparison between the finite sample estimate of MMD (7) with the
continuous value (6) on artificial data for various data sample sizes and dimen-
sionality. Finally, we benchmark several popular steganographic techniques with
MMD and discuss the results.



Even though universal kernels guarantee that MMD[F , p, q] = 0 if and only if
p = q, the choice of the kernel parameter γ has obviously a major influence on the
finite sample estimate of MMD (14). If γ is large, the kernel is very narrow and
thus k(xi, xj) ≈ 0 (the discrete approximation to the RKHS “overfits” the data).
On the other hand, a very small γ leads to a wide kernel and k(xi, xj) ≈ 1 (the
approximation is not “pliable” enough). We need the kernel to be aligned with
our data7. Good results in practice are obtained using the “median” rule [35]
(also used in one-class SVMs) according to which γ is set to γ = 1

η2 , where η is
the median of L2 divergences between samples. This selection ensures the test
statistics to be sensitive to data, because the Gaussian kernel will change its
value rapidly.

We also point out that it is important to normalize the data using pre-
whitening (setting the data samples to have zero mean and unit variance) be-
fore computing the MMD to obtain stable results. Here, we note that any pre-
processing we might perform on the data before computing MMD, such as pre-
whitening, changes the median and thus the kernel and finally the RKHS. Be-
cause for benchmarking of steganography we need one fixed RKHS for all stego
methods, we determine the parameters of pre-whitening (and the kernel width
γ) from the cover samples only.

5.1 Experiments on artificial data sets

We calculated MMD for the same artificial data from two multinomial Gaus-
sians N(−µ, I) and N(µ, I) as in Section 3.4. Table 2 shows that the relative

d 2 × 500 2 × 1000 2 × 5000 2 × 10000 2 × 50000 2 × 100000 MMD

1 −1.29% −4.17% −0.57% 1.16% −0.27% 0.24% 0.562
10 3.79% 2.05% −0.89% 0.00% −0.87% −0.57% 0.123
100 −12.12% 1.71% −2.41% −3.50% 0.71% 0.83% 1.44 · 10−2

200 1.38% −4.79% −1.46% −2.53% −0.92% −0.96% 7.28 · 10−3

300 −6.75% −1.12% −1.06% 0.48% 0.29% 0.39% 4.87 · 10−3

Table 2. Relative error of sample MMD for two d-dimensional multivariate Gaussian
distributions computed from D data samples in d-dimensional space.

error of MMD calculated from sample data is remarkably stable across different
dimensions d. The sample MMD quickly approaches its theoretical value with
increased sample size. Tests with other probability distributions (Laplacian and
Student’s t-distributions) exhibited very similar convergence rates and errors but
are not shown here due to lack of space.

7 The role of the kernel in MMD is similar to the role of the kernel in Support Vector
Machines.



5.2 Benchmarking steganographic methods

In this section, we use MMD to compare statistical detectability of 10 JPEG
steganographic algorithms using the 274-dimensional Merged feature set [32].
We focus on low payloads to see if any of the tested steganographic techniques
becomes undetectable (indistinguishable using finite sample MMD).

We used a database of 6000 images of a wide variety of scenes from 22 different
digital cameras acquired in the raw uncompressed format. The images were em-
bedded with pseudo-random payloads of 5%, 9%, 10%, 15%, and 20% bpac (bits
per non-zero AC coefficient). The payloads 9% and 10% were chosen intention-
ally to see the effect of matrix embedding with Hamming codes (the 9% payload
can be embedded with a more efficient code). The tested stego algorithms in-
clude F5 [42], –F5 [16], F5 without shrinkage [16] (nsF5), JP Hide&Seek8, Model
Based Steganography without deblocking [34] (MBS1), MMx [25], Steghide [19],
Perturbed Quantization while double compressing [15](PQ) and its two mod-
ifications (PQt and PQe) as described in [16]). The cover images were pre-
pared for every method as if zero message was embedded. The quality factor
for the first seven methods was set to 70 and thus the cover images were single-
compressed JPEGs with quality 70. Because the three versions of PQ produce
double-compressed images, the covers were created by double-compressing the
raw images with the same quality factors of 85 and 70.

The empirical estimates MMDu[F ,X,Y] were calculated from D = 3000
examples of X from the cover class and 3000 examples Y from the stego class
embedded with a specific message length. In each test, the examples were always
chosen so that each original raw image appeared either in X or in Y but never
in both. We always repeated the calculation 100 times with a different split of
the 6000 images and took the average as the value of MMD.

To make sure that the MMD was calculated in the same RKHS for every stego
method and payload, we determined the whitening parameters and the Gaussian
kernel width γ (by the “median” rule) only from the set of cover features X.

In Figure 1 left, we show − log
10

MMD[F ,X,Y] for 10 steganographic al-
gorithms and 5 relative payloads. According to this benchmark, the PQ meth-
ods and the MMx are the least statistically detectable, while JP Hide&Seek,
Steghide, and –F5 are the most detectable. F5 without shrinkage was the best
algorithm that does not need side information (the raw image) at the embed-
der. The horizontal lines mark the value of MMD calculated from two disjoint
samples of covers and thus indicate statistical undetectability with respect to
the chosen feature set and database. One line is for 70% quality JPEGs for
the algorithms producing single-compressed images, while the second line is for
double-compressed covers for PQ, PQe, and PQt. We do not show the error bars
from the bootstrap because the variances of MMD across different splits of the
data set were too small to show in the graph.

To compare the MMD with previously used benchmarks, we show on the
right the minimal decision error under equal priors (PFA +PMD)/2, where PFA

8 http://linux01.gwdg.de/ alatham/stego.html
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Fig. 1. MMD (left) and probability of error for an SVM (right) for 10 steganographic al-
gorithms and 5 payloads. To obtain a better visual correspondence between the graphs,
we show − log

10
MMD[F , X,Y]. The horizontal lines indicate the threshold of unde-

tectability determined as MMD from two samples of covers. Algorithms with MMD
close to the line are recognized as secure with respect to the given set of features.

is probability of false positives and PMD the probability of missed detection,
for a soft-margin SVM with a Gaussian kernel trained on the same data (one
SVM was trained for each payload and method). This quantity was used for
benchmarking in [16, 38]. Despite the fact that both benchmarking methods
estimate steganographic security in a different way, the graphs appear to be
consistent in the sense that stego methods with small MMD tend to have higher
classification error and vice versa. We stress that the computational complexity
of calculating MMD is significantly smaller than that of training an SVM and
calculating the probability of error.

The fast convergence rate and low estimation error even in high-dimensional
spaces combined with low computational complexity make the MMD a poten-
tially very useful steganographic benchmark.

6 Conclusions

We proposed a method for benchmarking steganographic schemes. The covers
and stego images are first mapped to a feature space, which is viewed as a simpli-
fied model of natural images. The statistical detectability of a given method for a
fixed payload is then evaluated as a measure of discrepancy between the sample
pdf of cover and stego features. As a measure, we investigated the KL divergence
and the two-sample statistics called Maximum Mean Discrepancy (MMD). Be-
cause the KL divergence is difficult to estimate accurately from sparse data in
high-dimensional spaces, we proposed to use the MMD, which has properties use-
ful for applications in steganography. The MMD has a fast convergence rate with
respect to the number of data samples even in high-dimensional spaces. More-
over, its computational complexity is proportional to the square of the database



size. The MMD thus replaces the need to train a classifier and enables evaluating
statistical detectability from the features themselves. We demonstrate its use on
10 steganographic algorithms and compare the results with a previously used
benchmarking method.

The MMD could be also used for benchmarking feature spaces for a fixed
steganographic method and thus offers a very interesting approach for comparing
steganalytic algorithms. We intend to elaborate on this topic in our future work.
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editors, Information Hiding, 9th International Workshop, Lecture Notes in Com-
puter Science, pages 16–31, Saint Malo, France, June 11–13, 2007. Springer-Verlag,
New York.

39. K. Solanki, K. Sullivan, U. Madhow, B. S. Manjunath, and S. Chandrasekaran.
Provably secure steganography: Achieving zero K-L divergence using statistical
restoration. In Proceedings IEEE, International Conference on Image Processing,
ICIP 2006, pages 125–128, Atlanta, GA, October 8–11, 2006.

40. I. Steinwart. On the influence of the kernel on the consistency of support vector
machines. Journal of Machine Learning Research, 2:67–93, 2001.

41. I. Steinwart, D. Hush, and C. Scovel. An explicit description of the Reproducing
Kernel Hilbert Spaces of Gaussian RBF kernels. IEEE Transactions on Information
Theory, 52:4635–4643, 2006. Los Alamos National Laboratory Technical Report
LA-UR-04-8274.

42. A. Westfeld. High capacity despite better steganalysis (F5 – a steganographic algo-
rithm). In I. S. Moskowitz, editor, Information Hiding, 4th International Workshop,
volume 2137 of Lecture Notes in Computer Science, pages 289–302, Pittsburgh, PA,
April 25–27, 2001. Springer-Verlag, New York.

43. G. Xuan, Y. Q. Shi, J. Gao, D. Zou, C. Yang, Z. Z. P. Chai, C. Chen, and W. Chen.
Steganalysis based on multiple features formed by statistical moments of wavelet
characteristic functions. In M. Barni, J. Herrera, S. Katzenbeisser, and F. Pérez-
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