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Abstract—The accuracy of steganalysis in digital im-
ages primarily depends on the statistical properties of
neighboring pixels, which are strongly affected by the
image acquisition pipeline as well as any processing
applied to the image. In this paper, we study how the
detectability of embedding changes is affected when the
cover image is downsampled prior to embedding. This
topic is important for practitioners because the vast
majority of images posted on websites, image sharing
portals, or attached to e-mails are downsampled. It is
also relevant to researchers as the security of stegano-
graphic algorithms is commonly evaluated on databases
of downsampled images. In the first part of this paper,
we investigate empirically how the steganalysis results
depend on the parameters of the resizing algorithm –
the choice of the interpolation kernel, the scaling factor
(resize ratio), anti-aliasing, and the downsampled pixel
grid alignment. We report on several novel phenomena
that appear valid universally across the tested cover
sources, steganographic methods, and the steganalysis
features. The paper continues with a theoretical analy-
sis of the simplest interpolation kernel – the box kernel.
By fitting a Markov chain model to pixel rows, we
analytically compute the Fisher information rate for
any mutually independent embedding operation and
derive the proper scaling of the secure payload with
resizing. For LSB matching and a limited range of
downscaling, the theory fits experiments rather well,
which indicates the existence of a new scaling law
expressing the length of the secure payload when the
cover size is modified by subsampling.

I. Introduction

Steganography is the art of hiding secret messages in
cover objects. When the object is a digital media file, the
message is typically embedded by slightly changing the
individual cover elements.1
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1This embedding paradigm is known as steganography by cover
modification (see, e.g., Chapter 4 in [6]).

In this paper, we deal with covers in the form of digital
images represented in the spatial domain. The statistical
detectability of steganographic embedding changes pri-
marily depends on the strength and type of dependencies
among neighboring pixels, which in turn depend on the im-
age acquisition pipeline as well as any processing applied
to the image prior to embedding. It is, for example, well
recognized that embedding changes are very difficult to
detect in scans of analogue photographs due to the strong
noise typically present (see, e.g., the results on the NRCS
database in [13]). On the other hand, previous JPEG
compression (and low-pass filtering in general) removes the
high spatial frequency components of the image content
(noise), which allows for more accurate steganalysis [8],
[2], [10], [17], [13], [21]. The final bit depth representation
of the cover image also has a very strong effect on ste-
ganalysis [7]. Even simple point-wise operations, such as
contrast/brightness adjustment and gamma correction can
have a very strong impact because of their potential to in-
troduce spikes in the first-order statistic of pixel values [3],
[25]. The effect of local image variance and saturation
on the error of structural steganalyzers appeared in [2].
Finally, the impact of the image size on steganalysis is
addressed by the Square Root Law (SRL) of imperfect
steganography [5], [15]. Note that this law pertains to the
case when the cover size is changed by removing/adding
cover elements from the same distribution (which is ap-
proximately valid when cropping or concatenating images
when creating a panorama) and does not address image
resizing, which changes the statistical properties of the
cover source.

The main goal of this article is to study the effect of
downsampling on the detectability of steganographic em-
bedding changes. We consider this an important topic for
several reasons. Full-resolution images are rarely used on
the Internet, and image downscaling is commonly adopted
by many popular high-traffic websites, including social
networking websites (Facebook), on-line stores (Amazon,
eBay), news websites (CNN, MSNBC), etc. Most of the
image-sharing portals (Picasa Web Albums, Photobucket,
Flickr) also utilize image downsampling and some of them
allow downloading several different downscaled versions of
a given image.2 Email attachments and presentation slides
are yet another two examples of communication channels
where resized images are commonly used.

Additionally, for the purpose of benchmarking steganog-

2Many portals also apply lossy JPEG compression to the resized
images. We note that in this paper we do not study the case when
the cover images are resized and subsequently JPEG compressed.
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raphy and steganalysis, the steganographic community
adopted several image databases that contain resized
images. Among the most often used databases are the
BOSSbase3 and BOWS2.4 BOSSbase was originally used
for the Break Our Steganographic System (BOSS) com-
petition [1] aimed at attacking the content-adaptive
embedding scheme called HUGO (Highly Undetectable
steGO) [24]. Both BOSSbase and BOWS2 images are
all downsampled (and cropped) versions of their RAW
originals. As will be shown in this paper, the outcome
of steganalysis can vary quite dramatically based on the
downscaling algorithm and its parameters. Understanding
these implications is important since practitioners often
take the steganalysis results obtained on these databases
as an absolute measure of security of a steganographic
algorithm.

In summary, given the proliferation of imagery sub-
jected to downscaling, it is rather surprising that, to the
best knowledge of the authors, the effect of resizing on
steganographic security has not yet been methodologically
addressed. The only prior art the authors are aware of
is the early conference version of this paper published at
IEEE ICASSP in 2013 [18]. Here is the summary of the
main differences between [18] and this paper:

1) This manuscript includes experiments on three dif-
ferent camera sources while in [18], only a single
source was used. Furthermore, all images used in
this manuscript are publicly available in their RAW
format to facilitate reproducibility.

2) Instead of steganalysis features constructed using a
single kernel originally proposed in [14], state-of-the-
art rich features [9] and SPAM features [23] are used
here.

3) Besides LSB matching used in [18], we added a
state-of-the-art content-adaptive steganographic al-
gorithm WOW [12].

4) We include a much more comprehensive study of the
effects of anti-aliasing and kernel-shifting.

We start the next section with a motivational experi-
ment showing strikingly different results of steganalysis
of HUGO [24] depending on the choice of the resizing
kernel used to downsample the original full-resolution
images forming the BOSSbase. In Section III, we formally
introduce the process of image downsampling and describe
its parameters. We also introduce the common core of all
subsequent experiments in this paper. The first part of the
main results of this paper appears in Section IV, where
we empirically study the effect of the interpolation kernel,
downsampling factor, anti-aliasing, and the downsampled
grid alignment on statistical detectability. We point out
some interesting phenomena that appear to hold univer-
sally across the tested sources, steganography methods,
and steganalysis features. In Section V, we provide a
theoretical analysis of the impact of downsampling using
the nearest neighbor resizing algorithm by adopting a

3http://exile.felk.cvut.cz/boss
4http://bows2.ec-lille.fr

Markov chain model for the cover source. For this type of
the cover source and the resizing algorithm, there exists
a closed-form expression for the steganographic Fisher
information rate for any mutually independent embedding
operation, which allows us to determine the size of the
secure payload that leads to the same level of statistical
detectability. The paper is concluded in Section VI.

II. Illustrative experiment on BOSSbase

The BOSSbase image database (version 1.01) consists
of 10,000 grayscale images of size 512 × 512 pixels ob-
tained from full-resolution RAW images (coming from
seven different cameras) by executing the following four-
step procedure:

1) Image demosaicking (Color Filter Array interpola-
tion);

2) Conversion to 8-bit grayscale;
3) Downsampling so that the smaller side is 512 pixels;
4) Central-cropping to 512 × 512 pixels.

Image demosaicking was performed using UFRaw,5 while
the remaining steps were carried out using the ImageMag-
ick’s convert command-line tool with all parameters kept
at their default values. The actual script for creating
BOSSbase images is available at the BOSS organizers’
website [1].

In order to motivate our study, we modified the script
and prepared four different versions of BOSSbase. Every-
thing else being equal, the four databases differed only
in the choice of the interpolation kernel in the convert’s
image resizing algorithm: box, Lanczos [11] (default), tri-
angle, and cubic.6 Figure 1 (right) shows the four interpo-
lation kernels.

Figure 1 (left) depicts the results of steganalyzing
HUGO implemented with σ = γ = 1 and the thresh-
old T = 255 on all four databases. For every payload,
a steganalysis detector was constructed by training the
ensemble classifier [19] when representing the images using
the 12,753-dimensional spatial rich model SRMQ1 (called
Q1 in [9]). Half of the images were used for training and the
other half for testing, while the performance was measured
in terms of the minimal total detection error under equal
priors,

PE = min
PFA

(PFA + PMD)/2, (1)

where PFA and PMD are the false-alarm and missed-
detection rates achieved on the testing set. By P E we
denote the testing error averaged over ten random splits
of the database into two halves.

The differences between the error rates achieved on
different versions of BOSSbase are rather striking. For
example, at the relative payload 0.2 bpp (bits per pixel),
the detection error dropped from 0.27 with the default

5http://ufraw.sourceforge.net/
6This was achieved by modifying a single line in the original

resizing script.
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Figure 1. Steganalysis of HUGO on BOSSbase 1.01 images created with four different interpolation kernels implemented in ImageMagick’s
command-line tool convert. Left: Mean testing error P E; Right: Individual kernel functions.

Lanczos kernel to an almost perfect detectability (error
0.02) with bicubic interpolation.

In summary, the choice of the interpolation parameters
significantly affects the steganographic security, and thus
a deeper understanding of this phenomenon is of a great
importance for steganalysis. In particular, the outcome
of the BOSS competition and HUGO’s security would
be viewed in a very different light had the organizers
inadvertently chosen a different interpolation algorithm
for resizing. This experiment also points out the danger of
interpreting the detection errors obtained on BOSSbase as
an absolute measure of algorithm’s security.

III. Notation, preliminaries, and experimental

setup

In this section, we formalize the process of image down-
sampling and introduce the experimental setup for all
subsequent experiments.

A. Image acquisition

A digital image X captured by an imaging sensor is a
quantized sampled portion of the natural scene, which can
be represented as a two-dimensional real function f : R2 →
R (the “reality”). Formally,

X(x, y) = Q (CΘ(x, y) · f(x, y)) , (2)

where Q denotes a scalar quantizer with a finite set of
centroids I and CΘ(x, y) is a discrete sampling function

CΘ(x, y) =

M−1
∑

k=0

N−1
∑

l=0

δ(x − x0 − k∆)δ(y − y0 − l∆) (3)

parametrized by the vector Θ = (x0, y0, ∆, M, N); δ(x) is
defined as

δ(x) =

{

1 if x = 0,

0 otherwise.
(4)

Equation (2) allows us to represent X as a matrix X ∈
IM×N , whose elements correspond to the natural scene f
at M ×N equally-spaced locations arranged in a rectangle

that is uniquely defined by the parameter vector Θ. The
set of quantizer centroids, I, depends on the bit depth at
which X is represented. For example, for 8-bit grayscale
images, I = {0, 1, . . . , 255}.

B. Image resizing

The output of an image resizing algorithm,
parametrized by the downsampling factor7 k, is commonly
defined as

X
(k)(x, y) = Q

(

CΘ(k) (x, y) · f̂(x, y)
)

, (5)

where

Θ(k) = (x
(k)
0 , y

(k)
0 , ∆/k, ⌊M/k⌋ , ⌊N/k⌋) (6)

denotes the parameter vector of the resized image and

f̂(x, y) = (X ∗ ϕ)(x, y) (7)

is an approximation of reality obtained as a convolution
of the original image X with an interpolation kernel ϕ :
R

2 → R. The kernel function ϕ needs to satisfy
ˆ

R2

ϕ(x, y)dxdy = 1. (8)

In general, the starting point of the grid of the resized
image (x

(k)
0 , y

(k)
0 ) can be different from the starting point

of the original image (x0, y0), i.e., the first pixel of the
resized image X

(k) does not have to coincide with the first
pixel of the original image X. In fact, many downsampling
algorithms define the point (x

(k)
0 , y

(k)
0 ) as

x
(k)
0 = y

(k)
0 = (k + 1)/2, (9)

which corresponds to centering the sampling points of X
(k)

within the grid of the original image X. In Section IV-C,
we will show that the position of the point (x

(k)
0 , y

(k)
0 ) plays

an important role in steganalysis.
For simplicity, in the rest of the paper we assume that

M = N , x
(k)
0 = y

(k)
0 for all k, and ϕ(x, y) = ϕ(x)ϕ(y). The

variable k will exclusively denote the resizing factor.

7Downsampling factor k corresponds to the image of relative size
1/k w.r.t. the original image size, e.g., k = 2 denotes downsampling
by 50%.
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Table I
List of individual camera models in BOSSbase 1.01 sorted by

their native resolution.

Camera model # Full resolution Mpix

Leica M9 2,758 3472 × 5216 18.1
Canon EOS 7D 1,354 5202 × 3465 18.0

Pentax K20D 1,398 3124 × 4688 14.6
Canon EOS Rebel XSi 2,042 2856 × 4290 12.3

Canon EOS 400D 1,354 2602 × 3906 10.2
Canon EOS 40D 61 2602 × 3908 10.2

Nikon D70 1,033 2014 × 3039 6.1

C. Controlled image database

BOSSbase is a collection of images coming from seven
different cameras with different original resolutions, rang-
ing from 6 to 18 megapixels (see Table I). Therefore, when
downsampling to 512×512 pixels, individual cameras were
resized with different resizing factors. For instance, Leica
M9 was downsampled with k = 6.78, Pentax K20D with
k = 6.10, and Canon EOS 400D with k = 5.08. Since
different scaling factors introduce qualitatively different
dependencies among pixels, in order to isolate the subtle
effects of interpolation, we need to study individual camera
models separately.

In the rest of the paper, we consider only the follow-
ing three camera models: Leica M9 (LEI), Pentax K20D
(PEN), and Canon EOS 400D (CAN). These three models
(highlighted in Table I) were selected as examples of
cameras coming from different camera manufacturers and
are equipped with three different sensors.

From every camera model considered, we randomly se-
lected 1, 000 raw images, demosaicked them using UFRaw
(with the setup used during the BOSS competition), and
converted to 8-bit grayscale. The resulting databases of
never compressed (and not resized) images are the mother
databases for all our subsequent experiments.8

D. Image downsampling in Matlab

The command-line utility convert is not transparent
and its image resizing algorithm seems to incorporate
several image-enhancing techniques (for example post-
sharpening). Therefore, from now on we will solely use
the Matlab’s function imresize, as it follows the image-
resizing procedure outlined in Section III-B exactly. Fur-
thermore, it is easy to supply the function imresize

with custom interpolation kernels, which will prove to be
advantageous later in Section IV.

We consider the following built-in kernel functions of
imresize:

8Fixing the image-processing pipeline, including the demosaicking
algorithm, allowed us to isolate the effects of image downsampling
and its parameters.
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0

0.5

1 Lanczos (convert)

Cubic (convert)

Cubic (imresize)

Figure 2. Cubic interpolation kernel as implemented in ImageMag-
ick’s convert and Matlab’s imresize.

ϕb(x) =

{

1 if − 1
2 ≤ x < 1

2

0 otherwise
(10)

ϕt(x) =

{

1 − |x| if |x| ≤ 1

0 otherwise
(11)

ϕc(x) =











3
2 |x|3 − 5

2 |x|2 + 1 if |x| ≤ 1

− 1
2 |x|3 + 5

2 |x|2 − 4|x| + 2 if 1 < |x| ≤ 2

0 otherwise

(12)

which correspond to the nearest neighbor (box), bilinear
(triangle), and bicubic (cubic [16]) interpolation, respec-
tively. While the box and triangle kernels, ϕb and ϕt, are
identical to the ones in convert, the bicubic interpolation
is implemented differently. In Figure 2, we compare the
cubic kernels of both software tools. We can see that
the Matlab’s implementation of the bicubic interpolation
bears more similarity to the convert’s Lanczos kernel
rather than its cubic counterpart. This observation will
later explain the qualitatively different results of bicubic
interpolation than the ones observed in Section II (Fig-
ure 1 left). It is also the reason why we omit the Matlab’s
Lanczos built-in kernels from our experiments.

E. Steganography and steganalysis

In the rest of the paper we attack the following two
steganographic algorithms: LSB Matching (LSBM) and
WOW [12]. The LSBM stego images were created by
changing a pseudo-randomly and uniformly selected rel-
ative portion β of pixels (the change rate) by either
increasing or decreasing their values by 1, equiprobably.
For creating WOW stego images, we used the WOW
embedding simulator.9 Note that while LSBM spreads
embedding changes uniformly over the image, WOW is a
content-adaptive scheme whose changes are concentrated
in noisy and textured areas. Therefore, these two choices
cover two qualitatively different embedding paradigms.

9http://dde.binghamton.edu/download/
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Figure 3. Steganalysis of LSBM with the change rate fixed at β = 0.05 in images from three cameras resized by three different interpolation
kernels defined by formulas (10)–(12). Feature sets: SPAM (black), SRMQ1 (gray). The three different curves represent individual cameras
(LEI, PEN, CAN).

Detection is executed using two different feature
spaces: the 686-dimensional SPAM [23] and the 12, 753-
dimensional rich feature space SRMQ1 [9]. While the
SRMQ1 represents state-of-the-art steganalysis, including
the low-dimensional SPAM feature set brings a qualita-
tively different detector. For both feature-space represen-
tations, we always train the ensemble classifier [19] and
evaluate the performance in the same way as described in
Section II – half of the images are used for training and the
other half for testing, and the performance is measured in
terms of P E, the minimal total detection error defined by
Equation 1 averaged over 10 different database splits.

In order to compare the steganographic security at
different scaling factors, we always central-crop the result-
ing resized image X

(k) (the output of the interpolation
formula (5)) to the 512 × 512 pixel region. This way, the
statistical properties of pixels are preserved and the effect
of the SRL on security is eliminated.

IV. Experimental results

In this section, we present a series of steganalysis experi-
ments showing the effects of several different interpolation
parameters on the steganographic security. In particular,
we address the influence of the interpolation kernel, the
downsampling factor k, anti-aliasing, and the spatial align-
ment of the resized grid of pixels. As will be shown, each
of these factors can significantly affect the outcome of
steganalysis.

A. Interpolation kernel

We start our investigation by fixing the change rate β
of LSBM embedding and monitoring the change in the
average testing error P E with increasing downsampling
factor k. The experiment was repeated for all three camera
models (LEI, PEN, CAN), both feature spaces (SPAM,
SRMQ1), and the three interpolation kernels defined by
formulas (10)–(12). This can be achieved, for example,
by calling the Matlab’s function imresize with kernels
’box’, ’triangle’, and ’cubic’, and turning the anti-aliasing
off (the effect of anti-aliasing is studied in Section IV-B).
The observed error rates are shown in Figure 3; the error

1
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resized image
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Figure 4. Explaining the sudden drops in P E: Downsampling with
the triangle kernel ϕt and two different choices of k. Anti-aliasing
turned off. See details in the text.

bars correspond to the standard deviation of PE over ten
different database splits.

Generally, the testing error grows with increasing k.
This is to be expected since the interpolation kernels have
a fixed width while the spatial distance between the neigh-
boring pixels of the resized image increases. Consequently,
the strength of the dependencies among pixels decreases,
which makes steganalysis more difficult.

There are differences among individual kernels, however.
For the box kernel, the error monotonously increases as
more and more pixels of the original image are being
“skipped” during the process of downsampling – the box
kernel with the anti-aliasing turned off is equivalent to the
nearest-neighbor interpolation. This breaks after k > 2
when none of the pairs of neighbors from the original
image are preserved any more and at least one pixel from
the original grid is always skipped. While the rich feature
space performs consistently better, both feature spaces
exhibit qualitatively similar behavior.

The situation becomes more interesting (and less trivial)
for the other two kernels whose width is greater than one
and thus the pixel values in the resized image are interpo-
lated as certain linear combinations of the original pixel
values. While the testing error P E generally still increases
with growing k, its progress is not always monotonous. In
particular, there are several noticeable sharp drops in the
error rate for certain values of k. These sudden drops are
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Figure 5. Steganalysis of WOW at a fixed payload of 0.3 bpp (bits per pixel) in images from three cameras resized by three different
interpolation kernels defined by formulas (10)–(12). Feature sets: SPAM (black), SRMQ1 (gray). The three different curves represent
individual cameras (LEI, PEN, CAN).

caused by a temporary synchronization of both pixel grids,
which substantially strengthens pixel dependencies in the
resized image.

Consider, for example, the case of downsampling with
the triangle kernel and k = 1.5 (downsizing by 33%) where
the testing error suddenly drops by 15% for the SPAM
features and by 10% for the SRMQ1 features (see Figure 3
middle). This downsampling scenario is illustrated in full
detail in the top diagram of Figure 4. As can be seen, for
k = 1.5 the pixel positions in the resized image always fall
between two neighboring pixels from the original grid in
the way that the split ratio is 1:3. Consequently, all pixels
of the resized image are formed as the same convex com-
bination (i.e., [1/4, 3/4]) of two neighboring pixels from the
original image. In other words, the interpolation formula
stays the same across the whole image. This would not
be true any more if the value of k was slightly increased
(or decreased), in which case the coefficients of the linear
combination change across the image. Consequently, any
statistical features formed as sample joint probabilities
of neighboring pixels (or their residuals) are essentially
aggregates of a wide range of weaker statistics extracted
from differently filtered image regions, which makes them
less powerful for steganalysis.

A similar situation occurs for k = 2 shown in the
bottom diagram of Figure 4. Now, the distance between
two pixels of the resized image is 2 and they are always
centered between two pixels from the original grid, which
essentially amounts to pixel averaging.10 As with k = 1.5,
both grids of pixels are synchronized and the interpolation
formula thus stays the same across the image, making
the subsequently extracted features more sensitive to
steganography.

Note that if the pixel grid of the resized image was
slightly shifted, i.e., the position of the first resized pixel
(x

(k)
0 , y

(k)
0 ) was determined differently than through the

formula (9), both diagrams in Figure 4 could have looked
quite differently and the overall steganalysis results could

10This can be seen as a simple denoising operator that increases
local correlations among pixels and thus makes steganalysis more
accurate.

have differed as well. We will inspect this in more detail
in Section IV-C.

Before we proceed to the next section, we would like
to make a few more comments. First, as can be seen
in Figure 3 (right), the cubic kernel exhibits even more
sudden drops in the testing error P E for certain (rational)
values of k when the grids exhibit a certain level of syn-
chronization. This is likely because of the larger support of
the cubic kernel which not only causes more pixel values to
be combined together but it also creates a larger overlap
between neighboring kernels and thus offers more space
for synchronization.

Second, compared to the nearest neighbor interpolation
(the box kernel), the difference between the performance of
the SPAM features and the rich SRMQ1 features in case of
the triangle and the cubic kernel seems to be larger. This is
more pronounced for smaller values of k when the neigh-
boring interpolation functions overlap and thus a single
pixel from the original image can affect multiple pixels of
the resized image (compare both diagrams in Figure 4 – for
k = 1.5, one half of the original pixels contributes to two
resized pixels). This creates complex dependencies among
the pixels of the resized image that can be better exploited
by the “richer” feature space SRMQ1 rather than the
SPAM feature space. Another supporting evidence for this
argument is the initial strong drop of error when k is
only slightly larger than one, see Figure 3 (middle and
right). This sudden misalignment of the pixel grids at both
resolution levels causes some (if not all) pixels from the
original image to start immediately contributing to more
than one pixel of the resized image. While the SRMQ1 can
utilize this strengthened dependence among pixels quite
well, there is no drop of error for the SPAM features.

Finally, note that for larger values of k, the differences
among all three considered kernels diminish and the error
rates seem to saturate at similar values. This is likely
because of the low-gradient portions of images (e.g., the
sky) where pixel dependencies remain almost unaffected
by downsampling. Furthermore, at the odd resolution
levels k = 3, 5, 7, . . . and, trivially at k = 1, the pixel
locations of the resized image always coincide with certain
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Figure 6. Steganalysis of LSBM (top) and WOW (bottom) using SRMQ1 features in images resized by factor k with anti-aliasing turned
off (gray) versus on (black). The three different curves represent individual cameras (LEI, PEN, CAN).

pixels from the original grid. Since all three kernels are
zero at integer values, this perfect alignment makes all the
downsampled images identical.

The goal of the thorough discussion and interpretation
of the results in this section was to bring more insight
into the inner workings of image downsampling and its
effects on steganalysis. To make the picture more com-
plete, we repeated the same steganalysis experiment with
the content-adaptive algorithm WOW. These results are
shown in Figure 5. Even though WOW is based on a
fundamentally different embedding paradigm, the progress
of its error rates is qualitatively consistent with the non-
adaptive LSB matching (compare to Figure 3).

B. Anti-aliasing

Anti-aliasing is a common image pre-processing tech-
nique whose goal is to suppress higher spatial frequencies
in the image prior to resizing in order to eliminate disturb-
ing visual artifacts around edges (for example Moiré pat-
terns). In Matlab (and in other image processing tools as
well), anti-aliasing is executed at the same time as resizing,
simply by widening the interpolation kernel. Formally, the
kernel function ϕ(x) at resolution k is modified as follows

ϕ(x) →
1

k
ϕ

(x

k

)

. (13)

The larger the value of the resizing factor k is, the wider
the support of the kernel becomes. Since this makes the
resized image smoother, one can expect the steganalysis
to be easier, compared to the situation with the anti-
aliasing is turned off (all previous experiments). Note that

it is far from obvious whether the overall effect of image
downsampling will favor steganography or steganalysis –
whether the smoothing effects will overcome the weaker
dependencies due to content downsampling.

In Figure 6, we compare the results of steganalysis for
the cases when the anti-aliasing is turned off and on. We
performed the experiment for both the LSBM (change
rate β = 0.05) and WOW (payload α = 0.3 bpp), for
the three considered kernels, and all three camera sources.
This time, we opted only for the state-of-the-art steganal-
ysis using SRMQ1 features rather than covering both
feature spaces. Note that for a fixed kernel, the testing
error P E behaves consistently across both steganographic
algorithms and all three cameras.

When the anti-aliasing is turned on, the width of the
box kernel at the downscaling factor k is equal to k, which
means that now all pixels from the original image are
always utilized during interpolation. For small values of k,
however, the situation is not much different from the case
when the kernel width was fixed to one (anti-aliasing was
turned off) because the majority of the resized pixels have
the value equal to their nearest neighbor. But as the value
of k increases, more and more resized pixels are created as
an average of their neighbors and the obtained errors for
both scenarios start to differ. For k > 2, all resized pixels
are formed as averages of the neighboring pixels, which
makes the downsized image smoother and consequently
easier to steganalyze.

The situation is quite different for the other two kernels
where the difference between both scenarios (anti-aliasing
on/off) is much more profound. We attribute the stronger
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Figure 8. Steganalysis of LSBM at change rate β = 0.05 (top) and WOW at payload α = 0.3 bpp (bottom) in resized images as a function of
the grid-shifting parameter ∆. Anti-aliasing was turned off. Used feature space: SRMQ1. The three different curves represent the individual
cameras (LEI, PEN, CAN).
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Figure 7. Effect of turning the anti-aliasing on with the triangle
kernel ϕt and k = 2. Note the wider kernel width in comparison
when the anti-aliasing is off (Fig. 4).

effect of anti-aliasing to the fact that both triangle and
cubic kernel have their original support larger than one,
hence with the increasing value of k the kernels get
proportionally wider and their mutual overlap (not present
for the box kernel) increases. We demonstrate this for the
specific choice of the triangle kernel ϕt and k = 2 in
Figure 7. As can be seen, not only is each resized pixel
a combination of four neighboring pixels from the original
resolution, but every pixel from the original image now
affects two neighboring downsampled pixels – compare to
the bottom diagram in Figure 4 where the same situation
is depicted with the anti-aliasing turned off. Therefore, it
should not be surprising that anti-aliasing affects wider
interpolation kernels stronger.

Note that despite the strong smoothing effects of both
kernels, downsampling still favors steganography even
when the anti-aliasing is turned on, i.e., steganalysis gets
more difficult as the value of k increases (apart from
the initial drop of performance due to sudden desyn-
chronization discussed in the previous section). In other
words, for the considered range of k, the loss of interpixel
dependencies due to resolution content is still stronger
than the gain due to the smoothing effects. This conclusion
holds for both steganographic methods and across all three
tested camera sources.

C. Downsampled grid position (alignment)

For most interpolation algorithms, the position of the
grid of the downsampled image is centered within the grid
of the original image, which is achieved by setting the val-
ues of (x

(k)
0 , y

(k)
0 ) according to Equation (9). As discussed

in Section IV-A, this makes both grids at certain rational

values of k synchronized, which strengthens the statistical
value of extracted features and consequently aids steganal-
ysis. However, some implementations of downsampling
may position the downsized grid differently, for example
by aligning the first pixels of both grids. As will become
apparent in this section, this initial grid alignment may
also have a strong effect on steganalysis.

The effect of the grid alignment depends on numerous
factors, such as the downsampling factor k, the interpo-
lation kernel, and likely even the in-camera processing,
which prevent us from providing a truly comprehensive
picture in this paper. Instead, we opted for demonstrating
the effect of grid alignment on selected cases to give
the reader an idea of the extent to which steganalysis
performance can vary in practice.

We start by introducing a kernel shift parameter 0 ≤
∆ < 1 into (9):

x
(k)
0 = y

(k)
0 = (k + 1)/2 + ∆, (14)

Setting ∆ = 0 trivially leads to the original formula (9)
while ∆ = 1 corresponds to the grid shifted by one pixel
with respect to the original grid.

We start our investigation by steganalyzing LSBM and
WOW in images resized by the triangle kernel ϕt at
k = 1.5. Recall that this setup corresponds to a sharp drop
in the testing error due to sudden synchronization of both
grids when ∆ = 0, see Figure 3 (middle). Everything else
being equal, we repeated this experiment with different
choices of the shift ∆. The resulting error rates, again
for all three camera sources, are shown in Figure 8 (left).
Similarly as in the previous section, we restricted ourselves
to the state-of-the-art rich features rather than covering
both feature spaces.

First, note the two “lobes” symmetrical along ∆ = 0.25
and ∆ = 0.75. This is due to the fact that the shifts ∆
and ∆′ = 0.5 − ∆ result in the same convex combinations
during the interpolation, which is caused by the fact
that the distance between two neighboring pixels after
downsizing is 1.5, see Figure 4 (top).

As ∆ > 0 increases, the images at both resolutions
become desynchronized which weakens steganalysis perfor-
mance and causes the detection error to increase. For the
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mid-range shifts 0.1 . ∆ . 0.3 (full desynchronization),
the testing errors P E are back at the values as if there was
no drop in Figure 3.

In the second experiment, we fix k = 2. The results are
shown in Figure 8 (middle). Since the distance between
two resized pixels is now 2, the symmetry is only along
∆ = 0.5, and the shifts ∆ and ∆′ = 1 − ∆ yield the
same interpolation formulas. A quick glance at Figure 4
(bottom) reveals that for k = 2 changing the shift ∆
does not affect the “degree of synchronization” between
the two grids but rather changes the values of linear
coefficients during interpolation (the weighted average) –
it determines the weight of “odd pixels” and “even pixels”
from the original image. For ∆ = 0.5, the triangle kernels
are perfectly centered at even pixels of the original image
and thus the downsampled image is just a sub-sampled
version of the original image (and identical to the one
we would obtain with the box kernel). Since every other
pixel is skipped, the pixels of the downsampled image are
less correlated, and we see higher error rates. For ∆ = 0,
on the other hand, the kernels are positioned exactly in
between of the pixels from the original grid and thus
the downsampled pixels are averages of the corresponding
neighboring pixels, which strengthens dependencies and
helps steganalysis.

Finally, in addition to the previous two experiments, in
Figure 8 (right) we show the results of steganalysis with
the cubic kernel and the resizing factor fixed at k = 1.4.
In this case, the interference between both grids oscillates
with a higher frequency than in the previous two scenarios
resulting in a periodic progress of the testing error as a
function of the kernel shift ∆, with peaks corresponding
to desynchronized grids and valleys to the (to the certain
degree) synchronized grids. Similarly to the previous two
cases, all three camera models exhibit qualitatively similar
behavior, even though the actual error rates among them
can differ by 10% or more.11 The observed trends seem to
be robust w.r.t. the choice of the steganographic method.

V. Secure payload scaling w.r.t. image

resolution

A. Image model

In this section we study the effects of image resizing
on steganalysis analytically. To this end, we need to
select a cover model that considers dependencies among
neighboring pixels. One of the simplest models is the first-
order Markov chain (MC). A substantial advantage of this
model is that there exists a closed-form expression between
the cover MC and the stego hidden MC for any mutually-
independent embedding operation [4], which will allow us
to compute the scaling of secure payload that leads to
constant statistical detectability across the downsampling
factor. The disadvantage of this cover model is that we

11This should not be surprising as the three sources of images differ
in their original resolution and in-camera processing.
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Figure 9. Parameters τ and γ estimated using 500 images from three
camera models.
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Figure 10. Experimental scaling law derived from the estimated
parameters τ and γ. The error bars represent the standard deviation
of the obtained values over the ten estimations of τ, γ shown in
Figure 9.

are now limited to the box kernel only since downsam-
pling with other kernels does not preserve the Markovian
property.

The MC model is fully characterized by its transi-
tion probability matrix (TPM) A = (aij), i, j ∈ I =
{0, . . . , 255}. Following [4], we adopt the exponential cover
model,

aij = 1/Zi exp(−(|i − j|/τ))γ , (15)

with the parameters τ and γ estimated using the method
of moments [22]. Figure 9 shows the results of the pa-
rameter estimation using 500 randomly selected images
from individual camera models. To show the sensitivity to
the image content, the estimation was repeated ten times
for different sets of 500 images. The estimated parameters
form three distinct clusters corresponding to the individual
cameras, Leica and Canon being somewhat similar.

Resizing images with the box kernel by factor k ≥ 1,
k ∈ R, changes the TPM A → A

k, where the matrix
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power is defined in a generalized sense and can be eval-
uated via the eigenvalue decomposition for non-integer
k. This allows us to study the scaling effects of image
resizing on steganographic security solely based on the
statistical properties of the original cover source (non-
resized images).

B. Scaling factor α(k)

It is well-known that the leading term of the KL diver-
gence between cover and stego objects is quadratic in the
change rate β [20]:

D(k; β) =
1

2
nβ2I(k), (16)

where n is the cover size and I(k) is the steganographic
Fisher information (FI) rate for the resizing factor k.
For a fixed cover source described by its TPM and a
fixed steganographic algorithm (LSBM in our case), the
authors of [4] derived a closed-form expression for I(k)
(see Theorem 2 in [4]), from which one can obtain D(k; β)
at different resolutions (as a function of A

k).
To obtain a constant level of statistical detectability (KL

divergence D) after resizing by factor k, the change rate
β needs to be scaled by α(k) satisfying

D(1; β) = D(k; α(k)β). (17)

Since we always central-crop the image after resizing to
the same size n (and thus eliminate the effect of the SRL)
it is easy to see that

α(k) =
√

I(1)/I(k). (18)

In Figure 10, we show the computed values of the derived
scaling factor α(k) for a range of resolutions 1 ≤ k ≤ 3
and for all three considered camera models. The obtained
experimental “scaling laws” are stable over different es-
timates of parameters τ and γ over all tested camera
models and steganalysis features. At the same time, we
can clearly see the differences among individual cameras
which indicates that the scaling law sensitively depends
on the cover source.

C. Experimental verification of the scaling law

The theoretically obtained results were verified in the
following manner. For a fixed change rate β1, we first
steganalyzed LSBM12using both SPAM and SRMQ1 fea-
tures across different scaling factors 1 ≤ k ≤ 2. This is
the situation when the change rate is constant and does
not follow the scaling law. Next, according to the theory,
in order to keep the same level of statistical detectabil-
ity (the same error P E), the change rate needs to be
scaled as α(k)β1, provided the images at both resolutions
are cropped to the same dimensions (otherwise, another
change rate adjustment due to the SRL would be needed).
We also steganalyzed LSBM across the same range of
scaling factors, 1 ≤ k ≤ 2, while following the derived
law.

In Figure 11, we compare the progress of the error rate
P E under both scenarios described in the above paragraph.
When the change rate is kept constant, with an increasing
value of k the testing error increases. When the change
rate follows the derived scaling law, however, we can see
that the testing error remains approximately constant up
to the value k ≈ 1.8 after which it starts deviating. This
behavior is consistent across all tested camera models.

In Figure 12 we test the validity of the derived law
from a different perspective. For a fixed resolution k, we
now vary the change rate β = {0.005, . . . , 0.035}, and
compare the error obtained at the non-resized images with
the error obtained at resolution k with the change rate
scaled as α(k)β. If the derived scaling law held perfectly,
the points in the graph would lie on the diagonal. We can
see that this is the case of resolutions k = 1.2, however,
as k increases, the scaling law slowly ceases to hold which
is more pronounced for the rich features. These results
are consistent with the previous experiment and with the
experiments presented in [18].

12Since WOW is a content-adaptive algorithm, its embedding
operation is not applied to pixels in a mutually independent fashion,
which makes our analysis of the scaling law inapplicable to such an
algorithm.
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Figure 12. Predicted vs. measured error rate for three different resizing factors and two steganalysis feature spaces. The individual points
come from three different camera models and a range of different change rates.

Despite the simplicity of the cover model (15) and the
fact that we use a machine-learning based detector, a good
match between theory and practice is observed for smaller
values of k. The formula (18) does not seem to provide the
correct scaling for larger k, especially when k & 1.8. This
is likely due to the limited extent the Markov chain model
describes natural images. Moreover, we remind that the
scaling was derived under the assumption of small change
rates, which becomes violated for large values of k.

VI. Conclusions

Today, downscaled images are ubiquitous. They appear,
for example, on image-sharing portals, social network-
ing websites, in e-mail attachments, at news websites,
and in on-line stores. It is thus natural to assume that
such images will be used for steganography in practice.
Since downsampling changes the strength and character
of dependencies among adjacent image pixels, it also
affects steganalysis. The lower image resolution decreases
the strength of pixel dependencies due to more rapid
changes in the image content. Depending on the image
downsampling algorithm, on the other hand, the strength
of pixel dependencies may increase due to interpolation
(averaging). Consequently, it is generally rather difficult
to predict whether steganalysis will be easier or more
difficult in images created by a particular resizing al-
gorithm and with a particular choice of its parameters.
The main contribution of this paper is explaining how
and why empirical steganographic security varies with the
downsizing algorithm and its settings.

We study the effect of the downsampling factor, the
interpolation kernel, anti-aliasing, and the position of the
resampled grid on the empirical steganographic security.
The universality of our conclusions is supported with
experiments on three different camera sources, two qual-
itatively different steganographic algorithms, LSBM and
WOW, and two different steganalyzers built using SPAM
and the state-of-the-art spatial rich model (SRM).

We also describe a new form of a scaling law, which
expresses how one should scale the payload with respect to

image resolution to keep a constant statistical detectabil-
ity. Note that while downsampling changes the number of
pixels, it also changes their statistical properties, and thus
the scaling of the secure payload w.r.t. downsampling is
not covered by the square root law of imperfect steganog-
raphy. To derive the proper scaling law analytically, we
adopted the first-order Markov chain for image pixels and
made an assumption that the embedding is realized using a
mutually independent operation. This restricted our study
to algorithms that are not content-adaptive (LSBM) and
the box kernel, which is the only kernel that preserves
the Markovian property of the cover source under resizing.
The general validity of the results (for small values of the
resize factor k) is supported with experiments on three
different sources and two steganalysis features (SPAM and
SRM).

The work in this paper is of interest to both practi-
tioners and researchers. Practitioners need to be informed
of the potential strong effect image downscaling may
have on the security of their secretly embedded messages.
Researchers need to be aware of this effect in order to
supply all necessary details pertaining to preparing their
image databases for tests. Last but not least, the detection
accuracy on BOSSbase (or other databases containing
resized images) should not be perceived as an absolute
measure of a steganographic algorithm’s security.
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