
Chapter 1

Sensor Defects in Digital Image Forensic

Jessica Fridrich

Just as human fingerprints or skin blemishes can be used for forensic pur-
poses, imperfections of digital imaging sensors can serve as unique identifiers
in numerous forensic applications, such as matching an image to a specific
camera, revealing malicious image manipulation and processing, and deter-
mining an approximate age of a digital photograph. There exist several dif-
ferent types of defects that are of interest to the forensic analyst caused by
imperfections in manufacturing, physical processes occurring inside the cam-
era, and by environmental factors. This chapter begins with analyzing pixel
defects, while pointing out their forensic potential. Then, specific problems
are formulated as tasks involving detection or matching of defects and noise
patterns. Practical algorithms for these tasks are developed within the frame-
work of parameter estimation and signal detection theory. The performance
of the algorithms is demonstrated on real-world examples.

1.1 Introduction

In the heart of every electronic device capable of taking digital pictures is an
imaging sensor. There exist two types of sensors – CCD (Charge-Coupled De-
vice) and CMOS (Complementary Metal-Oxide Semiconductor). Both sen-
sors consist of a large number of photo detectors commonly called pixels.
Pixels are made of silicon and capture light by converting photons into elec-
trons using the photoelectric effect [30, 27]. The charge accumulated at every
pixel is transferred out of the sensor, amplified, and then run through an AD
converter that converts it to a digital signal. The digitized signal is further
processed before the data is stored as an electronic file (JPEG, TIFF, etc.) on
the camera storage device. The pixels are several microns across and have a
rectangular shape. In theory, the amount of electrons (charge) outputted by
a pixel should depend solely on the intensity of the incident light. In reality,
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however, there are many factors that introduce both systematic and random
deviations. It is exactly these fluctuations that find important applications
in forensic analysis.

We will be interested primarily in systematic variations in pixel response
that manifest themselves in a consistent manner in all images because ran-
dom fluctuations that change independently from scene to scene would not
be particularly useful. In the next section, we describe several types of such
systematic sensor defects and how they affect the output of a sensor. By doing
so, we arrive at a model of sensor output that will be useful later for deriv-
ing estimators of parameters that describe the defects and for constructing
defect detectors. In Section 1.3, we introduce the concept of sensor finger-
print and derive a procedure using which the fingerprint can be estimated
from images taken by the camera. The tasks of camera identification, device
linking, and forgery detection can be approached by testing the presence of
sensor fingerprint in images. This is the subject of Sections 1.4, 1.4.1, and
1.4.4. The methods are tested on real images in Section 1.5. In Section 1.6,
we develop methods that can address counter-forensic activities of the type
when an adversary estimates a camera fingerprint and then adds it to an
image from a different camera to frame an innocent victim. The presence or
absence of defects can also provide temporal information for estimating an
approximate age of digital photographs. This so-called temporal forensics is
the subject of Section 1.7. The chapter is summarized in Section 1.8.

1.1.1 Notation

Everywhere in this chapter, boldface font will denote vectors (or matrices) of
length specified in the text, e.g., X and Y are vectors of length m × n and
X(i) denotes the ith component of X. Sometimes, we will index the pixels in
an image using a two-dimensional index formed by the row and column index.
Unless mentioned otherwise, all operations among vectors or matrices, such
as product, ratio, raising to a power, etc., are elementwise. The Euclidean
dot product of vectors is denoted as X ·Y with ‖X‖ =

√
X ·X being the L2

(Euclidean) norm of X. Denoting the sample mean with a bar, the normalized
correlation is

corr(X, Y) =
(X−X) · (Y −Y)
∥

∥X−X
∥

∥

∥

∥Y−Y
∥

∥

. (1.1)

For a logical statement P , we also make use of the Iverson bracket defined
as [P ] = 1 when P is true and [P ] = 0 when P is false.
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1.2 Imaging sensors and their defects

In this section, we explain two types of systematic defects – the photo-
response non-uniformity and dark current – that are useful for several im-
portant forensic tasks, including camera identification and forgery detection.
Then, we formulate a model of pixel output that will be used in the rest of
this chapter to build all necessary mathematical tools for the forensic analyst.

1.2.1 Photo-response non-uniformity

The charge generated in a pixel depends on the physical dimensions of the
pixel photosensitive area and on the homogeneity of silicon. The pixels’ phys-
ical dimensions slightly vary due to imperfections in the manufacturing pro-
cess. Also, the inhomogeneity naturally present in silicon contributes to vari-
ations in quantum efficiency among pixels (the ability to convert photons to
electrons). The variations in quantum efficiency among pixels can be captured
with a matrix K ∈ R

m×n of the same dimensions as the sensor. When an
imaging sensor is illuminated with light intensity I ∈ R

m×n, in the absence of
other noise sources or imperfections, the sensor would register a noisy scene
I + IK instead. (We remind that the product IK is an element-wise product
of matrices) The term IK is usually referred to as the photo-response non-
uniformity or PRNU. A large value of K leads to a point defect called “pixel
with abnormal sensitivity.”

One can say that the scene I is overlaid with a “noise pattern” IK, which
is essentially the matrix K modulated by the scene I. Note that the energy
of this noise pattern depends on the light intensity – it is larger for bright
images and smaller in pictures of mostly dark scenes.

Fig. 1.1 Closeup of the PRNU factor K enhanced for visualization.

Fig. 1.1 shows a magnified portion of a the PRNU factor K from a four-
megapixel camera Canon G2. Bright dots correspond to pixels that consis-
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tently generate more electrons, while dark dots mark pixels whose response
is consistently lower. To give the reader a sense of how weak the PRNU sig-
nal IK typically is, for a picture of a uniform background I with average
grayscale in the middle of the dynamic range (grayscale I = 128 for an 8-bit
image), the average energy of I(i)K(i) over all pixels i is 0.5, which can also
be formulated as SNR of 51 dB. The energy of the PRNU strongly varies
among camera models.

In Section 1.3, it is shown how the PRNU factor K can be used as a sensor
“fingerprint” for a variety of forensic tasks.

1.2.2 Dark current

Even when a pixel is not exposed to light during picture taking, it contains a
small number of free electrons due to thermal effects. Their number increases
with temperature and exposure [26, 30, 28]. It is also affected by ISO setting.
In the absence of all other defects, the pixel’s output is I+τD+c, where τD is
called the dark current and c the offset. Here, τ ≥ 0 is a multiplicative factor
whose value is determined by the temperature, exposure, and ISO (higher ISO
leads to a larger value of τ) and D, c ∈ R

m×n are matrices. In images taken
with a short exposure (e.g., 1/60th of a second or shorter), the dark current
is usually very weak. However, it may start dominating the sensor output for
dark scenes (I ≈ 0) when τ becomes large (large ISO and/or temperature
and/or long exposure). An extremely high value of D produces the most
common point defect called a hot pixel. A high value of the offset c leads to
another defect type commonly recognized as a stuck pixel. Both defects were
proposed for forensic tasks in 1999 by Kurosawa [35], who demonstrated that
as long as a video clip contained some dark frames, hot/stuck pixels can be
used to uniquely identify digital video cameras.

Hot/stuck pixels occur randomly and uniformly on the sensor indepen-
dently of each other, which makes them useful for determining an approxi-
mate age of digital photographs (see Section 1.7.2).

1.2.3 Pixel output model

Considering the impact of all the defects discussed so far, we arrive at the
following model for the raw output of a sensor:

Y = I + IK + τD + c + Θ. (1.2)

We remind that τ is a scalar multiplicative factor whose value is determined
by exposure, temperature, and ISO settings. The matrix c is the matrix of
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Fig. 1.2 Top: A stuck pixel in an image and its close up. The pixel happens to be red
because it has a red color filter in front of it. Bottom: An example of a dark frame.
Notice that there appears to be a degree of “hotness” among the pixels.

offsets and dark current factor D, is a noise-like signal due to leakage of
electrons into pixels’ electron wells (Fig. 1.2 bottom). Finally, the reader
recognizes K as the PRNU factor. The modeling noise Θ is a collection of
all other noise sources, which are mostly random in nature and thus difficult
to use for forensic purposes (readout noise, shot noise, also known as the
photonic noise, quantization noise, etc.).

It should be stressed that the defects represented by matrices K, D, and
c usually represent quite small deviations with the exception of spike pixel
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defects, such as hot or stuck pixels. The three matrices could be estimated
from multiple images taken by the camera.

To improve the signal to noise ratio between the signal of interest (defect)
and the observable Y, we usually work with the noise residual W = Y−F (Y),
obtained using a denoising filter F . In particular,

W = Y − F (Y)

= IK + τD + c + I− F (Y) + Θ

= IK + τD + c + Ξ, (1.3)

where Ξ stands for the sum of the modeling noise and the remnant of the
content I−F (Y) present due to the inability of the denoising filter to separate
content from noise. The term I−F (Y) is especially large in textured regions
and around edges.

A variety of filters could be used in practice for this task. In this chapter, we
will use the wavelet filter [43] designed to suppress a non-stationary Gaussian
noise and a 3× 3 median filter.

1.3 Sensor fingerprint

The following five properties of PRNU represented with matrix K are the
main reason why it was proposed to play the role of a sensor fingerprint.

1. Dimensionality. The matrix K appears random, which gives it a large
information content and makes it unique to each sensor. The probability of
two sensors having similar fingerprints is extremely low. Even two cameras
of the same model have statistically independent fingerprints.

2. Universality. All imaging sensors exhibit PRNU.
3. Generality. The PRNU component IK is present in every picture inde-

pendently of the camera optics, camera settings, or scene content, with
the exception of completely dark images, where I ≈ 0.

4. Stability. The factor K is stable in time and under wide range of envi-
ronmental conditions (temperature, humidity).

5. Robustness. The PRNU component IK survives lossy compression, fil-
tering, gamma correction, and many other typical processing.

The elements of the matrix K are well-modeled as independent and identically
distributed (iid) realizations of a Gaussian random variable. By establishing
the presence of the PRNU signal IK in an image, one can prove with a high
level of certainty that the image was obtained by a specific camera whose
fingerprint is known. This application is called sensor (camera) identification.
Expanding this application further, by detecting the presence of the signal IK

in individual image regions, one can reveal that certain regions were replaced
or tampered with; this application is known as integrity verification or forgery
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detection. Alternatively, by proving that two images share a common signal, it
is possible to establish that these two images came from the same device even
when its fingerprint is not available. This is called device linking. Finally, the
PRNU signal IK can be used as a template to recover geometrical processing
the image has been subjected to, such as cropping, resizing, or rotation.

In the sections below, we explain a procedure for estimating the sensor
fingerprint as well as methods for its detection in images to address the
problem of camera identification, device linking, fingerprint matching, and
forgery detection. The performance of these methods is evaluated on real
imagery in Section 1.5.

1.3.1 Fingerprint estimation

The problem of estimating the fingerprint K can be approached using stan-
dard techniques from parameter estimation. The estimator will depend on
the model of sensor output. Ideally, the best estimator should be tailored to
the specific camera make and model, while taking into account its processing
pipeline. There is, however, substantial strength in approaching the estima-
tion using a simplified model that is universally valid for virtually all camera
makes and models. This avenue is taken in this chapter.

Starting with the model of the noise residual W = Y − F (Y) (1.3), we
simplify it by including the dark current and the offset into the noise term:

W = IK + Ξ. (1.4)

It is easier to estimate the PRNU term from W than from Y because the
image content is greatly suppressed in W.

Let us assume that we have a database of d ≥ 1 images, Y1, . . . , Yd,
obtained by the camera whose fingerprint we wish to estimate. For each pixel
i, we model the sequence Ξ1(i), Ξ2(i), . . . , Ξd(i) as a white Gaussian noise
(WGN) with variance σ2(i). The noise term is technically not independent
of the PRNU signal IK due to the content leftover I−F (Y) in Ξ. However,
because the energy of this term is small compared to IK, the assumption
that Ξ is independent of IK is reasonable.

From (1.4), we can write for each k = 1, . . . , d in a matrix form:

Wk

Ik
= K +

Ξk

Ik
. (1.5)

Under our assumption about the noise term, the log-likelihood of observing
a given K is

L(K) = −d

2

d
∑

k=1

log(2πσ2/I2
k)−

d
∑

k=1

(

Wk/Ik −K

2σ2/I2
k

)2

. (1.6)
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By taking partial derivatives of L with respect to individual elements of K

and solving for K, we obtain the maximum likelihood estimate:

K̂ =

∑d
k=1 IkWk
∑d

k=1 I2
k

. (1.7)

We remind that all operations in (1.7) are elementwise. To be able to use this
estimator in practice, we can simply set Ik = Yk or Ik = F (Yk) because the
PRNU term is weak.

We also define the quality of a fingerprint estimate as

q = corr(K, K̂). (1.8)

The Cramer-Rao Lower Bound (CRLB) [31] gives us the bound on the
variance of K̂

∂2L(K)

∂K2
= −

∑d
k=1 I2

k

σ2
, (1.9)

which implies

V ar(K̂) ≥
(

−E

(

∂2L(K)

∂K2

))−1

=
σ2

∑d
k=1 I2

k

. (1.10)

Because the sensor model is linear, the CRLB tells us that the maximum
likelihood estimator is minimum variance unbiased and its variance is pro-
portional to d. Therefore, the best images for estimating the fingerprint are
those with high luminance (but not saturated) and small σ2 (images with a
smooth content). If the camera under investigation is available to the analyst,
unsaturated out-of-focus images of bright cloudy sky would be the best. In
practice, good estimates of the fingerprint may be obtained from as few as 20
natural images depending on the camera. If sky images are used instead of
natural images, only approximately one half of them would suffice to obtain
an estimate with a comparable accuracy.

1.3.1.1 Fingerprint post-processing

The fingerprint estimate K̂ contains all components that are systematically
present in every image, including artifacts introduced by color interpolation,
JPEG compression, on-sensor signal transfer [15], and sensor design. While
the PRNU is unique to the sensor, the above Non-Unique Artifacts (NUAs)
are shared among cameras of the same model or sensor design. Consequently,
PRNU factors estimated from two different cameras may be slightly corre-
lated, which undesirably increases the false identification rate. Fortunately,
since most of these artifacts are due to demosaicking algorithms that depend
on the Color Filter Array (CFA) and are periodic in nature, they can be
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Algorithm 1 The procedure of zero-meaning removes NUAs from the fin-
gerprint estimated using (1.7).

ri = 1/n
∑n

j=1
K̂T (i, j) \\ compute row averages

for i = 1 to m \\ zero-mean rows

K̂T (i, j)← K̂T (i, j)− ri for j = 1 to n
end

cj = 1/m
∑m

i=1
K̂T (i, j) \\ compute column averages

for j = 1 to n \\ zero-mean rows

K̂T (i, j)← K̂T (i, j)− cj for i = 1 to m
end

removed by zero-meaning the rows and columns of separately for each pixel
type as defined by the CFA. We explain the procedure on the example of the
Bayer CFA.

Assuming I has m × n pixels, for the Bayer CFA there are four types of
pixels forming four interleaved submatrices K̂T , T ∈ {R, G1, G2, B}. where
K̂T is of dimension (m/2)×(n/2). The operation of zero-meaning is described
using Algorithm 1.

Reassembling the four submatrices into one m×n matrix again, the magni-
tude of the final fingerprint estimate is further processed in the DFT domain
using a Wiener filter with noise variance σ2, W (., σ2), to further suppress any
remaining NUAs, such as non-periodic artifacts [8] (all operations are again
elementwise):

F = F(K̂), K̂← Real

[

F−1

(

F · |F| −W (|F|, σ2)

|F|

)]

, (1.11)

where F is the orthonormal Fourier transform and σ2 = 1
mn

∑

i,j K̂2(i, j).
The difference between the original estimate (1.7) and the post-processed

K̂ is called the linear pattern (see Fig. 1.3) and it is a useful forensic entity
by itself – it can be used to classify a camera fingerprint to a camera model
or brand. The reader is referred to [14] for more details.

For color images, the PRNU factor can be estimated for each color channel
separately, obtaining thus three fingerprints of the same dimensions K̂R,
K̂G, and K̂B. As these three fingerprints are highly correlated due to in-
camera processing, such as demosaicking or color interpolation, an analyst
may choose to work with a single fingerprint obtained by converting the three
color fingerprints using the usual conversion from RGB to grayscale:

K̂ = 0.3K̂R + 0.6K̂G + 0.1K̂B. (1.12)
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Fig. 1.3 The NUAs in the form of a linear pattern for a Canon S40 camera.

1.4 Digital forensics using sensor fingerprint

Historically the first application of sensor fingerprint was camera identifi-
cation [40]. The goal is to determine whether an image under investigation
was taken with a specific camera whose fingerprint is available. This does
not necessarily mean that the camera needs to be physically available to the
analyst because the fingerprint can be estimated from images that provably
came from the camera. The identification is achieved by testing whether the
noise residual of the image under investigation contains traces of the camera
fingerprint.

We formulate the hypothesis testing problem for camera identification in
a setting that is general enough to conveniently cover the remaining forensic
tasks – device linking and fingerprint matching. In device linking, two images
are tested if they came from the same camera (the camera itself is not avail-
able). The task of matching two estimated fingerprints occurs in matching
two video-clips because individual video frames from each clip can be used
as a sequence of images from which an estimate of the camcorder fingerprint
can be obtained (here, again, the cameras/camcorders may not be available
to the analyst).

1.4.1 Device identification

We consider a more general scenario in which the image under investiga-
tion has possibly undergone a geometrical transformation, such as scaling,
rotation, or cropping. For simplicity of explanation, we will also assume that
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before applying any geometrical transformation the image was in grayscale
represented with an m× n matrix I(i, j). The geometrical transformation is
a complication because the image and the sensor fingerprint are no longer
synchronized.

Let us denote as u the (unknown) vector of parameters describing the
geometrical transformation, which we denote Tu. For example, u could be a
scaling ratio or a two-dimensional vector consisting of the scaling parameter
and an unknown angle of rotation. In device identification, we wish to deter-
mine whether or not the transformed image Z was taken with a camera with
a known fingerprint estimate K̂. We will assume that the geometrical trans-
formation is downgrading (such as downsampling) and thus it will be more
advantageous to match the inverse transform with the fingerprint rather than
matching Z with a transformed version of K̂.

We now formulate the detection problem in a slightly more general form
to cover all three forensic tasks mentioned at the beginning of this section
within one framework. The fingerprint detection is the following two-channel
hypothesis testing problem

H0 : K1 6= K2,

H1 : K1 = K2, (1.13)

where

W1 = I1K1+Ξ1,

T −1
u (W2) = T −1

u (Z)K2 + Ξ2. (1.14)

Here, all signals are observed with the exception of the noise terms, and the
fingerprints K1 and K2. In particular, for the device identification problem,
we have I1 = 1, W1 = K̂ estimated in the previous section, and Ξ1 is the
estimation error of the PRNU. K2 is the PRNU from the camera that took
the image, W2 is the geometrically transformed noise residual, and Ξ2 is a
noise term. In general, u is an unknown nuisance parameter. Note that since
T −1

u
(W2) and W1 may have different dimensions, the formulation (1.13)–

(1.14) involves an unknown spatial shift between both signals, s.
Modeling the noise terms and as white Gaussian noise with known vari-

ances σ2
1 , σ2

2 , the generalized likelihood ratio test [32] for this two-channel
problem was derived in [29]. The test statistic t

t = max
u,s
{E1(u, s) + E2(u, s) + C(u, s)}, (1.15)

is a sum of three terms: two energy-like quantities and a cross-correlation
term:
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E1(u, s) =
∑

i,j

I2
1(i, j)(W1(i + s1, j + s2))2

σ2
1I2

1(i, j) + σ4
1σ−2

2

(

T −1
u (Z)(i + s1, j + s2)

)2 , (1.16)

E2(u, s) =
∑

i,j

(

T −1
u

(Z)(i + s1, j + s2)
)2 (

T −1
u

(W2)(i + s1, j + s2)
)2

σ2
2

(

T −1
u (Z)(i + s1, j + s2)

)2
+ σ4

2σ−2
1 I2

1(i, j)
,

(1.17)

C(u, s) =
∑

i,j

I1W1(i, j)(T −1
u (Z)(i + s1, j + s2))(T −1

u (W2)(i + s1, j + s2))

σ2
2I2

1(i, j) + σ2
1

(

T −1
u (Z)(i + s1, j + s2)

)2 .

(1.18)

The complexity of evaluating these three expressions is proportional to the
square of the number of pixels, (mn)2, which makes this detector unusable in
practice. Thus, we simplify this detector and give it the form of a Normalized
Cross-Correlation (NCC) that can be evaluated using the fast Fourier trans-
form. Under H1, the maximum in (1.15) is mainly due to the contribution of
the cross-correlation term, C(u, s), that exhibits a sharp peak for the proper
values of the geometrical transformation. Thus, a much faster suboptimal
detector is the NCC between X and Y maximized over all shifts s1, s2, and
u,

ncc(s1, s2, u) =

∑m,n
i,j=1(X(i, j)−X)(Y(i + s1, j + s2)−Y)

∥

∥X−X
∥

∥

∥

∥Y−Y
∥

∥

, (1.19)

which we view as an m× n matrix parametrized by u, where

X =
I1W1

√

σ2
2I2

1 + σ2
1

(

T −1
u (Z)

)2
, Y =

T −1
u (Z)T −1

u (W2)
√

σ2
2I2

1 + σ2
1

(

T −1
u (Z)

)2
. (1.20)

A more stable detection statistics, whose meaning will become apparent
from error analysis later in this section, that we strongly advocate to use for
all camera identification tasks, is the Peak to Correlation Energy measure
(PCE):

P CE(u) =
ncc(speak, u)2

1
mn−|N |

∑

s/∈N ncc(s, u)2
, (1.21)

where for each fixed u, N is a small region surrounding the peak value of
NCC, speak, across all shifts s1, s2.

For device identification from a single image, the fingerprint estimation
noise Ξ1 is much weaker compared with Ξ2 – the noise residual of the im-
age under investigation. Thus, σ2

1 = V ar(Ξ1) = V ar(Ξ2) = σ2
2 and (1.19)

simplifies to a normalized cross-correlation between

X = W1 = K̂ and Y = T −1
u

(Z)T −1
u

(W2). (1.22)
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Recall that I1 = 1 for device identification when its fingerprint is known.
In practice, the maximum PCE value can be found by a search on a grid

obtained by discretizing the range of u. Unfortunately, because the statistic
is noise-like for incorrect values of u and only exhibits a sharp peak in a
small neighborhood of the correct value of u, gradient methods do not apply
and we are left with a potentially expensive grid search. The grid has to be
sufficiently dense in order not to miss the peak. As an illustrative example,
we next provide additional details how one can carry out the search for the
simpler case when the image is known to have been subjected only to a
combination of scaling and cropping, in which case u = r is an unknown
scaling ratio. The reader is advised to consult [21] for more details.

Fig. 1.4 The original image and its cropped and scaled version. The scaling ratio was
r = 0.51. The light gray rectangle shows the original image size, while the dark gray
frame shows the size after cropping but before resizing.
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Fig. 1.5 Search for the scaling ratio. The peak in PCE(rk) was detected around the
correct ratio of 0.51.

1.4.1.1 Identification from scaled images

Assuming the image under investigation Z has dimensions M ×N , we search
for the scaling parameter at discrete values rk ≤ 1, k = 0, 1, . . . , R, from
r0 = 1 (no scaling, just cropping) down to rR = max{M/m, N/n} < 1:

rk =
1

1 + 0.005k
, k = 0, 1, 2, . . . . (1.23)

This particular form of the search grid is fine enough to not miss the correct
scaling ratio but not too dense as that would slow down the search. After
the ratio is found, it is possible to further refine the estimate by a secondary
search around a small neighborhood of the ratio just found.

For a fixed scaling parameter rk, the cross-correlation (1.19) does not have
to be computed for all shifts s but only for those that move the upsampled
image T −1

rk
(Z) within the dimensions of K̂ because only such shifts can be

generated by cropping. Given that the dimensions of the upsampled image
are M/rk×N/rk, we have the following range for the spatial shift s = (s1, s2):

0 ≤ s1 ≤ m−M/rk and 0 ≤ s2 ≤ n−N/rk. (1.24)

The peak of the two-dimensional NCC across all spatial shifts s is evaluated
for each rk using P CE(rk). If maxk P CE(rk) > τ , we decide H1 (camera and
image are positively matched). Moreover, the value of the scaling parameter
at which the PCE attains its maximum determines the scaling ratio rpeak.
The location of the peak, speak, in the normalized cross-correlation determines
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the cropping parameters. Thus, as a by-product of this algorithm, we can
determine the processing history of Z (see Fig. 1.4 bottom). The fingerprint
is essentially playing the role of a synchronizing template. It can also be
used for reverse-engineering in-camera processing, such as digital zoom [21]
or blind estimation of focal length at which the image was taken for cameras
that correct for lens distortion inside the camera [22].

In any forensic application, it is important to keep the false alarm rate
low. For camera identification tasks, this means that the probability, PF A,
that a camera that did not take the image is falsely identified must be below
a certain user-defined threshold (Neyman-Pearson setting). Thus, we need to
obtain a relationship between PF A and the threshold on the PCE. Note that
the threshold will depend on the size of the search space, which is in turn
determined by the dimensions of the image under investigation.

Under hypothesis H0 for a fixed scaling ratio rk, the values of the nor-
malized cross-correlation ncc(s, rk) as a function of s are well-modeled [21]
as white Gaussian noise ξk ∼ N(0, σ2

k) with variance that may depend on
k. Estimating the variance of the Gaussian model using the sample variance
of ncc(s, rk) over s after excluding a small central region N surrounding the
peak,

σ̂2
k =

1

mn− |N |
∑

s/∈N

ncc(s, rk)2. (1.25)

We now calculate the probability pk that the NCC would attain the peak
value ncc(speak, rpeak) or larger by chance:

pk =

∞̂

ncc(speak,rpeak)

1√
2πσ̂k

exp(x2/2σ̂2
k)dx,

=

∞̂

σ̂peak

√
P CEpeak

1√
2πσ̂k

exp(x2/2σ̂2
k)dx,

= Q

(

σ̂peak

σ̂k

√

P CEpeak

)

, (1.26)

where Q(x) = 1−Φ(x) with Φ(x) denoting the cumulative distribution func-
tion of a standard normal variable N(0, 1) and P CEpeak = P CE(rpeak).

As explained above, during the search for the cropping vector s, we need
to search only in the range (1.24), which means that we are taking maximum
over lk = (m−M/rk +1)×(n−N/rk+1) samples of ξk. Thus, the probability
that the maximum value of ξk would not exceed ncc(speak, rpeak) is (1−pk)lk .
After R steps in the search, the probability of false alarm is

PF A = 1−
R
∏

k=1

(1− pk)lk . (1.27)
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Since we can stop the search after the PCE reaches a certain threshold, we
have rk ≤ rpeak. Because σ̂k is non-decreasing in k, σ̂peak/σ̂k ≥ 1. Because
Q(x) is decreasing, we have pk ≤ Q(

√

P CEpeak). Thus, because lk ≤ mn,
we obtain an upper bound on PF A

PF A ≤ 1− (1 − p)lmax , (1.28)

where lmax =
∑R−1

k=0 lk is the maximal number of values of the param-
eters r and s over which the maximum of (1.15) could be taken. Equa-
tion (1.28), together with p = Q(

√
τ), determines the threshold for PCE,

τ = τ(PF A, M, N, m, n).
This finishes the technical formulation and solution of the camera identi-

fication algorithm from a single image if the camera fingerprint is known. To
provide the reader with some sense of how reliable this algorithm is, we in-
clude in Section 1.5 some experiments on real images. This algorithm can also
be used with small modifications for device linking and fingerprint matching.
A large-scale test of this methodology appears in [19].

Another extension of the identification algorithm to work with cameras
that correct images for lens barrel/pincushion distortion on the fly appears
in [22]. Such cameras are becoming very ubiquitous as manufacturers strive to
offer customers a powerful optical zoom in inexpensive and compact cameras.
Since the lens distortion correction is a geometrical transformation that de-
pends on the focal length (zoom), there can be a desynchronization between
the noise residual and the fingerprint if both were estimated at different fo-
cal lengths. Here, a search for the distortion parameter is again needed to
resynchronize the signals.

1.4.2 Device linking

The detector derived in the previous section can be readily used with only
a few changes for determining whether two images, I1 and Z, were taken by
the exact same camera [18], an application called device linking. Note that
in this problem the camera or its fingerprint are not necessarily available.

The device linking problem corresponds exactly to the two-channel for-
mulation (1.13) and (1.14) with the GLRT detector (1.15). Its faster, sub-
optimal version is the PCE (1.21) obtained from the maximum value of
ncc(speak, rpeak) over all s1, s2, u (see (1.19) and (1.20)). In contrast to the
camera identification problem, the power of both noise terms, Ξ1 and Ξ2,
is now comparable and needs to be estimated from observations. Fortu-
nately, because the PRNU term IK is much weaker than the modeling noise
Ξ, reasonable estimates of the noise variances are simply σ̂2

1 = V ar(W1),
σ̂2

2 = V ar(W2).



1 Sensor Defects in Digital Image Forensic 17

Unlike in the camera identification problem, the search for unknown scaling
must now be enlarged to scalings r > 1 (upsampling) because the combined
effect of unknown cropping and scaling for both images prevents us from easily
identifying which image has been downscaled with respect to the other one.
The error analysis carries over from Section 1.4.1.1. Due to space limitations
we do not include experimental verification of the device linking algorithm.
Instead, the reader is referred to [18].

1.4.3 Fingerprint matching

The last fingerprint matching scenario corresponds to the situation when
we need to decide whether or not two estimates of potentially two different
fingerprints are identical. This happens, for example, in video-clip linking
because the fingerprint can be estimated from all frames forming the clip [10].

The detector derived in Section 1.4.1 applies to this scenario, as well. It can
be further simplified because for matching fingerprints we have I1 = Z = 1
and (1.19) becomes the normalized cross-correlation between X = K̂1 and
Y = T −1

u
(K̂2).

Video identification has its own challenges that do not necessarily man-
ifest for digital still images. The individual frames in a video are typically
harshly quantized (compressed) to keep the video bit rate low. Thus, one
needs many more frames for a good quality fingerprint estimate (e.g., thou-
sands of frames). The compression artifacts carry over to the fingerprint es-
timate in a specific form of NUAs called “blockiness.” Simple zero-meaning
combined with Wiener filtering as described in Section 1.3.1.1 needs to be
supplemented with a more aggressive procedure. The original paper [10] de-
scribes a notch filter that removes spikes due to JPEG compression in the
frequency domain. The reader can also consult this source for an experimen-
tal verification of the fingerprint matching algorithm when applied to video
clips.

1.4.4 Forgery detection

A different, but nevertheless important, use of the sensor fingerprint is ver-
ification of image integrity. Certain types of tampering can be identified by
detecting the fingerprint presence in smaller regions. The assumption is that
if a region was copied from another part of the image (or an entirely different
image), it will not have the correct fingerprint on it. The reader should realize
that some malicious changes in the image may preserve the PRNU and will
not be detected using this approach. A good example is changing the color
of a stain to a blood stain.
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The forgery detection algorithm tests for the presence of the fingerprint
in each B × B sliding block Bb separately and then fuses all local decisions.
For simplicity, we will assume that the image under investigation did not un-
dergo any geometrical processing. For each block, Bb, the detection problem
is formulated as a binary hypothesis testing problem:

H0 : Wb = Ξb,

H1 : Wb = abIbK̂b + Ξb. (1.29)

Here, Wb is the block noise residual, K̂b is the corresponding block of the
fingerprint, Ib is the block intensity, ab is an unknown attenuation factor
due to possible processing of the forged image, and Ξb is the modeling noise
assumed to be a white Gaussian noise with an unknown variance σ2

Ξ,b. The
likelihood ratio test for this problem is the normalized correlation

ρb = corr(IbK̂b, Wb). (1.30)

In forgery detection, we may desire to control both types of error – fail-
ing to identify a tampered block as tampered and falsely marking a region
as tampered. To this end, we will need to estimate the distribution of the
test statistic ρb under both hypotheses. The probability density under H0,
p(x|H0), can be estimated by correlating the known signal IbK̂b with noise
residuals from other cameras. The distribution of ρb under H1, p(x|H1), is
much harder to obtain because it is heavily influenced by the block content.
Dark blocks will have a lower value of the correlation due to the multiplica-
tive character of the PRNU. The fingerprint may also be absent from flat
areas due to strong JPEG compression or saturation. Finally, textured areas
will have a lower value of the correlation due to stronger modeling noise. This
problem can be resolved by building a predictor of the correlation that will
tell us what the value of the test statistics ρb and its distribution would be
if the block b was not tampered and indeed came from the camera.

The predictor is a mapping that needs to be constructed for each cam-
era. The mapping assigns an estimate of the correlation ρ̂b = Pred(ib, fb, tb)
to each triple (ib, fb, tb), where the individual elements of the triple stand
for a measure of intensity, saturation, and texture in block b. The mapping
Pred(., ., .) can be constructed for example using regression [8, 11] or machine-
learning techniques by training on a database of image blocks coming from
images taken by the camera. The block size cannot be too small (because
then the correlation ρb has too large a variance). On the other hand, large
blocks would compromise the ability of the forgery detection algorithm to lo-
calize. For full-size camera images with several megapixels, blocks of 64× 64
or 128× 128 pixels seem to work well.

A reasonable measure of intensity is the average intensity in the block:
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ib =
1

|Bb|
∑

i∈Bb

I(i). (1.31)

We take as a measure of flatness the relative number of pixels, i, in the
block whose sample intensity variance σ2

I
(i) estimated from the local 3 × 3

neighborhood of i is below a certain threshold

fb =
1

|Bb|
∣

∣

∣{i ∈ Bb|σI(i) < cI(i)}
∣

∣

∣, (1.32)

where c ≈ 0.03 (for Canon G2 camera). The best value of c varies with the
camera model.

The texture measure evaluates the amount of edges in the block. Among
many available options, we give the following example

tb =
1

|Bb|
∑

i∈Bb

1

1 + V ar5(H(i))
, (1.33)

where V ar5(H(i)) is the sample variance computed from a local 5× 5 neigh-
borhood of pixel i for a high-pass filtered version of the block, H = H(Bb),
such as one obtained using an edge detector H .

Since one can obtain potentially hundreds of blocks from a single image,
only a small number of images (e.g., ten) are needed to train (construct) the
predictor. Fig. 1.6 shows the performance of the predictor for a Canon G2
camera. The form of the mapping Pred() was a second-order polynomial:

Pred(x, y, z) =
∑

k+l+m≤2

λklmxkylzm, (1.34)

where the unknown coefficients λklm were determined using a least squares
estimator.

The data used for constructing the predictor can also be used to estimate
the distribution of the prediction error vb:

ρb = ρ̂b + vb, (1.35)

where ρ̂b is the predicted value of the correlation for block b. Say that for a
given block under investigation, we apply the predictor and obtain the esti-
mated value ρ̂b. The distribution p(x|H1) is obtained by fitting a parametric
probability density function to all points in Fig. 1.6 whose estimated corre-
lation is in a small neighborhood of ρ̂b, (ρ̂b − ε, ρ̂b + ε) for some small ε. A
sufficiently flexible model that allows both thin and thick tails is the gener-
alized Gaussian model with density α/(2σΓ (1/α)) exp(−(|x − µ|/σ)α) with
variance σ2Γ (3/α)/Γ (1/α), mean µ, and shape parameter α.

We now continue with the description of the forgery detection algorithm
using sensor fingerprint. The algorithm proceeds by sliding a block across
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Fig. 1.6 Scatter plot of the true correlation ρb versus the estimate ρ̂b for 30,000 128×128
blocks from 300 TIFF images from Canon G2.

the image and evaluates the test statistics ρb for each block b. The decision
threshold τ for the test statistics ρb needs to be set to bound Pr(ρb > τ |H0)
– the probability of misidentifying a tampered block as non-tampered. (In
our experiments shown in Section 1.5.2, we requested this probability to be
less than 0.01.)

Block b is marked as potentially tampered if ρb < τ but this decision
is attributed only to the central pixel i of the block. Through this process,
for an m × n image we obtain an (m − B + 1) × (n − B + 1) binary array
Z(i) = [ρb < τ ] ([·] is the Iverson bracket) indicating the potentially tampered
pixels with Z(i) = 1.

The above Neyman-Pearson criterion decides “tampered” whenever ρb < τ
even though ρb may be “more compatible” with p(x|H1). This is more likely
to occur when ρb is small, such as for highly textured blocks. To control the
amount of pixels falsely identified as tampered, we compute for each pixel i
the probability of falsely labeling the pixel as tampered when it was not

pMD(i) =

t
ˆ

−∞

p(x|H1)dx. (1.36)
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Pixel i is labeled as non-tampered (we reset Z(i) = 0) if pMD(i) > β, where
β is a user-defined threshold. (In experiments in the next section, β = 0.01.)
The resulting binary map Z identifies the forged regions in their raw form.

The final map Z is obtained by post-processing Z using morphological
filters. The block size imposes a lower bound on the size of tampered regions
that the algorithm can identify. We thus remove from Z all simply connected
tampered regions that contain fewer than 64 × 64 pixels. The final map of
forged regions is obtained by dilating Z with a square 20 × 20 kernel. The
purpose of this step is to compensate for the fact that the decision about the
whole block is attributed only to its central pixel and we may miss portions
of the tampered boundary region.

1.5 Real-world examples

In this section, we demonstrate how the forensic methods proposed in the pre-
vious sections may be implemented in practice and also include some sample
experimental results to give the reader an idea how the methods work on real
imagery. The reader is referred to [9, 8, 11, 19] for more extensive tests and
to [18] and [10] for experimental verification of device linking and fingerprint
matching for video-clips. Camera identification from printed images appears
in [20].

1.5.1 Camera identification

The experiment in this section was carried out on images from a Canon
G2 camera with a four-megapixel CCD sensor. The camera fingerprint was
estimated for each color channel separately using the maximum likelihood
estimator (1.7) from 30 blue sky images acquired in the TIFF format. The
estimated fingerprints were preprocessed as described in Section 1.3.1 to re-
move any residual patterns (NUAs) not unique to the sensor. This step is
very important because these artifacts would cause unwanted interference at
certain spatial shifts, s, and scaling factors r, and thus decrease the PCE
and substantially increase the false alarm rate. The fingerprints estimated
from all three color channels were combined into a single fingerprint using
formula (1.12). All other images involved in this test were also converted to
grayscale before applying the detectors described in Section 1.4.

The same camera was further used to acquire 720 images containing snap-
shots or various indoor and outdoor scenes under a wide range of light con-
ditions and zoom settings spanning the period of four years. All images were
taken at the full CCD resolution and with a high JPEG quality setting. Each
image was first cropped by a random amount up to 50% in each dimen-
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sion. The upper left corner of the cropped region was also chosen randomly
with uniform distribution within the upper left quarter of the image. The
cropped part was subsequently downsampled by a randomly chosen scaling
ratio r ∈ [0.5, 1]. Finally, the images were converted to grayscale and com-
pressed with 85% quality JPEG.

The detection threshold τ was chosen to obtain the probability of false
alarm (1.28) PF A = 10−5. The camera identification algorithm was run
with rmin = 0.5 on all images. Only two missed detections were encountered
(Fig. 1.7). In the figure, the PCE is displayed as a function of the randomly
chosen scaling ratio. The missed detections occurred for two highly textured
images. In all successful detections, the cropping and scaling parameters were
detected with accuracy better than two pixels in either dimension.
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Fig. 1.7 PCEpeak as a function of the scaling ratio r for 720 images matching the
camera. The detection threshold τ , which is outlined with a horizontal line, corresponds
to PF A = 10−5.

To test the false identification rate, we used 915 images from more than
100 different cameras downloaded from the Internet in native resolution. The
images were cropped to four megapixels (the size of Canon G2 images) and
subjected to the same random cropping, scaling, and JPEG compression as
the 720 images before. The threshold for the camera identification algorithm
was set to the same value as in the previous experiment. All images were
correctly classified as not coming from the tested camera (Fig. 1.8).

The camera identification algorithm (without considering scaling and crop-
ping) was subjected to a large scale test in [19]. The authors carried out
experiments on 1,024,050 images from 6,896 cameras of 150 different mod-
els downloaded from the public image-sharing web site Flickr.com. With the
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Fig. 1.8 PCEpeak for 915 images not matching the camera. The detection threshold τ
is again outlined with a horizontal line and corresponds to PF A = 10−5.

decision threshold fixed to τ = 60, the overall missed detection rate was
PMD = 0.024 with the false alarm rate PF A = 2.4× 10−5.

1.5.2 Forgery detection

The forgery-detection algorithm was tested on an image from a four-megapixel
Olympus C765 digital camera equipped with a CCD sensor. Fig. 1.9 (a) shows
the original image taken in the raw format. Using Photoshop, the girl in the
middle was covered by pieces of the house siding from the background (b).
The letters (c) – (f) show the result of the forgery-detection algorithm after
the forged image was further processed using JPEG compression with quality
factor 75 (c), after the forgery was subjected to denoising using a 3×3 Wiener
filter with default value of σ in Matlab followed by JPEG compression with
quality factor 90 (d), after processing using gamma correction with γ = 0.5
and again saved as JPEG 90 (e), and after downscaling to 60% of its size and
JPEG 90 (f). In the last case, the image was upsampled back to its original
size before the forgery-detection algorithm was applied (i.e., no search for the
scaling ratio was performed). In all cases, the forged region was accurately
detected. More examples of forgery detection using this algorithm, including
the results of tests on a large number automatically created forgeries as well
as non-forged images, can be found in the original publications [9, 11].
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(a) (b)

(c) (d)

(e) (f)

Fig. 1.9 From upper left corner by rows: a) the original image, b) its tampered version,
the result of the forgery-detection algorithm after the forged image was processed using
c) JPEG with quality factor 75, d) 3 × 3 Wiener-filtered plus JPEG 90, e) gamma
correction with γ = 0.5 plus JPEG 90, and f) scaled down by factor of 0.6 and JPEG
90.

1.6 Fighting the fingerprint-copy attack

Since the inception of camera identification methods based on sensor finger-
prints in 2005 [41], researchers have realized that the sensor fingerprint can
be copied onto an image that came from a different camera in an attempt to
frame an innocent victim. In the most typical and quite plausible scenario,
Alice, the victim, posts her images on the Internet. Eve, the attacker, es-
timates the fingerprint of Alice’s camera and superimposes it onto another
image. Indeed, as already shown in the original publication and in [17, 46],
correlation detectors cannot distinguish between a genuine fingerprint and a
fake one.

In this section, we describe a countermeasure [23, 12] against this fingerprint-
copy attack that enables Alice to prove that she has been framed (that the
fingerprint is fake). We assume that Alice owns a digital camera C. Eve takes



1 Sensor Defects in Digital Image Forensic 25

an image J from a different camera C′ with fingerprint K′ 6= K and makes it
appear as if it was taken by C. She does so by first estimating the fingerprint
of C from some set of Alice’s images and then properly adds it to J.

In particular, let us assume that Eve has access to N images, from C and
estimates its fingerprint K̂E using the estimator (1.7). We note that Eve
certainly is free to use a different estimator. However, any estimation proce-
dure will be some form of averaging of noise residuals W. Having estimated
the fingerprint, Eve may preprocess J to suppress the PRNU term JK′ in-
troduced by the sensor in C′ and/or to remove any artifacts in J that are
incompatible with C. Because suppressing the PRNU term is not an easy
task [45], quite likely the best option for Eve is to skip this step altogether.
This is because the PRNU component JK′ in J is very weak to be detected
per se and because it is unlikely that Alice will gain access to C′. In fact, Eve
should avoid processing J too much as it may introduce artifacts of its own.

If Eve saves her forgery as a JPEG file, she needs to make sure that the
quantization table is compatible with camera C, otherwise Alice will know
that the image has been manipulated and did not come directly from her
camera. If camera C′ uses different quantization tables than C, Eve will
inevitably introduce double-compression artifacts into J, giving Alice again
a starting point of her defense.

Unless C and C′ are of the same model, the forged image may contain
color-interpolation artifacts of C′ incompatible with those of C. Alice could
leverage techniques developed for camera brand/model identification [7] and
prove that there is a mismatch between the camera model and the color
interpolation artifacts. A knowledgeable attacker may, in turn, attempt to
remove such artifacts of C′ and introduce interpolation artifacts of C, for
example, using the method described in [4].

It should now be apparent that it is far from easy to create a “perfect”
forgery. While it is certainly possible for Alice to utilize traces of previous
compression or color interpolation artifacts, no attempt is made in this section
to exploit these discrepancies to reveal the forged fingerprint. Our goal is to
develop techniques capable of identifying images forged by Eve even in the
most difficult scenario for Alice when C′ is of exactly the same model as C
to avoid any incompatibility issues discussed above. Thus, Alice cannot take
advantage of knowing any a priori information about C′.

The final step for Eve is to plant the estimated fingerprint in J, creating
thus the forged image J′. In her attempt to mimic the acquisition process,
and in accordance with (1.4), Eve superimposes the fake fingerprint multi-
plicatively, which is what would happen if J was indeed taken by C:

J′ = [J(1 + αK̂E)], (1.37)

where α > 0 is a scalar fingerprint strength and [x] is the operation of round-
ing x to integers forming the dynamic range of J. Finally, Eve saves J′ as
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JPEG with the same or similar quantization table as that of the original
image J.

Formula (1.37) should be understood as three equations for each color
channel of J. This attack indeed succeeds in fooling the camera identification
algorithm in the sense that the response of the fingerprint detector on J′

(either the correlation (1.19), the generalized matched filter in [11], or the
PCE (1.21)) will be high enough to indicate that J′ was taken by camera C.

A very important issue for Eve is the choice of the strength α. Here,
we grant Eve the ability to create a “perfect” forgery in the sense that J′

elicits the same response of the fingerprint detector implemented with the
true fingerprint K as when J′ was indeed taken by C. A good estimate of
the detector response can be obtained using a predictor, such as the one
described in Section 1.4.4. This way, Eve makes sure that the fingerprint is
not suspiciously weak or strong. While it is certainly true that Eve cannot
easily construct the predictor because she does not have access to the true
fingerprint K, she may select the correct strength α by pure luck. To be more
precise here, we grant Eve the ability to guess the right strength instead
of giving her access to K. We note that similar assumptions postulating a
clairvoyant attacker are commonly made in many branches of information
security.

1.6.1 Detecting fake fingerprints

Here, we describe a test using which Alice can decide whether an image came
from her camera or whether it was forged by Eve as described above. For
simplicity, we only discuss the case when Eve created one forged image J′

and Alice has access to some of the N images used by Eve to estimate K̂E

but Alice does not know which they are. She has a set of Nc ≥ N candidate
images that Eve may have possibly used. This is a very plausible scenario
because, unless Eve gains access to Alice’s camera and takes images of her
own and then removes them from the camera before returning the camera to
Alice, Eve will have little choice but to use images taken by Alice, such as
images posted by Alice on the Internet. In this case, Alice can prove that the
forged image did not originally come from her camera by identifying among
her candidate images those used by Eve.

We now explain the key observation based on which Alice can construct
her defense. Let I be one of the N images available to Alice that Eve used to
forge J′. Since the noise residual of I, WI, participates in the computation of
K̂E through formula (1.7), J′ will contain a scaled version of the entire noise
residual WI = IK + ΞI. Thus, besides the PRNU term, WI and WJ′ will
share another signal – the noise ΞI. Consequently, the correlation cI,J′ =
corr(WI, WJ′) will be larger than what it would be if the only common
signal between I and J′ was the PRNU component (which would be the case
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if J′ was not forged). As this increase may be quite small and the correlation
itself may fluctuate significantly across images, the test that evaluates the
statistical increase must be calibrated. We call this test the triangle test.

WI WJ′

K̂A

corr

corrcorr

Fig. 1.10 Diagram for the triangle test.

Alice starts her defense by computing an estimate of the fingerprint of
her camera K̂A from images guaranteed to not have been used by Eve. For
instance, she can take new images with her camera C. Then, for a can-
didate image I, she computes cI,J′ , c

I,K̂A
= corr(WI, K̂A), and c

J′,K̂A
=

corr(WJ′ , K̂A) (follow Fig. 1.10). The test is based on the fact that for im-
ages I that were not used to forge J′, the value of cI,J′ can be estimated from
c

I,K̂A
and c

J′,K̂A
while when I was used in the forgery, the correlation cI,J′

will be higher than its estimate.
In order to obtain a more accurate relationship, similar to our approach to

forgery detection in Section 1.4.4, we will work by blocks of pixels, denoting
the signals constrained to block b with subscript b. We adopt the model (1.4)
for the noise residuals and a similar model for Alice’s fingerprint:

WI,b = aI,bIbKb + ΞI,b, (1.38)

WJ′,b = aJ′,bJ
′
bKb + ΞJ′,b, (1.39)

K̂A = Kb + ξb. (1.40)

The block-dependent attenuation factor a in (1.39) has been introduced
due to the fact that various image processing that might have been applied
by Eve to J may affect the PRNU factor differently in each block.

When I was not used by Eve, under some fairly mild assumptions about
the noise terms in (1.39), the following estimate of cI,J′ is derived in [12, 23]

ĉI,J′ = corr(WI, K̂A)corr(WJ′ , K̂A)µ(I, J′)q−2, (1.41)

where µ(I, J′) is the “mutual-content factor,”

µ(I, J′) =

∑

b aI,baJ′,bIbJ
′
b

∑

b aI,bIb ·
∑

b aJ′,bJ
′
b

NB, (1.42)
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and the bar denotes the sample mean as before. The integer NB is the number
of blocks and q ≤ 1 is the quality of K̂A, q−2 = 1 + (SNR

K̂A
)−1, SNR

K̂A
=

‖K‖2 / ‖ξ‖2.
The attenuation factors can be estimated by computing the following

block-wise correlations:1

aI,b =
‖WI,b‖

√

I2
b

∥

∥

∥K̂A,b

∥

∥

∥

corr(WI,b, K̂A,b)q
−2. (1.43)

Continuing the analysis of the case when I was not used by Eve, we con-
sider cI,J′ and ĉI,J′ as random variables over different images I for a fixed
J′. The dependence between these two random variables is well fit with a
straight line cI,J′ = λĉI,J′ + c0. Because the distribution of the deviation
from the linear fit does not seem to vary with ĉI,J′ (see Fig. 1.11), we make
a simplifying assumption that the conditional probability

Pr(cI,J′ − λĉI,J′ − c0 = x|ĉI,J′) ≈ fJ′(x), (1.44)

is independent of ĉI,J′.
When I was used by Eve in the multiplicative forgery, due to the additional

common signal ΞI, the correlation cI,J′ increases to βcI,J′ , where β is the
following multiplicative factor derived in [23, 12]

β = 1 +
α

N

∑

b aJ′,bJ
′
b ‖ΞI,b‖2

∑

b aI,baJ′,bIbJ′
b ‖Kb‖2 . (1.45)

Notice that the percentual increase is proportional to the fingerprint
strength α and the energy of the common noise component ΞI,b; it is in-
versely proportional to N .

Alice now runs the following composite binary hypothesis test for every
candidate image I from her set of Nc candidate images:

H0 : cI,J′ − λĉI,J′ − c0 ∼ fJ′(x),

H1 : cI,J′ − λĉI,J′ − c0 � fJ′(x). (1.46)

The reason why (1.46) cannot be turned into a simple hypothesis test is
that the distribution of cI,J′ when I is used for forgery is not available to Alice
and it cannot be determined experimentally because Alice does not know the
exact actions of Eve. Thus, we resort to the Neyman-Pearson test and set
our decision threshold τ to bound the probability of false alarm,

Pr(cI,J′ − λĉI,J′ − c0 > τ |H0) = PF A. (1.47)

1 Equation (1.43) holds independently of whether or not I was used by Eve.
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The pdf fJ′(x) is often very close to a Gaussian but for some images J′,
the tails exhibit a hint of a polynomial dependence. Thus, to be conservative,
we used Student’s t-distribution for the fit.

Note that, depending on J′, the constant of proportionality λ > 1,
which suggests the presence of an unknown multiplicative hidden parameter
in (1.41) most likely due to some non-periodic NUAs that were not removed
using zero-meaning as described in Section 1.3.1. The quality of Alice’s fin-
gerprint, q, can be considered unknown (or simply set to 1) as different q will
just correspond to a different λ (scaling of the x axis in the diagram of cI,J′

versus ĉI,J′).
Alice now has two options. She can test each candidate image I separately

by evaluating its p-value and thus, on a certain level of statistical significance,
identify those images that were used by Eve for estimating her fingerprint.
Alternatively, Alice can test for Nc candidate images I all at once whether
cI,J′ − λĉI,J′ − c0 ∼ fJ′(x). This “pooled test” will be a better choice for
her for large N when the reliability of the triangle test for individual images
becomes low.

1.6.2 Experiments

In this chapter, we report the results of experiments when testing individual
images. The original publications [23, 12] contain much more detailed exper-
imental evaluation including the pooled test and another case when multiple
forged images are analyzed.

In the experiment, the signals entering the triangle test were preprocessed
by zero-meaning. Wiener filtering, as described in Section (1.3.1) to suppress
the NUAs, was only applied to WJ′ and not to WI to save computation
time. The camera C′ is the four-megapixel Canon PS A520 while C is Canon
PS G2, which has the same native resolution. Both cameras were set to take
images at the highest quality JPEG compression and the largest resolution.
The picture-taking mode was set to “auto.”

The fingerprint estimation algorithm and the forging algorithm depend on
a large number of parameters, such as the parameters of the denoising filter.
In presenting our test results, we intentionally opted for what we consider
to be the most advantageous setting for Eve and the hardest one for Alice.
This way, the results will be on the conservative side. Furthermore, to obtain
a compact yet comprehensive report on the performance of the triangle test,
the experiments were designed to show the effect of only the most influential
parameters. To estimate her fingerprint K̂E , Eve uses the most accurate
estimator she can find in the literature (1.7) implemented using the denoising
filter F described in [43] with the wavelet-domain Wiener filter parameter
σ = 3 (valid for 8-bit per channel color images). From our experiments,
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the reliability of the triangle test is insensitive to the denoising filter or the
mismatch between the filters used by Eve and Alice.

Then, Eve forges a 24-bit color image J from camera C′ to make it look
as if it came from camera C. She first slightly denoises J using the same
denoising filter F (with its Wiener filter parameter σ = 1) to suppress the
fingerprint from camera C′ and possibly other artifacts introduced by C′.
The filter is applied to each color channel separately. Then, Eve adds the
fingerprint to J, using (1.37), and saves the result as JPEG with quality
factor 90, which is slightly smaller than the typical qualities of the original
JPEG images J. The fingerprint strength factor α is determined so that the
response of the generalized matched filter (Equation (11) in [11]) matches
its prediction obtained using the predictor as described in Section (1.4.4).
The predictor was implemented as a linear combination of intensity (1.31),
texture (1.33), and flattening features (1.32), and their second-order terms.
The coefficients of the linear fit were determined from 20 images of natural
scenes using the least square fit. Note that because Eve needs to adjust α so
that the JPEG-compressed J′ elicits the same GMF value as the prediction,
the proper value of α must be found, e.g., using a binary search. Finally, the
true fingerprint K was estimated from 300 JPEG images of natural scenes.

On the defense side, Alice estimates her fingerprint K̂A from NA = 15
blue-sky raw images (fingerprint quality was q = 0.56). Surprisingly, the
quality of K̂A has little impact on the triangle test. Tests with NA = 70
produced essentially identical results. In particular, it is not necessary for
Alice to work with a better quality fingerprint than Eve! In all experiments,
the block size was 128× 128 pixels. The triangle test performed equally well
for blocks as small as 64× 64 and as large as 256× 256.

We now evaluate the performance of the triangle test when applied to
each candidate image individually. By far the most influential element is the
number of images used by Eve, N , and the content of the forged image J.
Six randomly selected test images J shown in Fig. 1.12 were tested with the
values of N ∈ {20, 50, 100, 200}. To give the reader a sense of the extent of
Eve’s forging activity, in Table 1.1 we report the PSNR between J and J′

before it is JPEG compressed. The PSNR between J′ and F (J′) measures
the total distortion that includes the slight denoising, F (J), and quantization
to 24-bit colors after adding the fingerprint. The PSNR between J′ and the
slightly denoised F (J) measures the energy of the PRNU term only.

To accurately estimate the probability distribution fJ(x), we used 358
images from camera C that were for sure not used by Eve. All these images
were taken within a period of about four years. In practice, depending on the
situation, statistically significant conclusions may be obtained using a much
smaller sample.

Fig. 1.11 presents a typical plot of cI,J′ versus ĉI,J′ for N = 20 and
N = 100. As expected, the separation between images used by Eve and
those not used deteriorates with increasing N . When applying the triangle
test individually to each candidate image, after setting the decision threshold
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Fig. 1.11 True correlation cI,J′ versus the estimate ĉI,J′ for image no. 5. Eve’s finger-
print was estimated from N = 20 images (top) and N = 100 (bottom).
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to satisfy a desired probability of false alarm, PF A, the probability of cor-
rect detection PD in the hypothesis test (1.46) is shown in Table 1.2. Each
value of PD was obtained by running the entire experiment as explained in
Section 1.6.1 and evaluating the p-values for all images used by Eve.

# PSNR(F (J), J′) [dB] PSNR(J, J′) [dB]
N 20 50 100 200 20 50 100 200

1 48.8 51.8 53.2 53.9 47.6 49.5 50.3 50.7
2 49.0 51.8 53.1 53.8 47.8 49.8 50.6 50.9
3 50.1 51.8 52.9 53.4 48.7 49.8 50.5 50.8
4 54.5 56.4 57.5 58.7 49.5 50.0 50.2 50.4
5 49.5 52.2 53.2 54.0 47.7 49.3 49.7 50.1
6 50.8 53.2 54.3 55.1 49.3 51.0 51.6 52.1

Table 1.1 PSNR between the original image J and the forgery J′ before JPEG com-
pression for six test images.

# PD [%] for PF A = 10−3 PD [%] for PF A = 10−4

N 20 50 100 200 20 50 100 200

1 100 92 63 15 100 80 44 6
2 100 84 40 5 100 74 26 0
3 95 78 35 4 95 66 14 0
4 95 64 21 3 95 42 8 1
5 100 90 56 11 100 82 41 2
6 100 94 59 14 100 90 40 2

Table 1.2 Detection rate in percents for six text images.

The lower detection rate for image no. 4 is due to the low energy of the
fingerprint (see the corresponding row in Table 1.1) dictated by the predictor.
Because the image has smooth content, which is further smoothened by the
denoising filter, the fingerprint PSNR in the noise residual W is higher than
for other images. Consequently, a low fingerprint energy is sufficient in match-
ing the predicted correlation. Image no. 3 also produced lower detection rates,
mostly due to the fact that 26% of the image content is overexposed (the en-
tire sky) with fully saturated pixels. The attenuation factor ab in (1.39) is
thus effectively equal to zero for such blocks b, while it is estimated in (1.43)
under H1 as being relatively large due to the absence of the noise term ΞJ′,b.
A possible remedy is to apply the triangle test only to the non-saturated
part of the image. However, then we experience a lower accuracy again due
to a smaller number of pixels in the image. At this point, we note that if
the attacker makes the forgery using (1.37) without attenuating the PRNU
in saturated areas, the fingerprint will be too strong there, which could be
used by Alice to argue that the fingerprint has been artificially added and
the image did not come from her camera.
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Fig. 1.12 Six original images J from a Canon PS A520 numbered by rows (#1, #2,
#3); (#4, #5, #6).

We conclude this section with the statement that while it is possible to
maliciously add a sensor fingerprint to an image to frame an innocent victim,
adding it so that no traces of the forging process are detectable appears
rather difficult. The adversary, Eve, will likely have to rely on images taken
by Alice that she decided to share with others, for example on her Facebook
site. However, the estimation error of the camera fingerprint estimated from
such images will contain remnants of the entire noise residual from all images
used by Eve. This fact is the basis of the triangle test using which Alice can
identify the images that Eve used for her forgery and, in doing so, prove her
innocence.

As a final remark, we note that while the reliability of the single-image
triangle test breaks up at approximately N = 100, the test in its pooled form
(which is described in [23, 12]) can be applied even when Eve uses a high-
quality fingerprint estimated from more than 300 images. The reliability in
general decreases with increasing ratio Nc/N .

The reliability of the triangle test can be somewhat decreased by modifying
the fingerprint estimation process to limit outliers in the noise residuals of im-
ages used for the estimation [5, 39]. This will generally suppress the remnants
of the noise residual used by the triangle test. More extensive tests, however,
appear necessary to investigate the overall impact of this counter–counter-
counter measure on the reliability of the identification algorithm when the
fingerprint is not faked.
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1.7 Temporal forensics

The goal of temporal forensics is to establish causal relationship among two
or more objects [42, 44]. In this section, we show how pixel defects can be
used to order images by their acquisition time given a set of images from the
same camera whose time ordering is known.2 Even though temporal data is
typically found in the EXIF header, it may be lost when processing or editing
images off-line. Additionally, since the header is easily modifiable, it cannot
be trusted. Developing reliable methods for establishing temporal order be-
tween individual pieces of evidence is of interest for multiple reasons. Such
techniques can help reveal deception attempts of an adversary or a criminal.
The causal relationship also provides information about the whereabouts of
the photographer.

Strong point defects (hot/stuck pixels) occur randomly in time and space
on the sensor independently of each other [38, 36, 37, 13], which makes them
useful for determining an approximate age of digital photographs. New defects
appear suddenly and with a constant rate (It is a Poisson process.), which
means that the time between the onsets of new defects follows the exponential
distribution. Once a defect occurs, it becomes a permanent part of the sensor
and does not heal itself.

The main cause of new pixel defects is environmental stress, primarily due
to impacting cosmic rays. In general, smaller pixels are more vulnerable to
point defects than larger pixels. Sensors age both at high altitudes and at the
sea level. They do age faster at high altitudes or during airplane trips where
cosmic radiation is stronger. Consequently, in real life the defect accumulation
may not be linear in time.

The main technical problem for using point defects for temporal forensics is
that such defects may not be easily detectable in individual images, depending
on the image content, camera settings, exposure time, etc. In the next section,
we describe a method for estimating pixel defect parameters and use it for
determining an approximate age of a digital photograph using the principle
of maximum likelihood.

1.7.1 Estimating point defects

Even though sensor defects can be easily estimated in a laboratory environ-
ment by taking test images under controlled conditions, a forensic analyst
must work with a given set of images taken with camera settings that may
be quite unfavorable for estimating certain defects. For example, the dark
current is difficult to estimate reliably from images of bright scenes taken
with a short exposure time and low ISO.

2 Temporal ordering of digital images was for the first time considered in [42].
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Let Yk, k = 1, . . . , d, be d images of regular scenes taken at known times
t1, . . . , td. As in the previous section, we work with noise residuals Wk = Yk−
F (Yk) obtained using a denoising filter F . Since hot pixels (and stuck pixels
with a large offset) are spiky in nature, denoising filters of the type [43] that
extract additive white Gaussian noise are likely a poor choice for estimating
point defects. Instead, non-linear filters, such as the median filter, are more
likely to extract the spike correctly.

We use the model of pixel output (1.3):

Wk(i) = Ik(i)K(i) + τkD(i) + c(i) + Ξk(i), (1.48)

where k and i are the image and pixel indices, respectively. For simplicity,
we model Ξk(i), k = 1, . . . , d, as an i.i.d. Gaussian sequence with zero mean
and variance σ2(i). The known quantities in the model are Ik ≈ F (Yk) and
τk; Wk are observables.

From now on, all derivations will be carried out for a fixed pixel i. This
will allow us to drop the pixel index and make the expressions more compact.
The unknown vector parameter θ = (K, D, c, σ) (for a fixed pixel, θ ∈ R

4)
can be estimated using the Maximum Likelihood (ML) principle:

θ̂ = arg max
θ

L(W1, . . . , Wd|θ), (1.49)

where L is the likelihood function

L(W1, . . . , Wd|θ) = (2πσ2)−d/2 exp

(

− 1

2σ2

d
∑

k=1

(Wk − IkK− τkD− c)2

)

.

(1.50)
Because the modeling noise Ξk is Gaussian, the ML estimator becomes the
least squares estimator [31]. Additionally, the model linearity allows us to
find the maximum in (1.54) in the following well-known form:

(K̂, D̂, ĉ) = (HH′)−1H′W, (1.51)

σ̂2 =
1

d

d
∑

k=1

(

Wk − IkK̂− τkD̂− ĉ
)2

, (1.52)

where

H =









I1(i) τ1 1
I2(i) τ2 1
· · · · · · · · ·

Id(i) τd 1









(1.53)

is a matrix of known quantities and W = (W1, . . . , Wd)′ the vector of ob-
servations (noise residuals).
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1.7.2 Determining defect onset

We now extend the estimator derived above to the case when we have observa-
tions (pixel intensities) across some time span during which the pixel becomes

defective. Our goal is to estimate θ before and after the onset, θ(0), θ(1), and
the onset time j. The estimator derived in the previous section easily extends
to this case

(θ̂
(0)

, θ̂
(1)

, ĵ) = arg max
(θ(0),θ(1),j)

Lj(W1, . . . , Wd|θ(0), θ(1)), (1.54)

where

Lj(W1, . . . , Wd|θ(0), θ(1)) = L(W1, . . . , Wj|θ(0))× L(Wj+1, . . . , Wd|θ(1))
(1.55)

is the likelihood function written in terms of (1.50). Because of the form
of (1.55), the maximization in (1.54) factorizes:

(θ̂
(0)

, θ̂
(1)

, ĵ) = arg max
j

{

arg max
θ(0)

L(W1, . . . , Wj |θ(0))×

arg max
θ(1)

L(Wj+1, . . . , Wd|θ(1))

}

, (1.56)

which converts the problem of onset estimation to the problem of estimating
pixel defect addressed in the previous section.

1.7.3 Determining approximate acquisition time

We are now ready to develop the algorithm for placing a given image I under
investigation among other d images, I1, . . . , Id, whose time of acquisition is
known, monotone increasing, and whose pixel defects are known, including
the onset time and the parameters before and after the onset. This problem
is again addressed using the ML approach. This time, only the time index
j of I is the unknown as the parameters of all defective pixels are already
known. Denoting the set of all defective pixels D, the estimator becomes:

ĵ = arg max
j

∏

i∈D

L(WI(i)|θ[j>j(i)](i)) (1.57)

written in terms of (1.50). The superscript of θ is the Iverson bracket.
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1.7.4 Performance example

We applied the approach outlined above to images from a Canon PS sd400
digital camera. Total of d = 329 images with known acquisition times span-
ning almost 900 days were used to estimate the defect parameters for 46 point
defects. Then, the acquisition times were estimated for 159 other images. The
accuracy with which one can estimate the time obviously depends on how
many new defects appear during the entire time span.

The noise residual W was extracted using a 3× 3 median filter. Fig. 1.13
shows the true date versus the estimated date for all 159 images. The circles
on the diagonal correspond to the training set of 329 images with known
dates. They show the temporal distribution of training images. Note that no
training images appear between time 400 and 500, limiting thus our ability
to date images within this time interval.
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Fig. 1.13 True acquisition date versus date estimated using (1.57) based on detecting
pixel defects. The average absolute error between the estimated and true date was 61.56
days.

1.7.5 Confidence intervals

In forensic setting, the analyst will likely be interested in statements of the
type “the probability that image I was taken in time interval [t, t′] is at least
p.” The approach outlined above allows us to quantify the results in this way
because the conditional probabilities Pr(WI|j) =

∏

i∈D L(WI(i)|θ[j>j(i)](i))
are known for each j. From the Bayes formula,
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Pr(j|WI) = Pr(WI|j)
Pr(j)

Pr(WI)
. (1.58)

Thus, the probability that I was taken in time interval [t, t′] is

Pr(j ∈ [t, t′]|WI) =

∑

k∈[t,t′] Pr(WI|k)Pr(k)
∑

k Pr(WI|k)Pr(k)
. (1.59)

Depending on the situation at hand, the prior probabilities Pr(k) may be
known from other forensic evidence or may be completely unknown. In the
absence of any information about the priors, one could resort to the principle
of maximum uncertainty and assume the least informative prior distribution
– that the owner of the camera was taking images at a uniform rate, leading
to Pr(k) = 1/(tk− tk−1) for all k, where tk is the time when the kth training
image was taken.

1.8 Summary

Every imaging sensor contains defects and imperfections that can be utilized
for a variety of forensic tasks. The photo-response non-uniformity (PRNU)
plays the role of a fingerprint that well survives processing and can thus be
used for identifying images taken by a camera whose fingerprint is known. Its
absence in individual regions testifies about malicious processing applied to
an image (forgery detection). The fingerprint can also serve as a template to
recover previously applied geometrical processing. The methodology applies
to CCD as well as CMOS sensors and to digital still and video cameras as
well as scanners [25, 16, 34].

Although it is possible for an adversary to superimpose a camera finger-
print onto an image from a different camera and thus frame an innocent
victim (the fingerpint-copy attack), it is not easy to do this without leaving
detectable traces. The so-called triangle test can reveal when a fingerprint
has been maliciously added and one can even identify the images that the
adversary utilized in the attack.

Besides PRNU, sensors also contain the so-called point defects, examples
of which are hot and stuck pixels and pixels with abnormal sensitivity. Such
defects occur randomly on the sensor and randomly in time. This makes
them useful for determining an approximate time when an image was taken.
This chapter outlines a maximum-likelihood estimator of time of acquisition
that basically detects the presence of point defects with a known onset in an
image.

The performance of all forensic methods introduced here is briefly demon-
strated on real images. Throughout the text, references to previously pub-
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lished articles guide the interested reader to more detailed technical informa-
tion.

1.8.1 Related publications

When the camera identification technique is deployed on a large scale, one
quickly runs into complexity issues. For example, the seemingly routine task
of matching an image (or fingerprint) to a large database of fingerprints stored
in a database may be quite time consuming already when the database holds
merely hundreds of fingerprints. This is because correlating each database
fingerprint with the query signal may take hours even in the simplest case
when no search for geometrical transformation is carried out. To address this
problem, researchers [24] introduced the concept of a fingerprint digest and
sparse data structures to cut down the searching time significantly.

A similar task of matching a large database of images to a small number
of fingerprints was proposed in [2]. Here, the complexity was decreased using
a hierarchical binary search.

For completeness, we note that there exist approaches combining sensor
noise defects with machine-learning classification [25, 33, 6]. An older version
of this forensic method was tested for cell phone cameras in [6] and in [47]
where the authors show that a combination of sensor-based forensic methods
with methods that identify camera brand can decrease false alarms. The im-
provement reported in [47], however, is unlikely to hold for the newer version
of the sensor noise forensic method presented in this chapter as the results
of [47] appear to be influenced by uncorrected non-unique artifacts discussed
in Section 1.3.1. The problem of pairing of a large number of images was stud-
ied in [3] using an ad hoc approach. A large-scale experimental evaluation
of camera identification on over one million images from over 6,800 cameras
covering 150 models appears in [19]. Identification of printed images is the
subject of [20]. Anisotropy of image noise for classification of images into
scans, digital camera images, and computer art appeared in [33]. The effect
of denoising filters on the performance of sensor-based camera identification
was studied in [1].

1.8.2 Real-life applications

Camera identification based on sensor fingerprints described in this chapter
passed the Daubert challenge http://en.wikipedia.org/wiki/Daubert_

standard in the State of Alabama in July 2011. In March 2009, Miroslav
Goljan testified in Scotland as an expert witness in a high-profile case that in-
volved child abuse crimes by a pedophile ring. See the article “Operation Alge-
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bra” at http://p10.hostingprod.com/@spyblog.org.uk/blog/2009/05/.
Cases involving movie piracy and illegal acquisition and distribution of movies
taped inside a movie theater form another area of possible applications of
this technology. The sensor fingerprint can also be used to reverse-engineer
in-camera geometrical processing, such as digital zoom or correction of lens
distortion, and to provide a blind estimate of the focal length at which an
image was taken [22].
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