
 
Abstract—This tutorial explains how photo-response non-

uniformity (PRNU) of imaging sensors can be used for a 
variety of important digital forensic tasks, such as device 
identification, device linking, recovery of processing history, 
and detection of digital forgeries. The PRNU is an intrinsic 
property of all digital imaging sensors due to slight variations 
among individual pixels in their ability to convert photons to 
electrons. Consequently, every sensor casts a weak noise-like 
pattern onto every image it takes. This pattern, which plays 
the role of a sensor fingerprint, is essentially an unintentional 
stochastic spread-spectrum watermark that survives 
processing, such as lossy compression or filtering. This tutorial 
explains how this fingerprint can be estimated from images 
taken by the camera and later detected in a given image to 
establish image origin and integrity. Various forensic tasks are 
formulated as a two-channel hypothesis testing problem 
approached using the generalized likelihood ratio test. The 
performance of the introduced forensic methods is briefly 
illustrated on examples to give the reader a sense of the 
performance. 
 

Index Terms—Photo-response non-uniformity, imaging 
sensor, digital forensic, digital forgery, camera identification, 
authentication, integrity verification. 

I. INTRODUCTION 
There exist two types of imaging sensors commonly 

found in digital cameras, camcorders, and scanners⎯CCD 
(Charge-Coupled Device) and CMOS (Complementary 
Metal-Oxide Semiconductor). Both consist of a large 
number of photo detectors also called pixels. Pixels are 
made of silicon and capture light by converting photons 
into electrons using the photoelectric effect. The 
accumulated charge is transferred out of the sensor, 
amplified, and then converted to a digital signal in an AD 
converter and further processed before the data is stored in 
an image format, such as JPEG. 

The pixels are usually rectangular, several microns 
across. The amount of electrons generated by the light in a 
pixel depends on the physical dimensions of the pixel 
photosensitive area and on the homogeneity of silicon. The 
pixels' physical dimensions slightly vary due to 
imperfections in the manufacturing process. Also, the 
inhomogeneity naturally present in silicon contributes to 
variations in quantum efficiency among pixels (the ability 
to convert photons to electrons). The differences among 
pixels can be captured with a matrix K of the same 
dimensions as the sensor. When the imaging sensor is 
illuminated with ideally uniform light intensity Y, in the 
absence of other noise sources, the sensor would register a 
noise-like signal Y+YK instead. The term YK is usually 
referred to as the pixel-to-pixel non-uniformity or PRNU. 

The matrix K is responsible for a major part of what we 
call the camera fingerprint. The fingerprint can be estimated 
experimentally, for example by taking many images of a 
uniformly illuminated surface and averaging the images to 
isolate the systematic component of all images. At the same 
time, the averaging suppresses random noise components, 
such as the shot noise (random variations in the number of 
photons reaching the pixel caused by quantum properties of 
light) or the readout noise (random noise introduced during 
the sensor readout), etc. The reader is referred to [1,2] for a 
more detailed description of various noise sources affecting 
image acquisition. Fig. 1 shows a magnified portion of a 
fingerprint from a 4 megapixel Canon G2 camera obtained 
by averaging 120 8-bit grayscale images with average 
grayscale 128 across each image. Bright dots correspond to 
pixels that consistently generate more electrons, while dark 
dots mark pixels whose response is consistently lower. The 
variance in pixel values across the averaged image (before 
adjusting its range for visualization) was 0.5 or 51 dB. 
Although the strength of the fingerprint strongly depends on 
the camera model, the sensor fingerprint is typically quite a 
weak signal. 

 
Fig. 1: Magnified portion of the sensor fingerprint from Canon G2. The 
dynamic range was scaled to the interval [0,255] for visualization. 
 

Fig. 2 shows the magnitude of the Fourier transform of 
one pixel row in the averaged image. The signal resembles 
white noise with an attenuated high frequency band. 

Besides the PRNU, the camera fingerprint essentially 
contains all systematic defects of the sensor, including hot 
and dead pixels (pixels that consistently produce high and 
low output independently of illumination) and the so called 
dark current (a noise-like pattern that the camera would 
take with its objective covered). The most important 
component of the fingerprint is the PRNU. The PRNU term 
YK is only weakly present in dark areas where Y ≈ 0. Also, 
completely saturated areas of an image, where the pixels 
were filled to their full capacity, producing a constant 
signal, do not carry any traces of PRNU or any other noise 
for that matter. 

Digital Image Forensics Using Sensor Noise 
Jessica Fridrich 



We note that essentially all imaging sensors (CCD, 
CMOS, JFET, or CMOS-Foveon™ X3) are built from 
semiconductors and their manufacturing techniques are 
similar. Therefore, these sensors will likely exhibit 
fingerprints with similar properties.  
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Fig. 2: Magnitude of Fourier transform of one row of the sensor 
fingerprint. 
 

Even though the PRNU term is stochastic in nature, it is a 
relatively stable component of the sensor over its life span. 
The factor K is thus a very useful forensic quantity 
responsible for a unique sensor fingerprint with the 
following important properties: 

1. Dimensionality. The fingerprint is stochastic in nature 
and has a large information content, which makes it unique 
to each sensor. 

2. Universality. All imaging sensors exhibit PRNU. 
3. Generality. The fingerprint is present in every picture 

independently of the camera optics, camera settings, or 
scene content, with the exception of completely dark 
images. 

4. Stability. It is stable in time and under wide range of 
environmental conditions (temperature, humidity).  

5. Robustness. It survives lossy compression, filtering, 
gamma correction, and many other typical processing. 

The fingerprint can be used for many forensic tasks: 

• By testing the presence of a specific fingerprint in the 
image, one can achieve reliable device identification 
(e.g., prove that a certain camera took a given image) 
or prove that two images were taken by the same 
device (device linking). The presence of camera 
fingerprint in an image is also indicative of the fact that 
the image under investigation is natural and not a 
computer rendering. 

•  By establishing the absence of the fingerprint in 
individual image regions, it is possible to discover 
maliciously replaced parts of the image. This task 
pertains to integrity verification. 

• By detecting the strength or form of the fingerprint, it is 
possible to reconstruct some of the processing history. 
For example, one can use the fingerprint as a template 
to estimate geometrical processing, such as scaling, 
cropping, or rotation. Non-geometrical operations are 

also going to influence the strength of the fingerprint in 
the image and thus can be potentially detected. 

•  The spectral and spatial characteristics of the 
fingerprint can be used to identify the camera model or 
distinguish between a scan and a digital camera image 
(the scan will exhibit spatial anisotropy). 

In this tutorial, we will explain the methods for 
estimating the fingerprint and its detection in images. The 
material is based on statistical signal estimation and 
detection theory. 

The paper is organized as follows. In Section II, we 
describe a simplified sensor output model and use it to 
derive a maximum likelihood estimator for the fingerprint. 
At the same time, we point out the need to preprocess the 
estimated signal to remove certain systematic patterns that 
might increase false alarms in device identification and 
missed detections when using the fingerprint for image 
integrity verification. Starting again with the sensor model 
in Section III, the task of detecting the PRNU is formulated 
as a two-channel problem and approached using the 
generalized likelihood ratio test in Neyman-Pearson setting. 
First, we derive the detector for device identification and 
then adapt it for device linking and fingerprint matching. 
Section IV shows how the fingerprint can be used for 
integrity verification by detecting the fingerprint in 
individual image blocks. The reliability of camera 
identification and forgery detection using sensor fingerprint 
is illustrated on real imagery in Section V. Finally, the 
paper is summarized in Section VI. 

Everywhere in this paper, boldface font will denote 
vectors (or matrices) of length specified in the text, e.g., X 
and Y are vectors of length n and X[i] denotes the ith 
component of X. Sometimes, we will index the pixels in an 
image using a two-dimensional index formed by the row 
and column index. Unless mentioned otherwise, all 
operations among vectors or matrices, such as product, 
ratio, raising to a power, etc., are elementwise. The dot 
product of vectors is denoted as  

with 
1

[ ] [ ]n

i
i i

=
= ∑X Y X Y

|| ||=X X X  being the L2 norm of X. Denoting the 
sample mean with a bar, the normalized correlation is 
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II. SENSOR FINGERPRINT ESTIMATION 
The PRNU is injected into the image during acquisition 

before the signal is quantized or processed in any other 
manner. In order to derive an estimator of the fingerprint, 
we need to formulate a model of the sensor output. 

A. Sensor Output Model 
Even though the process of acquiring a digital image is 

quite complex and varies greatly across different camera 
models, some basic elements are common to most cameras. 
The light cast by the camera optics is projected onto the 
pixel grid of the imaging sensor. The charge generated 



through interaction of photons with silicon is amplified and 
quantized. Then, the signal from each color channel is 
adjusted for gain (scaled) to achieve proper white balance. 
Because most sensors cannot register color, the pixels are 
typically equipped with a color filter that lets only light of 
one specific color (red, green, or blue) enter the pixel. The 
array of filters is called the color filter array (CFA). To 
obtain a color image, the signal is interpolated or 
demosaicked. Finally, the colors are further adjusted to 
correctly display on a computer monitor through color 
correction and gamma correction. Cameras may also 
employ filtering, such as denoising or sharpening. At the 
very end of this processing chain, the image is stored in the 
JPEG or some other format, which may involve 
quantization. 

Let us denote by I[i] the quantized signal registered at 
pixel i, i = 1, …, m×n, before demosaicking. Here, m×n are 
image dimensions. Let Y[i] be the incident light intensity at 
pixel i. We drop the pixel indices for better readability and 
use the following vector form of the sensor output model 

[ ]( )g γγ= ⋅ + + +I 1 K Y Ω Q .                    (1) 
We remind the reader that all operations in (1) (and 
everywhere else in this tutorial) are element-wise. In (1), g 
is the gain factor (different for each color channel) and γ is 
the gamma correction factor (typically, γ ≈ 0.45). The 
matrix K is a zero-mean noise-like signal responsible for 
the PRNU (the sensor fingerprint). Denoted by Ω  is a 
combination of the other noise sources, such as the dark 
current, shot noise, and read-out noise [2]; Q  is the 
combined distortion due to quantization and/or JPEG 
compression. 

In parts of the image that are not dark, the dominant term 
in the square bracket in (1) is the scene light intensity Y. By 
factoring it out and keeping the first two terms in the Taylor 
expansion of (1 + x)γ = 1 + γ x + O(x2) at x = 0, we obtain 
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I Y 1 K Ω Y Q

Y 1 K Ω Y Q I I K Θ
   (2) 

In (2), we denoted (0) ( )g γ=I Y  the ideal sensor output in 
the absence of any noise or imperfections. Note that  
is the PRNU term and  is the modeling 
noise. In the last expression in (2), the scalar factor γ  was 
absorbed into the PRNU factor K to simplify the notation. 

(0)I K
(0) /γ= +Θ I Ω Y Q

B. Sensor Fingerprint Estimation 
In this section, the above sensor output model is used to 

derive an estimator of the PRNU factor K. A good 
introductory text on signal estimation and detection is [3,4]. 

The SNR between the signal of interest  and 
observed data I can be improved by suppressing the 
noiseless image I

(0)I K

(0) by subtracting from both sides of (2) a 
denoised version of I, (0)ˆ ( )F=I I , obtained using a 
denoising filter F (Appendix A describes the filter used in 
experiments in this tutorial): 

 

     
(0) (0) (0) (0)ˆ ˆ ( )

    .
= − = + − − +
= +

W I I IK I I + I I K Θ
IK Ξ

          (3) 

It is easier to estimate the PRNU term from W than from 
I because the filter suppresses the image content. We 
denoted by Ξ  the sum of and two additional terms 
introduced by the denoising filter. 

Θ

Let us assume that we have a database of d ≥ 1 images, 
I1, …, Id, obtained by the camera. For each pixel i, the 
sequence , …,  is modeled as white Gaussian 
noise (WGN) with variance σ 

1[ ]iΞ [ ]d iΞ
2. The noise term is 

technically not independent of the PRNU signal IK due to 
the term . However, because the energy of this 
term is small compared to IK, the assumption that Ξ  is 
independent of IK is reasonable.  

(0)( )−I I K

From (3), we can write for each k = 1, …, d 
(0) (0)ˆ ˆ,    ,  ( )k k

k k k k k
k k

F= + = − =
W ΞK W I I I
I I

I .         (4) 

Under our assumption about the noise term, the log-
likelihood of observing  given K is /k kW I

2
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By taking partial derivatives of (5) with respect to 
individual elements of K and solving for K, we obtain the 
maximum likelihood estimate   K̂
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The Cramer-Rao Lower Bound (CRLB) gives us the 
bound on the variance of  K̂
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           (7) 
Because the sensor model (3) is linear, the CRLB tells us 

that the maximum likelihood estimator is minimum 
variance unbiased and its variance ~ 1/d. From (7), 
we see that the best images for estimation of K are those 
with high luminance (but not saturated) and small σ

ˆvar( )K

 2 
(which means smooth content). If the camera under 
investigation is in our possession, out-of-focus images of 
bright cloudy sky would be the best. In practice, good 
estimates of the fingerprint may be obtained from 20–50 
natural images depending on the camera. If sky images are 
used instead of natural images, only approximately one half 
of them would be enough to obtain an estimate of the same 
accuracy. 

The estimate  contains all components that are 
systematically present in every image, including artifacts 
introduced by color interpolation, JPEG compression, on-

K̂



sensor signal transfer [5], and sensor design. While the 
PRNU is unique to the sensor, the other artifacts are shared 
among cameras of the same model or sensor design. 
Consequently, PRNU factors estimated from two different 
cameras may be slightly correlated, which undesirably 
increases the false identification rate. Fortunately, the 
artifacts manifest themselves mainly as periodic signals in 
row and column averages of  and can be suppressed 
simply by subtracting the averages from each row and 
column. For a PRNU estimate  with m rows and n 
columns, the processing is described using the following 
pseudo-code 

K̂

K̂

1
ˆ1/ [ , ]n

i j
r n i

=
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−

j

 

for i = 1 to m {  for j = 1, …, n} ˆ ˆ'[ , ] [ , ] ii j i j r=K K

1
ˆ1/ '[ , ]m

j i
c m i

=
= ∑ K  

for j = 1 to n {  for i = 1, …, m}. ˆ ˆ''[ , ] '[ , ] ji j i j c= −K K

The difference  is called the linear pattern (see Fig. 
3) and it is a useful forensic entity by itself − it can be used 
to classify a camera fingerprint to a camera model or brand. 
As this topic is not detailed in this tutorial, the reader is 
referred to [6] for more details. 

ˆ ˆ ''−K K

 
Fig. 3:  Detail of the linear pattern for Canon S40. 

To avoid cluttering the text with too many symbols, in the 
rest of this tutorial we will denote the processed fingerprint 

 with the same symbol . ˆ ''K K̂
We close this section with a note on color images. In this 

case, the PRNU factor can be estimated for each color 
channel separately, obtaining thus three fingerprints of the 
same dimensions ˆ

RK , , and ˆ
GK ˆ .BK Since these three 

fingerprints are highly correlated due to in-camera 
processing, in all forensic methods explained in this 
tutorial, before analyzing a color image under investigation 
we convert it to grayscale and correspondingly combine the 
three fingerprints into one fingerprint using the usual 
conversion from RGB to grayscale 

ˆ ˆ ˆ0.3 0.6 0.1 ˆ
R G= + +K K K K B

2.

.  (8) 

III. CAMERA IDENTIFICATION USING SENSOR 
FINGERPRINT 

This section introduces general methodology for 
determining the origin of images or video using sensor 
fingerprint. We start with what we consider the most 
frequently occurring situation in practice, which is camera 
identification from images. Here, the task is to determine if 

an image under investigation was taken with a given 
camera. This is achieved by testing whether the image noise 
residual contains the camera fingerprint. Anticipating the 
next two closely related forensic tasks, we formulate the 
hypothesis testing problem for camera identification in a 
setting that is general enough to essentially cover the 
remaining tasks, which are device linking and fingerprint 
matching. In device linking, two images are tested if they 
came from the same camera (the camera itself may not be 
available). The task of matching two estimated fingerprints 
occurs in matching two video-clips because individual 
video frames from each clip can be used as a sequence of 
images from which an estimate of the camcorder fingerprint 
can be obtained (here, again, the cameras/camcorders may 
not be available to the analyst). 

A. Device identification 
We consider the scenario in which the image under 

investigation has possibly undergone a geometrical 
transformation, such as scaling or rotation. Let us assume 
that before applying any geometrical transformation the 
image was in grayscale represented with an m×n matrix 
I[i, j], i = 1, …, m, j = 1, …, n. Let us denote as u the 
(unknown) vector of parameters describing the geometrical 
transformation, Tu. For example, u could be a scaling ratio 
or a two-dimensional vector consisting of the scaling 
parameter and unknown angle of rotation. In device 
identification, we wish to determine whether or not the 
transformed image 

( )T= uZ I  

was taken with a camera with a known fingerprint estimate 
. We will assume that the geometrical transformation is 

downgrading (such as downsampling) and thus it will be 
more advantageous to match the inverse transform  
with the fingerprint rather than matching Z with a 
downgraded version of . 

K̂

1( )T −
u Z

K̂
We now formulate the detection problem in a slightly 

more general form to cover all three forensic tasks 
mentioned above within one framework. The fingerprint 
detection is the following two-channel hypothesis testing 
problem 

0 1 2

1 1 2
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H :

≠
=

K K
K K

                                    (9) 

where 
1 1 1 1
1 1

2 2( ) ( )T T− −

= +

=u u

W I K Ξ

W Z K Ξ+
                   (10) 

In (10), all signals are observed with the exception of the 
noise terms ,  and the fingerprints K1Ξ 2Ξ 1 and K2. 
Specifically, for the device identification problem, I1 ≡1, 

1
ˆ=W K  estimated in the previous section, and  is the 

estimation error of the PRNU.  is the PRNU from the 
1Ξ

2K



camera that took the image, W2 is the geometrically 
transformed noise residual, and  is a noise term. In 
general, u is an unknown parameter. Note that since 

 and  may have different dimensions, the 
formulation (10) involves an unknown spatial shift between 
both signals, s. 

2Ξ

1
2(T −

u W ) 1W

Modeling the noise terms  and  as white Gaussian 

noise with known variances 
1Ξ 2Ξ

2
1σ , 2

2σ , the generalized 
likelihood ratio test for this two-channel problem was 
derived in [7]. The test statistics is a sum of three terms: 
two energy-like quantities and a cross-correlation term 
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The complexity of evaluating these three expressions is 
proportional to the square of the number of pixels, (m×n)2, 
which makes this detector unusable in practice. Thus, we 
simplify this detector to a normalized cross-correlation 
(NCC) that can be evaluated using fast Fourier transform. 
Under H1, the maximum in (11) is mainly due to the 
contribution of the cross-correlation term, C(u, s), that 
exhibits a sharp peak for the proper values of the 
geometrical transformation. Thus, a much faster suboptimal 
detector is the NCC between X and Y maximized over all 
shifts s1, s2, and u 
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(12) 
which we view as an m×n matrix parameterized by u, 
where 
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(13) 
A more stable detection statistics, whose meaning will 

become apparent from error analysis later in this section, 
that we strongly advocate to use for all camera 
identification tasks, is the Peak to Correlation Energy 
measure (PCE) defined as 

 
2

peak

2

,

[ ; ]
PCE( ) 1 [ ; ]

| |mn ∉

=

− ∑
NN s s

NCC s u
u

NCC s u
,   (14) 

where for each fixed u, N is a small region surrounding the 
peak value of NCC speak across all shifts s1, s2. 

For device identification from a single image, the 
fingerprint estimation noise  is much weaker compared 
to  for the noise residual of the image under 

investigation. Thus, 

1Ξ

2Ξ
2 2

1 1 2var( ) var( ) 2σ σ= =Ξ Ξ  and (12) 
can be further simplified to a NCC between 

     1
ˆ= =X W K  and . 1 1

2( ) ( )T T− −= u uY Z W
Recall that I1 = 1 for device identification when its 
fingerprint is known. 

In practice, the maximum PCE value can be found by a 
search on a grid obtained by discretizing the range of u. 
Because the statistics is noise-like for incorrect values of u 
and only exhibits a sharp peak in a small neighborhood of 
the correct value of u, unfortunately, gradient methods do 
not apply and we are left with a potentially expensive grid 
search. The grid has to be sufficiently dense in order not to 
miss the peak. As an example, we provide in this tutorial 
additional details how one can carry out the search when 
u = r is an unknown scaling ratio. The reader is advised to 
consult [9] for more details. 
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Fig. 4: Top: Detected peak in PCE(ri). Bottom: Visual representation of 
the detected cropping and scaling parameters rpeak, speak. The gray frame 
shows the original image size, while the black frame shows the image size 
after cropping before resizing. 

 
Assuming the image under investigation has dimensions 

M×N, we search for the scaling parameter at discrete values 
ri ≤ 1, i = 0, 1, …, R, from r0 = 1 (no scaling, just cropping) 



down to rmin = max{M/m, N/n} < 1 

1 ,  0,1,2,...
1 0.005ir i

i
= =

+
.  (15) 

For a fixed scaling parameter ri, the cross-correlation (12) 
does not have to be computed for all shifts s but only for 
those that move the upsampled image  within the 

dimensions of  because only such shifts can be generated 
by cropping. Given that the dimensions of the upsampled 
image  are M/r

1( )
ir

T − Z

K̂

1( )
ir

T − Z i × N/ri, we have the following range 

for the spatial shift s = (s1, s2) 

 0 ≤ s1 ≤ m – M/ri  and  0 ≤ s2 ≤ n – N/ri.     (16) 

The peak of the two-dimensional NCC across all spatial 
shifts s is evaluated for each ri using PCE(ri) (14). If 
maxi PCE(ri) > τ, we decide H1 (camera and image are 
matched). Moreover, the value of the scaling parameter at 
which the PCE attains this maximum determines the scaling 
ratio rpeak. The location of the peak speak in the normalized 
cross-correlation determines the cropping parameters. Thus, 
as a by-product of this algorithm, we can determine the 
processing history of the image under investigation (see 
Fig. 4). The fingerprint can thus play the role of a 
synchronizing template similar to templates used in digital 
watermarking. It can also be used for reverse-engineering 
in-camera processing, such as digital zoom [9]. 

In any forensic application, it is important to keep the 
false alarm rate low. For camera identification tasks, this 
means that the probability, PFA, that a camera that did not 
take the image is falsely identified must be below a certain 
user-defined threshold (Neyman-Pearson setting). Thus, we 
need to obtain a relationship between PFA and the threshold 
on the PCE. Note that the threshold will depend on the size 
of the search space, which is in turn determined by the 
dimensions of the image under investigation. 

Under hypothesis H0 for a fixed scaling ratio ri, the 
values of the normalized cross-correlation NCC[s; ri] as a 
function of s are well-modeled [9] as white Gaussian noise 

( ) 2~ (0, )i
iNζ σ  with variance that may depend on i. 

Estimating the variance of the Gaussian model using the 
sample variance 2ˆiσ  of NCC[s; ri] over s after excluding a 
small central region N surrounding the peak 
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we now calculate the probability pi that ( )iζ  would attain 
the peak value NCC[speak; rpeak] or larger by chance: 
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where Q(x) = 1 – Φ(x) with Φ(x) denoting the cumulative 
distribution function of a standard normal variable N(0,1) 
and PCEpeak = PCE(rpeak). As explained above, during the 
search for the cropping vector s, we only need to search in 
the range (16), which means that we are taking maximum 
over ki = (m – M/ri + 1)×(n – N/ri + 1) samples of ζ(i). Thus, 
the probability that the maximum value of ζ(i) would not 
exceed NCC[speak; rpeak] is (  After R steps in the 
search, the probability of false alarm is 

)1 ik
ip−

 .   (18) ( )FA
1

1 1 i
R

k
i

i

P p
=

= − −∏
Since we can stop the search after the PCE reaches a 

certain threshold, we have ri ≤ rpeak. Because 2ˆiσ  is non-
decreasing in i, peakˆ ˆ/ i 1σ σ ≥ . Because Q(x) is decreasing, 

we have pi ≤ ( )peakPCEQ = p

p

k

. Thus, because ki ≤ mn, we 

obtain an upper bound on PFA

 ,  (19) ( ) max

FA 1 1 kP ≤ − −

where 
1

max
0

R

i
i

k
−

=

=∑  is the maximal number of values of the 

parameters r and s over which the maximum of (11) could 
be taken. Equation (19), together with ( )p Q τ= , 

determines the threshold for PCE, τ = τ (PFA, M, N, m, n). 
This finishes the technical formulation and solution of 

the camera identification algorithm from a single image if 
the camera fingerprint is known. To provide the reader with 
some sense of how reliable this algorithm is, we include in 
Section V some experiments on real images. This algorithm 
can be used with small modifications for the other two 
forensic tasks formulated in the beginning of this section, 
which are device linking and fingerprint matching.  

B. Device linking 
The detector derived in the previous section can be 

readily used with only a few changes for device linking or 
determining whether two images, I1 and Z, were taken by 
the exact same camera [11]. Note that in this problem the 
camera or its fingerprint is not necessarily available. 

The device linking problem corresponds exactly to the 
two-channel formulation (9) and (10) with the GLRT 
detector (11). Its faster, suboptimal version is the PCE (14) 
obtained from the maximum value of over all 1 2[ , ; ]s sNCC u

1 2, ;s s u

2

 (see (12) and (13)). In contrary to the camera 
identification problem, now the power of both noise terms,  

 and , is comparable and needs to be estimated from 
observations. Fortunately, because the PRNU term IK is 
much weaker than the modeling noise reasonable 
estimates of the noise variances are simply 

 

1Ξ 2Ξ

,Ξ

2 2
1 1 2ˆ ˆvar( ),  var( ).σ σ= =W W
Unlike in the camera identification problem, the search 

for unknown scaling must now be enlarged to scalings 
ri > 1 (upsampling) because the combined effect of 



unknown cropping and scaling for both images prevents us 
from easily identifying which image has been downscaled 
with respect to the other one. The error analysis carries over 
from Section III.A. 

Due to space limitations we do not include experimental 
verification of the device linking algorithm. Instead, the 
reader is referred to [11]. 

C. Matching fingerprints 
The last, fingerprint matching scenario corresponds to the 

situation when we need to decide whether or not two 
estimates of potentially two different fingerprints are 
identical. This happens, for example, in video-clip linking 
because the fingerprint can be estimated from all frames 
forming the clip [12]. 

The detector derived in Section III.A applies to this 
scenario, as well. It can be further simplified because for 
matching fingerprints we have I1 = Z = 1 and (12) simply 
becomes the normalized cross-correlation between  

and . 
1

ˆ=X K
1

2
ˆ( )T −= uY K

For experimental verification of the fingerprint matching 
algorithm for video clips, the reader is advised to consult 
[12]. 

IV. FORGERY DETECTION USING CAMERA 
FINGERPRINT 

A different, but nevertheless important, use of the sensor 
fingerprint is verification of image integrity. Certain types 
of tampering can be identified by detecting the fingerprint 
presence in smaller regions. The assumption is that if a 
region was copied from another part of the image (or an 
entirely different image), it will not have the correct 
fingerprint on it. The reader should realize that some 
malicious changes in the image may preserve the PRNU 
and will not be detected using this approach. A good 
example is changing the color of a stain to a blood stain. 

The forgery detection algorithm tests for the presence of 
the fingerprint in each B×B sliding block separately and 
then fuses all local decisions. For simplicity, we will 
assume that the image under investigation did not undergo 
any geometrical processing. For each block, BB

b

b

)b

b, the 
detection problem is formulated as hypothesis testing 

         H0:    b =W Ξ

 H1: .   (20) ˆ
b b b= +W I K Ξ

Here, Wb is the block noise residual,  is the 
corresponding block of the fingerprint, I

ˆ
bK

b is the block 
intensity, and  is the modeling noise assumed to be a 

white Gaussian noise with an unknown variance . The 
likelihood ratio test is the normalized correlation 

bΞ
2
Ξσ

( ˆ ,b b bcorrρ = I K W .    (21) 

In forgery detection, we may desire to control both types 
of error – failing to identify a tampered block as tampered 

and falsely marking a region as tampered. To this end, we 
will need to estimate the distribution of the test statistic 
under both hypotheses. 

The probability density under H0, p(x|H0), can be 
estimated by correlating the known signal  with noise 
residuals from other cameras. The distribution of ρ

ˆ
b bI K

b under 
H1, p(x|H1), is much harder to obtain because it is heavily 
influenced by the block content. Dark blocks will have 
lower value of correlation due to the multiplicative 
character of the PRNU. The fingerprint may also be absent 
from flat areas due to strong JPEG compression or 
saturation. Finally, textured areas will have a lower value of 
the correlation due to stronger modeling noise. This 
problem can be resolved by building a predictor of the 
correlation that will tell us what the value of the test 
statistics ρb and its distribution would be if the block b was 
not tampered and indeed came from the camera. 

The predictor is a mapping that needs to be constructed 
for each camera. The mapping assigns an estimate of the 
correlation ρb to each triple (ib, fb, tb), where the individual 
elements of the triple stand for a measure of intensity, 
saturation, and texture in block b. The mapping can be 
constructed for example using regression or machine 
learning techniques by training them on a database of image 
blocks coming from images taken by the camera. The block 
size cannot be too small (because then the correlation ρb has 
too large a variance). On the other hand, large blocks would 
compromise the ability of the forgery detection algorithm to 
localize. Blocks of 64×64 or 128×128 pixels work well for 
most cameras. 

A reasonable measure of intensity is the average intensity 
in the block 

1 [ ]
| |

b

b
ib

i i
∈

= ∑ I
BB

.   (22) 

We take as a measure of flatness the relative number of 
pixels, i, in the block whose sample intensity variance σI[i] 
estimated from the local 3×3 neighborhood of i is below a 
certain threshold 

1 { | [ ] [ ]}b b
b

f i i cσ= ∈ <I IB
B

i ,  (23) 

where c ≈ 0.03 (for Canon G2 camera). The best values of c 
vary with the camera model. 

A good texture measure should somehow evaluate the 
amount of edges in the block. Among many available 
options, we give the following example 

5

1 1
| | 1 var ( [ ])

b

b
b i

t
i∈

=
+∑ FBB

,         (24) 

where var5(F[i]) is the sample variance computed from a 
local 5×5 neighborhood of pixel i for a high-pass filtered 
version of the block, F[i], such as one obtained using an 
edge map or a noise residual in a transform domain. 

Since one can obtain potentially hundreds of blocks from 
a single image, only a small number of images (e.g., ten) 
are needed to train (construct) the predictor. The data used 



for its construction can also be used to estimate the 
distribution of the prediction error vb 

ˆb b bρ ρ ν= + ,                                (25) 
where ˆbρ  is the predicted value of the correlation. 
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Fig. 5: Scatter plot of correlation bρ  vs. ˆbρ  for 30,000 128×128 blocks 
from 300 TIF images for Canon G2. 
 

Fig. 5 shows the performance of the predictor 
constructed using second order polynomial regression for a 
Canon G2 camera. Say that for a given block under 
investigation, we apply the predictor and obtain the 
estimated value ˆbρ . The distribution p(x|H1) is obtained by 
fitting a parametric pdf to all points in Fig. 7 whose 
estimated correlation is in a small neighborhood of ˆbρ , 
( ˆbρ –ε, ˆbρ +ε). A sufficiently flexible model for the pdf that 
allows thin and thick tails is the generalized Gaussian 

model with pdf ( )| |//(2 (1/ )) xe
αμ σα σ α − −Γ  with variance 

σ 2Γ(3/α)/Γ(1/α), mean μ, and shape parameter α. 
We now continue with the description of the forgery 

detection algorithm using sensor fingerprint. The algorithm 
proceeds by sliding a block across the image and evaluates 
the test statistics ρb for each block b. The decision threshold 
t for the test statistics ρb was set to obtain the probability of 
misidentifying a tampered block as non-tampered, 
Pr(ρb > t| H0) = 0.01. 

Block b is marked as potentially tampered if ρb < t but 
this decision is attributed only to the central pixel i of the 
block. Through this process, for an m×n image we obtain an 
(m–B+1)×(n–B+1) binary array Z[i] = ρb < t indicating the 
potentially tampered pixels with Z[i] = 1. 

The above Neyman-Pearson criterion decides ‘tampered’ 
whenever ρb < t even though ρb  may be “more compatible” 
with p(x|H1), which is more likely to occur when ρb is 
small, such as for highly textured blocks. To control the 
amount of pixels falsely identified as tampered, we 
compute for each pixel i the probability of falsely labeling 
the pixel as tampered when it was not  

1[ ] ( | H )
t

p i p x dx
−∞

= ∫ .                        (26) 

Pixel i is labeled as non-tampered (we reset Z[i] = 0) if 
p[i]>β, where β is a user-defined threshold (in experiments 
in this tutorial, β = 0.01). The resulting binary map Z 
identifies the forged regions in their raw form. The final 
map Z is obtained by further post-processing Z. 

The block size imposes a lower bound on the size of 
tampered regions that the algorithm can identify. We 
remove from Z all simply connected tampered regions that 
contain fewer than 64×64 pixels. The final map of forged 
regions is obtained by dilating Z with a square 20×20 
kernel. The purpose of this step is to compensate for the 
fact that the decision about the whole block is attributed 
only to its central pixel and we may miss portions of the 
tampered boundary region. 

V. EXPERIMENTAL VERIFICATION 
In this section, we demonstrate how the forensic methods 

proposed in the previous two sections may be implemented 
in practice and also include some sample experimental 
results to give the reader an idea how the methods work on 
real imagery. The reader is referred to [9,13] for more 
extensive tests and to [11] and [12] for experimental 
verification of device linking and fingerprint matching for 
video-clips. Camera identification from printed images 
appears in [10]. 

A. Camera identification 
A Canon G2 camera with a 4 megapixel CCD sensor was 

used in all experiments in this section. The camera 
fingerprint was estimated for each color channel separately 
using the maximum likelihood estimator (6) from 30 blue 
sky images acquired in the TIFF format. The estimated 
fingerprints were preprocessed using the column and row 
zero-meaning explained in Section II to remove any 
residual patterns not unique to the sensor. This step is very 
important because these artifacts would cause unwanted 
interference at certain spatial shifts, s, and scaling factors, 
and thus decrease the PCE and substantially increase the 
false alarm rate. 

The fingerprints estimated from all three color channels 
were combined into a single fingerprint using the linear 
conversion rule used for conversion of color images to 
grayscale 

ˆ ˆ ˆ0.3 0.6 0.1 ˆ
R G B= + +K K K K . 

All other images involved in this test were also converted to 
grayscale before applying the detectors described in Section 
III.A. 

The camera was further used to acquire 720 images 
containing snapshots or various indoor and outdoor scenes 
under a wide spectrum of light conditions and zoom 
settings spanning the period of four years. All images were 
taken at the full CCD resolution and with a high JPEG 
quality setting. Each image was first cropped by a random 
amount up to 50% in each dimension. The upper left corner 



of the cropped region was also chosen randomly with 
uniform distribution within the upper left quarter of the 
image. The cropped part was subsequently downsampled by 
a randomly chosen scaling ratio r∈[0.5, 1]. Finally, the 
images were converted to grayscale and compressed with 
85% quality JPEG. 

The detection threshold τ was chosen to obtain the 
probability of false alarm PFA = 10–5. The camera 
identification algorithm was run with rmin = 0.5 on all 
images. Only two missed detections were encountered (Fig. 
6). In the figure, the PCE is displayed as a function of the 
randomly chosen scaling ratio. The missed detections 
occurred for two highly textured images. In all successful 
detections, the cropping and scaling parameters were 
detected with accuracy better than 2 pixels in either 
dimension. 
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Fig. 6: PCEpeak as a function of the scaling ratio for 720 images matching 
the camera. The detection threshold τ, which is outlined with a horizontal 
line, corresponds to PFA = 10–5. 
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Fig. 7: PCEpeak for 915 images not matching the camera. The detection 
threshold τ is again outlined with a horizontal line and corresponds to PFA 
= 10–5. 

 
To test the false identification rate, we used 915 images 

from more than 100 different cameras downloaded from the 
Internet in native resolution. The images were cropped to 4 
megapixels (the size of Canon G2 images) and subjected to 
the same random cropping, scaling, and JPEG compression 
as the 720 images before. The threshold for the camera 
identification algorithm was set to the same value as in the 
previous experiment. All images were correctly classified 

as not coming from the tested camera (Fig. 7). To 
experimentally verify the theoretical false alarm rate, 
millions of images would have to be taken, which is, 
unfortunately, not feasible. 

B. Forgery detection 
Fig. 8a shows the original image taken in the raw format 

by an Olympus C765 digital camera equipped with a 4 
megapixel CCD sensor. Using Photoshop, the girl in the 
middle was covered by pieces of the house siding from the 
background (Fig. 8b). The forged image was then stored in 
the TIFF and JPEG 75 formats. The corresponding output 
of the forgery detection algorithm, shown in Figs. 8c and d, 
is the binary map Z highlighted using a square grid. The 
last two figures show the map Z after the forgery was 
subjected to denoising using a 3×3 Wiener filter (Fig. 8e) 
followed by 90% quality JPEG and when the forged image 
was processed using gamma correction with γ = 0.5 and 
again saved as JPEG 90 (Fig. 8f). In all cases, the forged 
region was accurately detected. 

More examples of forgery detection using this algorithm, 
including the results of tests on a large number 
automatically created forgeries as well as non-forged 
images, can be found in the original publication [13].  

VI. CONCLUSIONS 
This tutorial introduces several digital forensic methods 

that capitalize on the fact that each imaging sensor casts a 
noise-like fingerprint on every picture it takes. The main 
component of the fingerprint is the photo-response non-
uniformity (PRNU), which is caused by pixels’ varying 
capability to convert light to electrons. Because the 
differences among pixels are due to imperfections in the 
manufacturing process and silicon inhomogeneity, the 
fingerprint is essentially a stochastic, spread-spectrum 
signal and thus robust to distortion. 

Since the dimensionality of the fingerprint is equal to the 
number of pixels, the fingerprint is unique for each camera 
and the probability of two cameras sharing similar 
fingerprints is extremely small. The fingerprint is also 
stable over time. All these properties make it an excellent 
forensic quantity suitable for many tasks, such as device 
identification, device linking, and tampering detection. 

This tutorial describes methods for estimating the 
fingerprint from images taken by the camera and methods 
for fingerprint detection. The estimator is derived using 
maximum likelihood principle from a simplified sensor 
output model. The model is then used to formulate 
fingerprint detection as two-channel hypothesis testing 
problem for which the generalized likelihood detector is 
derived. Due to its complexity, the GLRT detector is 
replaced with a simplified but substantially faster detector 
computable using fast Fourier transform. 

The performance of the introduced forensic methods is 
briefly demonstrated on real images. Throughout the text, 
references to previously published articles guide the 
interested reader to more detailed technical information. 



For completeness, we note that there exist approaches 
combining sensor noise detection with machine-learning 
classification [14–16]. References [14,17,18] extend the 
sensor-based forensic methods to scanners. An older 
version of this forensic method was tested for cell phone 
cameras in [16] and in [19] where the authors show that 
combination of sensor-based forensic methods with 
methods that identify camera brand can decrease false 
alarms. The improvement reported in [19], however, is 
unlikely to hold for the newer version of the sensor noise 
forensic method presented in this tutorial as the results 
appear to be heavily influenced by uncorrected effects 
discussed in Section II.B. The problem of pairing of a large 
number of images was studied in [20] using an ad hoc 
approach. Anisotropy of image noise for classification of 
images into scans, digital camera images, and computer art 
appeared in [21]. 
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APPENDIX A (DENOISING FILTER) 
The denoising filter used in the experimental sections of 

this tutorial is constructed in the wavelet domain. It was 
originally described in [22]. 

Let us assume that the image is a grayscale 512×512 
image. Larger images can be processed by blocks and color 
images are denoised for each color channel separately. The 
high-frequency wavelet coefficients of the noisy image are 
modeled as an additive mixture of a locally stationary i.i.d. 
signal with zero mean (the noise-free image) and a 
stationary white Gaussian noise 2

0(0, )N σ  (the noise 

component). The denoising filter is built in two stages. In 
the first stage, we estimate the local image variance, while 
in the second stage the local Wiener filter is used to obtain 

onal 

velet coefficient using 
e MAP estimation for 4 sizes of a square W×W  

neighborhood N, for W∈{3, 5, 7, 9}. 
 

an estimate of the denoised image in the wavelet domain. 
We now describe the individual steps: 

Step 1. Calculate the fourth-level wavelet decomposition 
of the noisy image with the 8-tap Daubechies quadrature 
mirror filters. We describe the procedure for one fixed level 
(it is executed for the high-frequency bands for all four 
levels). Denote the vertical, horizontal, and diag
subbands as h[i, j], v[i, j], d[i, j], where (i, j) runs through 
an index set J that depends on the decomposition level. 

Step 2. In each subband, estimate the local variance of the 
original noise-free image for each wa
th

2 2 21ˆ [ , ] max 0, [ , ]i j i j 02
( , )

W
i jW

σ
∈⎝ ⎠N

⎛ ⎞
= −⎜ ⎟∑σ h , (i, j)∈ J. 

Take the minimum of the 4 variances as the fina
 

 
l estimate, 

( )2 2 2 2 2
3 5 7 9ˆ ( , ) min [ , ], [ , ], [ , ], [ , ]i j i j i j i j i j=σ σ σ σ σ , (i, j)∈ J. 

tep 3. The denoised wavelet coefficients are obtained 
using the Wiener filter 
 

S

2

den 2 2
0ˆ [ , ]i j

ˆ [ , ][ , ] [ , ] i ji j i j
σ

=
σh h   

 denoised image is obtained by applying the 
in

o make sure that 
the filter extracts substantial part of the PRNU noise even 
for cameras with a large noise component. 

+σ
 
and similarly for v[i, j], and d[i, j], (i, j)∈ J. 

Step 4. Repeat Steps 1–3 for each level and each color 
channel. The

verse wavelet transform to the denoised wavelet 
coefficients. 

In all experiments, we used σ0 = 2 (for dynamic range of 
images 0, …, 255) to be conservative and t

 
 
 
 
 
 
 
 



     
(a) Original 

    
(b) Forgery 

 
(c) Tampered region, TIFF 

 
(d) Tampered region, JPEG 75  

(e) Tampered region, Wiener 3×3  
and JPEG 90 

 
(f) Tampered region, γ = 0.5  

and JPEG 90 

Fig. 8: An original (a) and forged (b) Olympus C765 image and its detection from a forgery stored as TIFF (c), JPEG 75 (d), denoised using a 3×3 Wiener filter 
and saved as 90% quality JPEG (e), gamma corrected with γ = 0.5 and stored as 90% quality JPEG.  
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