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ABSTRACT
In this work, we revisit Perturbed Quantization steganography

with modern tools available to the steganographer today, including

near-optimal ternary coding and content-adaptive embedding with

side-information. In PQ, side-information in the form of rounding

errors is manufactured by recompressing a JPEG image with a ju-

diciously selected quality factor. This side-information, however,

cannot be used in the same fashion as in conventional side-informed

schemes nowadays as this leads to highly detectable embedding.

As a remedy, we utilize the steganographic Fisher information to

allocate the payload among DCT modes. In particular, we show

that the embedding should not be constrained to contributing coef-

ficients only as in the original PQ but should be expanded to the

so-called “contributing DCT modes.” This approach is extended to

color images by slightly modifying the SI-UNIWARD algorithm.

Using the best detectors currently available, it is shown that by

manufacturing side information with double compression, one can

embed the same amount of information into the doubly-compressed

cover image with a significantly better security than applying J-

UNIWARD directly in the single-compressed image. At the end of

the paper, we show that double compression with the same qual-

ity makes side-informed steganography extremely detectable and

should be avoided.
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1 INTRODUCTION
Side-informed steganographic schemes are among the most secure

steganographic schemes in existence today. The side-information

typically comes in the form of rounding errors after some informa-

tion-reducing processing applied to the (pre)cover image. One such

processing is JPEG compression, which is known to provide high

levels of security [6, 19, 22, 23, 25, 26, 29–32]. The biggest draw-

back is that the steganographer needs to have access to the un-

compressed image, considering that most imaging devices output

images that are already compressed. The embeddingmethod known

as Perturbed Quantization (PQ) [23] manufactures side-information

by recompressing the JPEG cover image in a way that maximizes

the number of coefficients that fall in the middle of the quantiza-

tion intervals during the second compression, and which are used

for embedding. In this paper, we revisit this approach in light of

modern tools presently available to the steganographer, such as

content-adaptive embedding with costs modulated by the round-

ing errors [16, 27, 29] implemented using Syndrome Trellis Codes

(STCs) [21] rather than the suboptimal wet paper codes [24] used in

PQ. Additionally, due to the recent increased interest in embedding

into color [1, 2, 14, 16, 41, 44], we extend the embedding to color

JPEGs.

We do so while benchmarking the security with rich models [18,

28, 34, 40] and current state-of-the-art convolutional neural net-

works (CNNs) [5, 42, 43].

In Section 2, we introduce notation and describe the side-infor-

mation produced by double compression. Section 3 explains the

datasets and detectors used for evaluating the proposed method. In

Section 4, we derive a rule for selecting the second compression

quality that provides, in some sense, the best side-information

possible. The original PQ embedding is then modified to be able to

embed larger payloads in images compressed with high qualities as

well as in color images. Section 5 shows the experimental results on

grayscale and color images. In Section 6, we delve into why double

compression with the same quality should not be used as a source

of side-information. The paper is concluded in Section 7.

2 PRELIMINARIES AND NOTATION
Boldface symbols are reserved for matrices and vectors with ele-

mentwise multiplication and division denoted ⊙ and ⊘. Rounding

x to the closest integer is denoted [x]. The set of all integers will be
denoted Z. For better readability, we strictly use i, j to index pixels

and k, l DCT coefficients. Denoting by xi j , 0 ≤ i, j ≤ 7, an 8×8 block

of pixels, they are transformed during JPEG compression to DCT co-

efficients dkl = DCTkl (x) ,
∑
7

i , j=0 f
i j
kl xi j , 0 ≤ k, l ≤ 7, and then

quantized ckl = [dkl /qkl ], ckl ∈ {−1024, . . . , 1023}, where qkl
are quantization steps in a luminance quantization matrix, and
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f
i j
kl = wkwl /4 cosπk(2i + 1)/16 cosπl(2j + 1)/16, w0 = 1/

√
2,

wk = 1, 0 < k ≤ 7, are the discrete cosines.

During decompression, the above steps are reversed. For a block

of quantized DCTs ckl , the corresponding block of non-rounded pix-

els after decompression is yi j = DCT
−1
i j (c ⊙ q) ,

∑
7

k ,l=0 f
i j
klqklckl ,

yi j ∈ R. To obtain the final decompressed image, yi j are rounded
to integers xi j = [yi j ] and clipped to [0, 255].

For compression of color images, the RGB representation is typi-

cally changed to YCbCr (luminance, and two chrominance signals)

with:

Y = 0.299R + 0.587G + 0.114B

Cb = 128 − 0.169R − 0.331G + 0.5B

Cr = 128 + 0.5R − 0.419G − 0.081B (1)

The luminance channelY is processed as described above, while the

chrominance signals are optionally subsampled, then transformed

using DCT, and finally quantized with chrominance quantization

matrices [39]. In this work we avoid subsampling of chrominance

signals because its effect on steganography has not been thoroughly

studied yet.

2.1 Double Compression and Side Information
This work deals with embedding in JPEG images recompressed with

a potentially different quality. The abbreviation SC will stand for

single compressed and DC for double compressed images. To distin-

guish between DCT blocks and pixels of SC and DC images, we will

use a superscript to keep track of the number of compressions. The

symbol c(1) represents the DCT block after the first compression,

while c(2) is the DCT block after the second compression. Similarly,

q(1) and q(2) stand for quantization matrices in the first and second

compression, respectively.

To obtain a DC image, a DCT block from the SC image, c(1),
is decompressed into y(1) = DCT(c(1) ⊙ q(1)), and rounded to in-

tegers x(1) = [y(1)]. We then compress with the second quanti-

zation table to obtain the DCT coefficients before quantization

d(2) = DCT(x(1)). The final DCT coefficients after quantization are

c(2) = [c̃(2)] = [d(2) ⊘ q(2)], where c̃(2) are the quantized DCT coef-

ficients before rounding to integers. Finally, the side-information

created by recompression are the rounding errors during the last

quantization e = c̃(2) − c(2).
To utilize these rounding errors for embedding, we follow the

idea in [19] where the (symmetric) embedding costs ρkl of changing

a DCT coefficient c
(2)

kl by +1 or −1 are modulated by the rounding

errors:

ρkl (sign(ekl )) = (1 − |2ekl |)ρkl

ρkl (−sign(ekl )) = ρkl . (2)

3 EXPERIMENTAL SETUP
This section describes the datasets as well as the detectors used for

evaluating security.

3.1 Datasets
Weworkwith two datasets to cover both grayscale and color images.

The first dataset is a union of the popular BOSSbase 1.01 [3] and

BOWS2 [4], each containing 10, 000 grayscale images downsampled

to 256 × 256 using imresize with default parameters in Matlab. This

union was then randomly split into training, validation, and testing

sets with 14, 000, 1, 000, and 5, 000 images, respectively. This dataset

was JPEG compressed with Matlab’s imwrite with several quality

factorsQ1. The second dataset is ALASKA 2 [15] consisting of three

qualities 75, 90, 95, each having 25, 000 color images of size 512×512.

This dataset was recently used in ALASKA II Kaggle competition.
1

The compressed images represent the SC cover images (precov-

ers) in our experiments. To obtain the DC cover images, the SC

images are loaded into the RGB representation with Matlab’s im-
read, converted into the YCbCr space via (1) (grayscale images are

already loaded as Y channel), rounded to integers, and further com-

pressed with quality Q2 ’manually’ using Matlab’s dct2. This was
done in order to obtain the rounding errors e for the subsequent
side-informed embedding. The resulting DCT coefficients were fi-

nally rounded to the nearest integers to obtain the DC cover images.

As mentioned previously, we never used chrominance subsampling

during compression of color images. This development pipeline is

visualized in Figure 1.

We use the steganographic algorithm J-UNIWARD [29] for SC

images as it is still one of themost secure algorithms for the JPEG do-

main in grayscale and color images when the development pipeline

is not available [12, 16, 45]. For DC images, we use the side-informed

version SI-UNIWARD [19] with several modifications, specific to

DC images, as explained in the next section.

All experiments are set up in such a way that we always embed

the same absolute payload size (in bits) in the SC image as in the

DC image in order to answer the main question of this paper:

“Can we embed the same amount of information more securely by

recompressing the cover image?” The payload size will be expressed

in bits per non-zero ACDCT coefficients (bpnzac) of SC cover image.

All embedding algorithms are simulated on their corresponding

rate–distortion bound (e. g., assuming optimal coding).

3.2 Detectors
Inspired by the fact that the best detectors in the recent ALASKA

II Kaggle competition were mostly from the EfficientNet family,

we attempted to train EfficientNet-B0 and B2 [37] on color images.

However, these networks would not converge on the proposed DC

steganographic scheme even after trying several different training

schedules. Thus, in our experiments we used the SRNet [5] and rich

models.

Training the SRNet from scratch, however, was also impossible

on the payloads used in this paper. There are many possible ways

how to alleviate problems with convergence of a CNN detector.

One can for example train on larger payloads first and use transfer

learning on smaller payloads [7, 38, 47]. Alternatively, one can train

on an ’easier’ JPEG quality [8] or train on steganography in SC im-

ages first. To avoid confusion with so many different possibilities,

we selected JIN
2
pretraining [11], which consists of pretraining

1
https://www.kaggle.com/c/alaska2-image-steganalysis

2
JIN stands for J-UNIWARD embedded ImageNet
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Figure 1: Double compression pipeline. We start with DCT coefficients of a single compressed (SC) image and end up with
DCTs of a double compressed (DC) image.

on the ImageNet database [20] embedded with J-UNIWARD with

uniform random payload between 0.4 and 0.6 bpnzac. This kind of

pretraining is suitable for detecting steganography across a variety

of embedding schemes embedding both in the JPEG and spatial

domain, and for side-informed schemes [11]. All networks used

for evaluation in this paper, for SC as well as DC images, were

pretrained in this way. Since JIN pretraining is executed on color

images, the networks pretrained in this way expect three-channel in-

puts. Thus, for grayscale images we simply replicated the grayscale

representation in all three RGB channels. The network detectors

were trained for 100 epochs in total on both datasets using mixed

precision training with 64 images in every mini-batch, AdaMax op-

timizer, and weight decay 2×10
−4
. We used OneCycle learning rate

(LR) scheduler with maximum LR 10
−3

at epoch 5, division factor

25 and final division factor 10. For easy implementation, PyTorch

Lightning
3
framework was used for training our model. For DC

images in BOSSbase+BOWS2 database embedded with 0.4 bpnzac,

the pair constraint (PC) – forcing cover and its stego version in the

same minibatch – was used for the first 50 epochs, otherwise the

network would not converge even with the JIN pretraining. For

3
https://www.pytorchlightning.ai/

every lower payload (in both datasets), transfer learning from 0.4

bpnzac was used without the PC for 50 epochs only.

For the rich models, we selected the ccJRM [33] and DCTR [28]

feature sets with the ensemble classifier [35]. In color images, we

use the JRM [34] instead of the cartesian-calibrated [33] ccJRM

in order to keep a “manageable dimensionality” – the concatena-

tion of extracted features from all three channels would triple the

dimensionality of every feature set.

4 PERTURBED QUANTIZATION
In this section, we review some concepts and basic facts from the

original PQ method, such as the notion of a “contributing mode”

and “contributing DCT coefficient”, and justify the selection of the

second quality factor for side-informed embedding in recompressed

images.

Because double compression can introduce strong artifacts into

the distribution of DCT coefficients [17, 46], it is important to avoid

such combinations in steganography because the embedding could

be very detectable using, e. g., the JPEG Rich Model (JRM). Figure 2

shows a few examples of artifacts due to double compression. In

https://www.pytorchlightning.ai/
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Figure 2: Histogram of a DCTmode compressed first with quantization step q(1)kl = 3 and further compressed with quantization

step q
(2)

kl equal to a) 3, b) 4, c) 5, d) 6. Top: before rounding of the DCT coefficients, bottom: after rounding. The spikes in top

row are around multiples of q(1)kl /q
(2)

kl . Only cases b) and d) correspond to contributing modes.

PQ [23], and in this paper as well, we wish to have after the sec-

ond compression as many DCT coefficients with rounding errors

|ekl | ∼ 1/2 as possible as the rounding of such coefficients can

be intuitively perturbed with little impact on detectability. Note

that this is in line with the modern understanding of side-informed

steganography [19].

When recompressing a JPEG image compressed with quantiza-

tion table q(1) with quantization table q(2), the DCTmode (k, l), k, l =
0, . . . , 7 is called contributing if there existm,n ∈ Z such that

m · q
(1)

kl = n · q
(2)

kl +
1

2

q
(2)

kl . (3)

These modes guarantee the existence of DCT coefficients with

the absolute value of the rounding error in the DCT domain close

to 1/2. As shown in [10], after recompression the DCT coefficients

before rounding to integers follow a Gaussian distribution

c̃
(2)

kl ∼ N
©­«c(1)kl

q
(1)

kl

q
(2)

kl

,
1

12(q
(2)

kl )
2

ª®¬ , (4)

where the mean can be written from (3) as

E[c̃
(2)

kl ] = c
(1)

kl

q
(1)

kl

q
(2)

kl

= n′ +
1

2

, (5)

where it was assumed that c
(1)

kl and some n′ ∈ Z play the role ofm,n

in (3). With such a small variance (4), it follows that after rounding

to the nearest integers the rounding errors of these coefficients will

be clustered around ±1/2.

In [23], the following useful theorem is proved.

Theorem 4.1. The mode (k, l) is contributing if and only if q(2)kl /д

is even, where д = gcd(q
(1)

kl ,q
(2)

kl ) is the greatest common divisor of

q
(1)

kl and q(2)kl . Furthermore, all contributing multiplesm of q(1)kl are
expressed by the formula

m = (2n + 1)
q
(2)

kl
2д
, n ∈ Z. (6)

In PQ steganography, embedding is executed only in contributing

coefficients, which by Theorem 4.1, means in coefficients satisfying

c
(1)

kl = (2n + 1)
q(2)

kl
2д for some n ∈ Z. We wish to emphasize that not

all coefficients in contributing modes are contributing.

The motivation behind using only these coefficients is simple. It

was shown [10] that the rounding errors in the DCT domain after

the second compression ekl follow a Gaussian distribution folded

into the interval [−1/2, 1/2]:

ekl ∼ NF
©­«c(1)kl

q
(1)

kl

q
(2)

kl

,
1

12(q
(2)

kl )
2

ª®¬ , (7)

where the mean of this distribution is E[ekl ] = c
(1)

kl
q(1)

kl

q(2)

kl

− [c
(1)

kl
q(1)

kl

q(2)

kl

].

It is then clear that for a contributing mode (k, l)

E[ekl ] = c
(1)

kl

q
(1)

kl

q
(2)

kl

− [c
(1)

kl

q
(1)

kl

q
(2)

kl

]

= c
(1)

kl

q
(1)

kl /д

q
(2)

kl /д
− [c

(1)

kl

q
(1)

kl /д

q
(2)

kl /д
]

= c
(1)

kl
u

2v
− [c

(1)

kl
u

2v
] (8)

for some u,v ∈ Z coprime because Theorem 4.1 states that the

denominators in (8) are even. Then in every case where v divides

c
(1)

kl ·u and 2v does not divide c
(1)

kl ·u we get the desirable |E[ekl ]| =

1/2.



Equipped with this knowledge, we would now like to maximize

the number of rounding errors that are close to 1/2 in absolute

value. Because the coefficients of the SC image c
(1)

kl are given, the

easiest way to ensure this for as many coefficients as possible is

to let v divide u. Since u,v are coprime, this means u = v = 1 and

thus q
(2)

kl = 2q
(1)

kl .
4
In this case, a coefficient c

(1)

kl from a contributing

mode is contributing whenever it is odd.

Enforcing the constraintq
(2)

kl = 2q
(1)

kl , however, would lead to non-

standard quantization tables, and thus potentially an easy artifact of

embedding. This is why in our work, we limit ourselves to standard

quantization tables. Recall that the luminance quantization table

for quality factor Q is defined as

q(Q) =

max

{
1,
[
2q(50)

(
1 −

Q
100

)]}
, Q > 50

min

{
255 × 1,

[
q(50) 50Q

]}
, Q ≤ 50,

(9)

where the luminance quantization table for quality factor 50 is

q(50) =

©­­­­­­­­­­­«

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

ª®®®®®®®®®®®¬
. (10)

For the chrominance quantization table qC (Q) at quality Q , the
same formula (9) applies with chrominance quantization table at

quality 50

qC (50) =

©­­­­­­­­­­­«

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

ª®®®®®®®®®®®¬
. (11)

For simplicity, let us nowwork only with luminance quantization

tables and Q > 50

q(Q) = 2q(50)
(
1 −

Q

100

)
. (12)

Combining with our condition q
(2)

kl = 2q
(1)

kl , we obtain a relation-

ship between the first and second quality factors Q1 and Q2:

q(Q2) = 2q(Q1)

= 2

(
2q(50)

(
1 −

Q1

100

))
= 2q(50)

(
1 −

2(Q1 − 50)

100

)
= q(2(Q1 − 50))

4
This relationship was derived in [23] only experimentally by virtue of Figure 3 in

Sec. 4.3.

Q (75,50) (90,80) (95,90)

SI all - binary 0.0915 0.0222 0.0091

SI all - ternary 0.0957 0.0250 0.0155

J-UNIWARD 0.2777 0.3599 0.3932

Table 1: PE with DCTR at 0.4 bpnzac of J-UNIWARD in sin-
gle compressed images, and SI-UNIWARD in double com-
pressed imageswhile embedding into all DCTmodes, binary
and ternary version. BOSSbase+BOWS2 dataset.

or

Q2 = 2(Q1 − 50), (13)

as also reported in [23] based on experiments. In this work, we

will follow this recipe for the selection of Q2 with one exception

for Q1 = 100, because in this case we would declare Q2 = 100 and

the embedding would be reliably detected using the Reverse JPEG

Compatibility Attack (RJCA) [9, 13]. For this reason, for Q1 = 100,

we heuristically chooseQ2 = 98 as the largest quality not attackable

by the RJCA.

Additionally, the same relationship holds for the chrominance

quantization tables, which will help us extend this idea to color

images. To relax the notation, from now we denote Q = (Q1,Q2)

the pair of quality factors used for recompression with Q1 used for

SC images.

4.1 Naive application of side-information
The most straightforward way to cast the idea behind the PQ

within the modern embedding paradigm is to use a modern content-

adaptive steganographic method, such as J-UNIWARD, and apply

the standard way of incorporating side-information by modulating

the embedding costs by the rounding errors obtained during recom-

pression (2). Table 1 shows the comparison of such SI-UNIWARD

scheme in DC images with J-UNIWARD in SC images under the

assumption that the exact same absolute payload is embedded by

both schemes. The side-informed scheme is much more detectable

than non-informed J-UNIWARD in SC images. To make sure that

the high detectability is not introduced by ternary embedding, we

also include the results for the binary version of SI-UNIWARD. Both

the binary and ternary versions, however, exhibit a similar level of

(in)security.

We now investigate where this high detectability comes from.

We will measure the impact of the embedding on the distribution of

DCT coefficients from every mode (k, l) using the steganographic
Fisher Information

Ikl =
∑
m∈Z

1

p
(c)
kl (m)

©­«
∂p

(s)
kl (m)

∂α
|α=0

ª®¬
2

, (14)

where p
(c)
kl is the cover probability mass function (pmf) of DCT

coefficients in mode (k, l), p
(s)
kl is the pmf of stego images in the

samemode, and α is the relative payload size. Since we cannot easily

model the stego pmf when using J-UNIWARD, we approximate the

Fisher information with real data as



Ĩkl =
∑
m∈Z

1

h
(c)
kl (m)

©­«
h
(c)
kl (m) − h

(s)
kl (m)

α

ª®¬
2

, (15)

where we use the actual histograms h
(c)
kl and h

(s)
kl of the cover and

the corresponding stego images embedded with relative payload

α . We average (15) over 100 randomly chosen images from the

BOSSbase dataset and show in Figure 3 the average FI per mode

together with the contributing modes for three different qualitiesQ .

We used payload α = 1.1 bpnzac for the embedding of stego images

because for smaller payloads the approximation of the FI (15) does

not utilize many changes in histograms and thus does not provide

any useful feedback. We can clearly see a relationship between

the non-contributing modes and the modes with high Ĩkl , which
suggests that embedding in these modes is much more detectable.

The only notable exception to this is in high frequencies of the

lowest tested quality Q = (75, 50). In this case, almost all cover

coefficients are equal to zero due to the strong quantization, which

leads to inaccurate estimates of the Fisher Information. We further

report that the average FI across all non-contributing modes is

2–5 times larger than the average FI in the contributing modes.

Remembering that the FI is in the error exponent of the likelihood

ratio test, allowing embedding changes in non-contributing modes

will have a grave impact on security.

To further support that the embedding into non-contributing

modes is the culprit, we show in Figure 4 boxplots of the differences

between stego and cover histograms. The differences in histograms

exist because of the bias in the SI embedding towards coefficients

with large rounding errors due to the nature of the cost modula-

tion (2). For non-contributing modes, these coefficients are located

at the peaks of mode histograms (see Figure 2 c)), which after

embedding causes a very detectable distortion in the DCT mode

histogram because these peaks will get deformed. Contributing

modes do not suffer from this because they either have double

peaks in histograms, which will be preserved during embedding,

or no peaks (except at zero) (see Figure 2 b) and d)).

4.2 Restricting the embedding
The results from the previous section give a direction on how to

adjust the side-informed embedding in double compressed images

in order to avoid introducing changes into structures that exist in

the distribution of coefficients of DC images. Constraining the em-

bedding only to contributing multiples of q
(1)

kl (6) as in the original

PQ algorithm seems like the best option, however, this severely

limits the capacity of the embedding. Table 2 shows the detection

error with DCTR features across a wide range of payloads. Once

the payload reaches 0.4 bpnzac at Q = (95, 90), the detection error

drops drastically. We verified that these drops indeed correspond

to embedding messages that are simply too large to fit only into

contributing coefficients. Hence, the embedding algorithm starts

making changes in other coefficients, which happens without any

content-adaptivity because the embedding spills into forbidden

coefficients assigned with the same “wet cost.”

Since we cannot embed into all modes securely and embedding

only into contributing coefficients seems very limiting in terms
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Figure 3: Top: Q = (75, 50), middle: Q = (90, 80), bottom:
Q = (95, 90). Left: in black are contributing DCT modes, in
white are non-contributing modes. Right: approximation of
FI Ĩkl per mode averaged over 100 images from BOSSbase
embedded with 1.1 bpnzac.
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Figure 4: Boxplots showing the differences between the dis-
tribution of DCT coefficients from stego images embedded
with SI-UNIWARD (0.4 bpnzac) when embedding into all
modes and cover images across 100 randomly selected im-
ages from BOSSbase with double compression quality Q =
(90, 80). Left: non-contributing mode (2, 1) with quantization
steps 2 and 5, Right: contributing mode (1, 2) with quantiza-
tion steps 2 and 4.

of the maximal embeddable payload, we consider embedding into

all coefficients from contributing modes because of the smaller

impact of the embedding in terms of the FI (15) (see Figure 3 for an

example).

Figure 5 shows the embedding capacity as the number of “change-

able coefficients” per non-zero AC DCT coefficients of the single



Payload 0.3 bpnzac 0.4 bpnzac 0.5 bpnzac 0.6 bpnzac

Q (75,50) (90,80) (95,90) (75,50) (90,80) (95,90) (75,50) (90,80) (95,90) (75,50) (90,80) (95,90)

Binary contr coefficients 0.4082 0.3871 0.4197 0.3424 0.3381 0.0164 0.1990 0.0385 0.0017 0.0230 0.0026 0.0004

Binary, contr modes 0.4085 0.3895 0.4477 0.3441 0.3526 0.2940 0.2705 0.2813 0.0167 0.2118 0.1247 0.0002

Ternary, contr modes 0.4034 0.3922 0.4536 0.3660 0.3587 0.3530 0.2909 0.3118 0.1929 0.2375 0.2170 0.0284

Table 2: PE with DCTR of SI-UNIWARD in double compressed images. Comparison between embedding into contributing
coefficients and all coefficients in contributing modes. Binary and ternary embedding. BOSSbase+BOWS2 dataset.
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Figure 5: Average number of changeable coefficients per
non-zero AC DCT coefficients over 500 randomly cho-
sen images compressed with quality factor 95. Top: BOSS-
base+BOWS2 (grayscale), bottom: ALASKA 2 (color), left:
embedding only into contributing coefficients, right: embed-
ding into all coefficients in contributing modes.

compressed image. Changeable coefficients are either only con-

tributing coefficients or all coefficients from all contributing modes.

It was verified for a range of qualities that for grayscale and color

images, using all coefficients in contributing modes increases the

average embedding capacity by approximately 50%.

For a larger embedding capacity, we therefore relax the embed-

ding restriction by allowing embedding into all coefficients inside

contributing modes, not only the contributing coefficients. The

results are shown in Table 2, where we can see that for payloads

as large as 0.6 bpnzac, the ternary embedding into all coefficients

inside contributing modes provides overall best security. Based on

this analysis, we will keep using this embedding strategy for the

rest of the paper.

4.2.1 High qualities. In the derivation of (13), we did not consider

the nonlinear dependence of quantization steps on the quality fac-

tor due to taking the maximum with one and rounding. While

the rounding operation introduces the same nonlinearity for ev-

ery quantization step regardless of the quality factor applied, the

maximum will only be applied for very high quality factors and

mainly for low frequency modes. Note that ifQ2 = 2(Q1 − 50), then

q
(1)

kl = q
(2)

kl if and only if q
(2)

kl = 1.This introduces an issue that needs

to be addressed, because when the maximum starts introducing

(97, 94) (98, 96) (99, 98) (100, 98)
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Figure 6: Detection error PE of SI-UNIWARD at 0.4 bpnzac in
DC images when modes with q

(1)

kl = q
(2)

kl are/are not allowed
for embedding. BOSSbase+BOWS2 dataset.

ones in the second quantization table (this occurs for Q2 ≥ 93),

we would end up, with our definition of a contributing mode, with

very few contributing modes. This is because if a second quantiza-

tion step is equal to one, then q
(2)

kl /gcd(q
(1)

kl ,q
(2)

kl ) = 1 is not even,

which would effectively prevent us from embedding non-trivial

payloads. To this end, we decided to allow embedding into modes

with q
(1)

kl = q
(2)

kl . Such modes are not contributing, but the embed-

ding does not suffer from these modes since this combination of

quantization steps does not introduce easily exploitable artifacts

(the JRM performs very poorly in these cases [10]). Figure 2 a) also

suggests that the histogram of such modes does not start showing

any drastic artifacts. Even though the mean of the DCT error (8)

is zero in these cases, its variance (7) is equal to 1/12, which still

ensures quite a few of the DCT rounding errors to be close to ±1/2.

The effect of allowing embedding in these modes can be seen in

Figure 6. We verified that the high detectability for the case where

we do not allow embedding into modes with q
(1)

kl = q
(2)

kl comes from

the payload being too large, a problem we have encountered in the

previous section too, while trying to embed only into contributing

coefficients. Consequently, the embedding changes were made in

non-contributing modes without content-adaptivity.

4.2.2 Color. Embedding in color images can spread the payload

across luminance and the two chrominance channels. Several dif-

ferent payload spreading strategies into the three YCbCr channels
were recently proposed in [16, 41]. It was reported in [16] that

for J-UNIWARD, the CCM (Color Channels Merging), which dis-

tributes the payload by minimizing the additive distortion across all

three channels, and CCFR (Color Channels Fixed Repartition) with



repartition parameter γ = 0.2, which puts a fraction of payload into

chrominance channels, provide almost the same level of security.

We wanted to verify whether this remains true for SI-UNIWARD in

DC images. After testing with DCTR on SI-UNIWARD with CCM

and CCFR(0.2), we found, to our surprise, that the CCM strategy

was much more detectable. We believe CCM should be the optimal

strategy for spreading the payload because it distributes the pay-

load automatically without forcing a fixed portion of the payload

into chrominance. It was identified that the poor performance of

CCM is caused by the discrepancy between the embedding costs in

luminance and chrominance channels, which forces a vast majority

of the payload into the luminance channel. After careful inspection

of the embedding algorithm for SI-UNIWARD, we realized that

the culprit was the stabilizing constant σ used in J-UNIWARD’s

distortion function [29]:

D(X,Y) =
3∑

k=1

n1∑
u=1

n2∑
v=1

|W
(k)
uv (X) −W

(k)
uv (Y)|

σ + |W
(k)
uv (X)|

, (16)

where X and Y represent the cover and stego images in the pixel

domain (in one channel), n1,n2 are the number of DCT blocks

in the vertical and horizontal directions, andW
(k )
uv (·) the wavelet

transformation based on Daubechies 8-tap wavelet directional filter

bank. By default, σ is set to 2
−6
, which would not be an issue if the

normalization factor in (16) was on a similar scale for luminance

and chrominance channels. While this is true for SC images, for

DC images it is not. In fact, |W
(k )
uv (X)|,k ∈ {1, 2, 3} in chrominance

channels can be by several orders of magnitude smaller than in the

luminance channel. We believe that this is due to much harsher

quantization in chrominance channels of DC images compared

to SC images (see the quantization tables (10) and (11)). Thus, we

claim that the stabilizing constant has to be smaller in chrominance

channels. Keeping the original luminance stabilizing constant σY =
2
−6
, in Figure 7 we show PE of DCTR on SI-UNIWARD with 0.4

bpnzac with the CCM spreading strategy across a range of values for

the stabilizing constant in chrominance channels σC . We see that

for qualities (90, 80) and (95, 90), σC is reaching the best security

for σC = 2
−15. For the lowest quality (75, 50), the most secure σC is

at 2
−16

. In order to have a unified setting, we declare σC = 2
−15

for

every quality combination, even at a loss for the low qualities. With

σC adjusted this way, we searched for optimal σY . Coincidentally,
the default value σY = 2

−6
provides the best performance.

5 EVALUATION
To show the benefit of embedding in recompressed images, we

contrast the empirical security with embedding in the correspond-

ing single-compressed cover images. To summarize the embedding

algorithm, we use ternary embedding in all coefficients belonging

to contributing modes and modes with q
(1)

kl = q
(2)

kl . For color images,

we furthermore improved the security by changing the chromi-

nance stabilizing constant σC of J-UNIWARD’s costs. The second

quality factorQ2 used for recompression is selected by Eq. (13) with

one exception for Q1 = 100 where we set Q2 = 98.
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Figure 7: PE with DCTR of CCM-SI-UNIWARD in DC im-
ages with different values of the stabilizing constant σC of
chrominance channels Cr and Cb , with the luminance con-
stant at the default σY = 2

−6. Three qualities (75, 50), (90, 80),
and (95, 90) are shown. ALASKA 2 dataset.
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Figure 8: Detection error PE of J-UNIWARD in SC images and
SI-UNIWARD in DC images at 0.4 bpnzac. Only the best de-
tector’s performance is shown. BOSSbase+BOWS2 dataset.

5.1 Grayscale
We test the proposed scheme on a range of qualities with the detec-

tors described in Section 3. We also tested GFR [40] and its selection

channel aware version, where we used J-UNIWARD for estimat-

ing the selection channel. Both of these feature sets, however, did

not bring any improvement over DCTR. For the highest qualities

(99, 98) and (100, 98), we also trained e-SRNet [9], SRNet trained

on rounding errors of pixel values after decompression, as it is the

best detector for the highest quality JPEGs. Only the best detector’s

detection error PE on SI-UNIWARD in DC images and J-UNIWARD

in SC images with 0.4 bpnzac is shown in Figure 8. For J-UNIWARD,

the best detector is always the SRNet, while for the two highest

qualities, it is e-SRNet (note the extremely low errors). The best

detector for SI-UNIWARD is also SRNet, with one exception at qual-

ity (90, 80), where DCTR provides a better detection. The e-SRNet

performed substantially worse than SRNet, confirming that the

RJCA is not applicable with the quality selection rule (13). Over-

all, the improvement of embedding in recompressed images when

compared to J-UNIWARD ranges between 5 − 25% in terms of PE.



Q Detector

0.1 bpnzac 0.2 bpnzac 0.3 bpnzac 0.4 bpnzac

DC-SI JUNI DC-SI JUNI DC-SI JUNI DC-SI JUNI

(75,50)

ccJRM 0.4505 0.4850 0.4439 0.4552 0.4225 0.4078 0.4147 0.3631

DCTR 0.4484 0.4697 0.4397 0.4202 0.4034 0.3465 0.3660 0.2777

SRNet 0.5000 0.3094 0.5000 0.1764 0.3189 0.0961 0.2493 0.0573

(90,80)

ccJRM 0.4134 0.4900 0.4057 0.4767 0.4020 0.4588 0.3849 0.4144

DCTR 0.4114 0.4860 0.4061 0.4546 0.3922 0.4185 0.3587 0.3599

SRNet 0.4469 0.3661 0.4461 0.2522 0.4390 0.1519 0.3884 0.0983

(95,90)

ccJRM 0.4876 0.4872 0.4881 0.4613 0.4736 0.4351 0.3771 0.3990

DCTR 0.4823 0.4941 0.4839 0.4714 0.4536 0.4441 0.3530 0.3932

SRNet 0.5000 0.4297 0.5000 0.3292 0.3686 0.2401 0.2169 0.1704

Table 3: Detection error PE of SRNet, ccJRM, and DCTR
for various payloads (bpnzac) of J-UNIWARD in SC and SI-
UNIWARD inDC images. Boldface represents the best detec-
tor of the more secure algorithm at a fixed payload. BOSS-
base+BOWS2 dataset.

To obtain a better understanding of how the algorithms compare

for smaller payloads, we trained the SRNet, ccJRM, and DCTR at

qualities (75, 50), (90, 80), and (95, 90) for various payloads. The

results are shown in Table 3. We can see clear improvement over J-

UNIWARD at every payload. Surprisingly, in many cases (especially

for the lowest payloads), DCTR provides a better detection than

SRNet on SI-UNIWARD. This suggests that the SRNet is not able to

collect detection statistics from a somewhat detectable distortion

in the DCT domain.

5.2 Color
Setting the chrominance stabilizing constant σC = 2

−15
, we first

reevaluate the spreading strategies CCFR and CCM [16]. Table 4

shows DCTR’s PE on the CCFR strategy for several values of the

repartition parameter γ . With increasing quality, the optimal pa-

rameter γ also needs to grow as the best value of γ for every quality

is different. Interestingly, CCFR strategy with γ = 0.2 outperforms

CCM at quality (75, 50), but on the other two tested qualities, CCM

achieves a better security. In Table 5, we include a comparison be-

tween SI-UNIWARD inDC images withσC = 2
−15

and J-UNIWARD

in SC images across several payloads and several qualities, both

schemes using the CCM payload spreading strategy. Using side-

information provides an improvement in security up to 18% at qual-

ity (75, 50) and payload 0.2 bpnzac. Interestingly, the non-informed

J-UNIWARD is more secure in two tested scenarios: Q = (90, 80) at

0.1 bpnzac and Q = (95, 90) at 0.4 bpnzac. The latter is most likely

caused by the large embedding payload in DC images because, as

can be seen in Figure 5, the embedding capacity in color images

has thicker left tail than in grayscale images. This is in line with

the significant jumps in PE of SI-UNIWARD for lower payloads at

Q = (95, 90).

6 DOUBLE COMPRESSIONWITH THE SAME
QUALITY

In this section, we investigate the case of side-informed stegano-

graphy in images that were double compressed with the same

quantization table. We included this analysis because the option

Q1 = Q2 avoids introducing any histogram artifacts and it would

allow us to embed into every DCT mode, thus significantly increas-

ing the embedding capacity. Furthermore, and most importantly, it

Repartition parameter γ
Q 0.1 0.2 0.3 0.4 0.5

(75,50) 0.1893 0.2008 0.1835 0.1517 0.1120

(90,80) 0.1105 0.1110 0.1265 0.1162 0.0772

(95,90) 0.0645 0.0837 0.1115 0.1247 0.0757

Table 4: PE with DCTR of CCFR-SI-UNIWARD at 0.4 bpnzac
in DC images with chrominance stabilizing constant σC =
2
−15. ALASKA 2 dataset.

Q Detector

0.1 bpnzac 0.2 bpnzac 0.3 bpnzac 0.4 bpnzac

DC-SI JUNI DC-SI JUNI DC-SI JUNI DC-SI JUNI

(75,50)

JRM 0.3362 0.4845 0.2957 0.4547 0.2120 0.4138 0.1210 0.3740

DCTR 0.3708 0.4100 0.3478 0.2937 0.2735 0.1867 0.1758 0.1108

SRNet 0.4093 0.2516 0.3243 0.1119 0.2736 0.0607 0.2524 0.0327

(90,80)

JRM 0.2885 0.4750 0.2658 0.4477 0.2368 0.4025 0.1903 0.3653

DCTR 0.3120 0.4473 0.2835 0.3652 0.2085 0.2740 0.1500 0.1947

SRNet 0.3978 0.3473 0.3933 0.2236 0.3353 0.1397 0.2394 0.0857

(95,90)

JRM 0.4300 0.4305 0.4088 0.3455 0.3310 0.2758 0.2208 0.2248

DCTR 0.4305 0.4542 0.4032 0.3800 0.2883 0.3163 0.1520 0.2223

SRNet 0.5000 0.4193 0.4268 0.3083 0.2604 0.2211 0.1372 0.1524

Table 5: PE of SI-UNIWARD in DC images with σC = 2
−15

and J-UNIWARD in SC images, both using CCM strategy.
ALASKA 2 dataset.

is not immediately obvious that side-informed embedding in this

setup is extremely detectable and exhibits some very unusual prop-

erties, such as higher statistical detectability of smaller payloads

than larger payloads. Recompression with the same quality was

previously studied for forensic purposes in [36].

As shown in [10], embedding in DC images withQ1 = Q2 can be

attacked with the RJCA. However, this work did not investigate the

case of side-informed embedding. Since everywhere in this section

it is assumed that Q1 = Q2, we will again refer to the compression

quality simply as Q .
The performance of the e-SRNet as implemented in [10] can be

seen in Figure 9. Note that the detection errors are much lower than

for quality factor rule (13) in Table 3. Moreover, the most peculiar

behavior can be observed for Q < 93 when the detection of smaller

payloads is more reliable. We will now show that the rounding er-

rors e can actually be partly recovered from the double compressed

(and embedded) images withQ1 = Q2, which is responsible for this

peculiar behavior.

6.1 Estimating the side information
Let us call the changes in the DCT coefficients introduced dur-

ing the second compression as inconsistencies. In other words, the

compression produces an inconsistency at c
(2)

kl if c
(1)

kl , c
(2)

kl . Fig-

ure 10 shows that for Q < 93 the second compression does not

introduce many inconsistencies mainly because there are no ones

in the quantization table. We hypothesize that for lower qualities

(where quantization tables do not contain any ones, i. e., Q < 93)

the following claim holds: the fewer inconsistencies the better the

estimate of the rounding error e can be obtained. Intuitively, this

makes sense because if the second compression does not change
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Figure 9: PE with e-SRNet of SI-UNIWARD in DC images at
0.1 and 0.4 bpnzac whenQ1 = Q2. BOSSbase+BOWS2 dataset.
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Figure 10: Average number of inconsistencies across 1000
randomly selected images from BOSSbase with Q1 = Q2.

any coefficient in a given DCT block then also the third compres-

sion would not change any coefficients. Therefore, one can compute

the rounding errors e used during embedding (and thus nullify the

effect of side-information) by simply compressing the DC image

once more. Note that the embedding changes can also be considered

inconsistencies. If the claim holds, it would immediately mean that

we can get a better estimate of e with decreasing payload.

To estimate the DCT errors e, we decompress a given (double

compressed and possibly embedded) JPEG image to the spatial do-

main y(2) and round to integers x(2) = [y(2)]. We then compress x(2)

again with the same quality settings to obtain the DCT coefficients

after the third compression c̃(3) = DCT(x(2)) ⊘ q, where q is the

quantization table used in all compression steps. A simple estimate

of the rounding error can be computed as ê = c̃(3) − [c̃(3)]. This esti-
mate ê is strongly correlated with the original e. This is illustrated in

Q Detector DC-SI JUNI

75

SRNet 0.0585 0.0573

e-SRNet 0.5000 0.5000

90

SRNet 0.0947 0.0983

e-SRNet 0.2041 0.5000

95

SRNet 0.1856 0.1704

e-SRNet 0.0000 0.5000

Table 6: Detection error PE with SRNet and e-SRNet of J-
UNIWARD in SC images and SI-UNIWARD in DC images at
0.4 bpnzac and Q1 = Q2. BOSSbase+BOWS2 dataset.

Figure 11, which displays the mean square error (MSE) between the

DCT rounding error and its estimate MSE(e, ê) = 1

n
∑n
i=1(ei − êi )

2
.

The estimate is computed from cover images and SI-UNIWARD

images embedded with 0.1 and 0.4 bpnzac. With increasing payload

(increasing number of inconsistencies), the estimate of the errors is

getting worse across all qualities, which confirms our insight. For a

smaller payload, we have a better estimate of the side-information.

To verify that the estimate ê can be used for estimating the selection

channel, we include in Figure 12 the correlation between ê and the

difference β+ − β−, where β+, β− are the probabilities of changing

the coefficients by +1 and −1, respectively.

This should be thought of more as a proof of concept because

the e-SRNet most likely does not compress the image for the third

time as it might compute the estimate of the rounding errors in

some other, perhaps better way. It turns out that a similar estimate

can be achieved by compressing the spatial rounding error u =
x(2) − y(2), which is what the e-SRNet is trained on, and computing

the rounding error in the DCT domain.

Using Q1 = Q2 for qualities below 93 will not be beneficial

because the rounding errors e follow the distribution (7), which for

Q1 = Q2 can be simplified as

ekl ∼ NF
©­«0, 1

12(q
(2)

kl )
2

ª®¬ . (17)

It should be clear that for large quantization steps the errors

will be clustered very closely around zero, thus having a negligible

effect on the embedding. Moreover, as already mentioned above,

for lower qualities there are not many inconsistencies, which is also

due to (17). Therefore, the image is virtually identical to its single

compressed version and there is not much side-information avail-

able. All these observations would suggest that the steganographic

security would be very close to the non-informed J-UNIWARD

on SC images. This is indeed verified in Table 6 showing that the

SRNet on SI-UNIWARD in DC images with Q1 = Q2 has almost

the same performance as on J-UNIWARD in SC images. The only

difference is for quality 95, where the side-informed version seems

to be slightly more secure thanks to the side-information generated

in modes with small quantization steps (17). However, at this high

quality the RJCA is already kicking in for the DC images, while

not yet for SC images [9, 13], making steganography in DC images

highly detectable.
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Figure 12: Correlation between ê and β+ − β− across 300 ran-
domly selected images for SI-UNIWARD at 0.1 and 0.4 bpn-
zac with Q1 = Q2. BOSSbase+BOWS2 dataset.

7 CONCLUSIONS
In this paper, we pursued an idea of improving empirical stegano-

graphic security by embedding into a recompressed JPEG image

instead of the original single compressed image. This idea of gener-

ating steganographic side-information by recompressing the JPEG

cover image was first explored in the so-called Perturbed Quan-

tization steganography 17 years ago. Surprisingly, when simply

adopting modern coding coupled with cost modulation typically

used in side-informed embedding, the security of the resulting em-

bedding is extremely poor. This tells us that the side-information

generated by recompression needs to be treated differently.

By quantifying the effect of embedding on the distribution of

DCT coefficients from specific DCTmodes using the steganographic

Fisher information, we learned that modes that do not contain any

contributing DCT coefficients (coefficients with rounding errors

close in absolute value to 1/2 during recompression) exhibit arti-

facts in their distribution after embedding, which brings the se-

curity down. This was remedied by constraining the embedding

only to contributing modes. Besides dramatically improving the

security, this choice also allowed embedding larger, and thus more

practical, payloads than embedding only into contributing DCT co-

efficients akin to the original PQ. To demonstrate the usefulness of

the proposed technique, the empirical security was compared with

embedding into the single compressed cover image while fixing the

absolute payload in bits.

The method was also adapted for color images with the CCM

payload-spreading strategy. To achieve a good security, however,

the stabilizing constant of the J-UNIWARD algorithm had to be

modified for the chrominance channels due to their different dy-

namic range.

Finally, we show that generating the side-information by recom-

pressing with the same quantization table makes the embedding

algorithm much more detectable because in such cases the side-

information can be reliably estimated. This also leads to a bizarre

situation for qualities below 93 when the detection power increases

with smaller payloads.
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