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Gibbs Construction in Steganography
Tomáš Filler,Student Member, IEEEand Jessica Fridrich,Member, IEEE

Abstract—We make a connection between steganography de-
sign by minimizing embedding distortion and statistical physics.
The unique aspect of this work and one that distinguishes it from
prior art is that we allow the distortion function to be arbit rary,
which permits us to consider spatially-dependent embedding
changes. We provide a complete theoretical framework and
describe practical tools, such as the thermodynamic integration
for computing the rate–distortion bound and the Gibbs sampler
for simulating the impact of optimal embedding schemes and
constructing practical algorithms. The proposed framework re-
duces the design of secure steganography in empirical covers to
the problem of finding local potentials for the distortion function
that correlate with statistical detectability in practice. By working
out the proposed methodology in detail for a specific choice of
the distortion function, we experimentally validate the approach
and discuss various options available to the steganographer in
practice.

Index Terms—Steganography, embedding impact, Markov ran-
dom field, Gibbs sampling

I. I NTRODUCTION

T HERE exist two general and widely used principles for
designing steganographic methods for empirical cover

objects, such as digital images. The first one is model-
preserving steganography in which the designer adopts a
model of the cover source and then designs the embedding to
either completely or approximately preserve the model [15],
[25], [28], [30], [33]. This way, one can provide mathematical
guarantee that the embedding is perfectly secure (orǫ-secure)
within the chosen model. A problem is that empirical cover
objects are notoriously difficult to model accurately, and,as
history teaches us, the model mismatch can be exploited by
an attacker to construct a sensitive detection scheme. Even
worse, preserving an oversimplified model could introduce a
security weakness [2], [19], [37]. An obvious remedy is to
use more complicated models that would better approximate
the cover source. The major obstacle here is that most current
model-preserving steganographic constructions are specific to
a certain model and do not adapt easily to more complex
models.

The second, quite pragmatic, approach avoids modeling the
cover source altogether and, instead, minimizes a heuristically-
defined embedding distortion (impact). Matrix embedding [6],
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wet paper codes [12], and minimal embedding distortion
steganography [8], [10], [11], [18], [27] are examples of
this philosophy. Despite its heuristic nature, the principle of
minimum embedding distortion has produced the most secure
steganographic methods for digital media known today, at
least in terms of low statistical detectability as measured
using blind steganalyzers [13], [18], [20], [27]. Most of
these schemes, however, use a distortion function that is
additive – the total distortion is a sum of individual pixel
distortionscomputed from the cover image. Fundamentally,
such a distortion function cannot capture interactions among
embedding changes, which leads to suboptimality in practice.
This deficiency affects especially adaptive schemes for which
the embedding changes have a tendency to form clusters
because the pixel distortion is derived from local content or
some content-dependent side-information. For example, the
embedding changes might follow edges or be concentrated
in textured regions.

One discovers a relationship between both embedding prin-
ciples when the distortion function is defined as a weighted
norm of the difference between feature vectors of cover and
stego objects in some properly chosen feature space [19], [23],
an example of which are spaces utilized by blind steganalyzers.
The projection onto the feature space is essentially equivalent
to modeling the objects in a lower-dimensional Euclidean
space. Consequently, minimizing the distortion between cover
and stego objects in the feature space now becomes closely
tied to model preservation. Yet again, in this case the distortion
cannot be written as a sum of individual pixel distortions
also because the features contain higher-order statistics, such
as sample transition probability matrices of pixels or DCT
coefficients modeled as Markov chains [4], [22], [24], [31].

The importance of modeling interactions among embedding
changes in steganography has been indirectly recognized by
the designers of MPSteg [3] (Matching Pursuit Steganography)
and YASS [29], [32]. In MPSteg, the authors use an overcom-
plete basis and embed messages by replacing small blocks
with other blocks with the hope of preserving dependencies
among neighboring pixels. The YASS algorithm taught us that
a high embedding distortion may not directly manifest as a
high statistical detectability, a curious property that can most
likely be attributed to the fact that the embedding modifications
are content driven and mutually correlated. Both approaches
are heuristic in nature and leave many important issues unan-
swered, including establishing performance bounds, evaluating
the methods’ performance w.r.t. to these bounds, and creating
a methodology for achieving near-optimal performance.

The above discussion underlines the need for a more sys-
tematic approach to steganography that can consider mutual
interaction of embedding modifications, which is the topic of
this paper. The main contribution is a general framework for
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embedding using arbitrary distortion functions and a complete
practical methodology for minimizing embedding distortion in
steganography. The approach is flexible as well as modular
and allows the steganographer to work with non-additive
distortion functions. We provide algorithms for computing
the proper theoretical bounds expressing the maximal payload
embeddable with a bounded distortion, for simulating the
impact of a stegosystem operating on the bound, and for
designing practical steganographic algorithms that operate
near the bound. The algorithms leverage standard tools used
in statistical physics, such as Markov chain Monte Carlo
samplers or the thermodynamic integration.

The technical part of this paper starts in the next section,
where we recall the basic result that embedding changes
made by a steganographic method that minimizes embedding
distortion must follow a particular form of Gibbs distribution.
The main purpose of this section is to establish terminol-
ogy and make connections between the concepts used in
steganography and those in statistical physics. In SectionIII,
we introduce the so-called separation principle, which includes
several distinct tasks that must be addressed when developing
a practical steganographic method. In particular, to design
and evaluate practical schemes one needs to establish the
relationship between the maximal payload embeddable using
bounded distortion (the rate–distortion bound) and be ableto
simulate the impact of a scheme operating on the bound.
In the special case when the embedding distortion can be
expressed as a sum of distortions at individual pixels computed
from the cover image (the so-called non-interacting embedding
changes), the design of near-optimal embedding algorithms
has been successfully resolved in the past. For completeness,
and because the proposed framework builds upon these results,
we briefly summarize such known achievements in Section IV.
Continuing with the case of a general distortion function, in
Section V we describe two useful tools for steganographers
– the Gibbs sampler and the thermodynamic integration. The
Gibbs sampler can be used to simulate the impact of optimal
embedding and to construct practical steganographic schemes
(in Sections VI and VII). The thermodynamic integration is
a method for estimating the entropy and partition function
in statistical physics and we use it for computing the rate–
distortion bound in steganography. The design of practical
embedding schemes begins in Section VI, where we study
distortion functions that can be written as a sum of local
potentials defined on cliques. In Section VII, we first discuss
various options the new framework offers to the steganography
designer and then make a connection between local potentials
and image models used in blind steganalysis. The proposed
framework is experimentally validated in Section VIII, where
we also discuss various implementation issues. Finally, the
paper is concluded in Section IX.

As this paper is directed towards researchers working in the
field of information security and forensics, the authors decided
to include in this paper some standard concepts and algorithms
commonly used in statistical physics and explain their roleand
proposed usage in steganography. Even though this inclusion
may seem redundant to some, we believe that this decision
makes this paper self-contained as well as readable to a

much wider spectrum of researchers who are anticipated to
incorporate the proposed methods in their corresponding fields.

II. G IBBS DISTRIBUTION MINIMIZES EMBEDDING

DISTORTION

We first recall a well-known and quite general fact that, for a
given expected embedding distortion, the maximal payload is
embedded when the embedding changes follow a Gibbs distri-
bution. This establishes a connection between steganography
and statistical physics, which, later in this paper, will enable
us to compute rate–distortion bounds, simulate the impact
of optimal embedding, and construct practical embedding
algorithms.

First, we introduce basic concepts, notation, and terminol-
ogy used throughout this paper. The calligraphic font will be
used solely for sets, random variables will be typeset in capital
letters, while their corresponding realizations will be inlower-
case. Vectors will be always typeset in boldface lower case,
while we reserve the blackboard style for matrices (e.g.,Ai,j

is the ijth element of matrixA). The symbolR denotes the
set of real numbers.

Although the idea presented in this paper is certainly ap-
plicable to steganography in other objects than digital images,
we describe the entire approach using the terms “image” and
“pixel” for concreteness to simplify the language and to allow
a smooth transition from theory to experimental validation,
which is carried out for digital images.

An imagex = (x1, . . . , xn) ∈ X , In is a regular lattice of
elements (pixels)xi ∈ I, i ∈ S, S = {1, . . . , n}. The dynamic
range,I, depends on the character of the image data. For
example, for an 8-bit grayscale image,I = {0, 1, . . . , 255}.
In general,xi can stand not only for light intensity values in a
raster image but also for transform coefficients, palette indices,
audio samples, etc. The proposed framework remains valid
even whenxi is organized into an arbitrary graph structure.

For notational simplicity and convenience, we adopt ad-
ditional conventions. GivenJ ⊂ S, xJ , {xi|i ∈
J } and x∼J , {xi|i ∈ S − J}. The image
(x1, . . . , xi−1, yi, xi+1, . . . , xn) will be abbreviated asyix∼i.
We will also use the Iverson bracket,[P ], defined as[P ] = 1
when the statementP is true and zero otherwise. Finally, we
reservelog x for the logarithm at the base of2 and uselnx
for the natural base,h(x) = −x log x− (1− x) log(1− x) is
the binary entropy function.

Every steganographic embedding scheme considered in this
paper will be associated with a mapping that assigns to each
cover x ∈ X the pair {Y, π}. Here,Y ⊂ X is the set of
all stego imagesy into which x is allowed to be modified
by embedding andπ is a probability mass function onY
that characterizes the actions of the sender. The embedding
algorithm is such that, for a given coverx, the stego image
y ∈ Y is sent with probabilityπ(y). The stego image
is thus a random variableY over Y with the distribution
P (Y = y) = π(y). Technically, the setY and all concepts
derived from it in this paper depend onx. However, because
x is simply a parameter that wefix in the very beginning, we
simplify the notation and do not make the dependence onx



3

explicit. Finally, we note that the maximal expected payload
that the sender can communicate to the receiver in this manner
is the entropy

H(π) , H(Y) = −
∑

y∈Y

π(y) log π(y). (1)

To put it another way, we define a steganographic method
from the point of view of how it modifies the cover and
only then we deal with the issues of how to use it for
communication and how to optimize its performance. The
optimization will involve finding the distributionπ for given
x, Y, and payload (distortion).

We will consider the following special form of the setY:
Y = I1×I2× · · ·×In, whereIi ⊂ I. For example, in Least
Significant Bit (LSB) embedding,Ii = {xi, xi}, where the
bar denotes the operation of flipping the LSB. In LSB match-
ing [16] (also called±1 embedding) in an 8-bit grayscale
imagex, Ii = {xi − 1, xi, xi + 1} wheneverxi /∈ {0, 255}
andIi is appropriately modified for the boundary cases. When
|Ii| = 2 or 3 for all i, we will speak of binary and ternary
embedding, respectively. In general, however, we allow the
size of every setIi to be different. For example, pixels not
allowed to be modified during embedding (the so-called wet
pixels [12]) haveIi = {xi}.

By sending a slightly modified versiony of the coverx, the
sender introduces a distortion, which will be measured using
a distortion function

D : Y → R, (2)

that is bounded, i.e.,|D(y)| < K, for all y ∈ Y for some
sufficiently largeK. Note thatD also depends onx. Allowing
the distortion to be negative does not cause any problems
because an embedding algorithm minimizesD if and only if
it minimizes the non-negative distortionD +K. The need for
negative distortion will become apparent later in Section VI-A.

The expected embedding distortion introduced by the sender
is

Eπ [D] =
∑

y∈Y

π(y)D(y). (3)

An important premise we now make is that the sender is
able to define the distortion function so that it is related
to statistical detectability.1 This assumption is motivated by
a rather large body of experimental evidence, such as [13],
[20], that indicates that even simple distortion measures that
merely count the number of embedding changes correlate well
with statistical detectability in the form of decision error of
steganalyzers trained on cover and stego images. In general,
steganographic methods that introduce smaller distortiondis-
turb the cover source less than methods that embed with larger
distortion.

Distortion-limited sender. To maximize the security, the
so-called distortion-limited sender attempts to find a distribu-
tion π on Y that has the highest entropy and whose expected

1The ability of a warden to distinguish between cover and stego images
using statistical hypothesis testing.

embedding distortion does not exceed a givenDǫ:

maximize
π

H(π) = −
∑

y∈Y

π(y) log π(y) (4)

subject to Eπ [D] =
∑

y∈Y

π(y)D(y) = Dǫ. (5)

By fixing the distortion, the sender fixes the security and
aims to communicate as large payload as possible at this
level of security. The maximization in (4) is carried over
all distributionsπ on Y. We will comment on whether the
distortion constraint should be in the form of equality or
inequality shortly.

Payload-limited sender.Alternatively, in practice it may be
more meaningful to consider the payload-limited sender who
faces a complementary task of embedding agiven payload
of m bits with minimal possible distortion. The optimization
problem is to determine a distributionπ that communicates a
required payload while minimizing the distortion:

minimize
π

Eπ[D] =
∑

y∈Y

π(y)D(y) (6)

subject to H(π) = m. (7)

The optimal distributionπ for both problems has the Gibbs
form

πλ(y) =
1

Z(λ)
exp(−λD(y)), (8)

whereZ(λ) is the normalizing factor

Z(λ) =
∑

y∈Y

exp(−λD(y)). (9)

The optimality ofπλ follows immediately from the fact that
for any distributionµ with Eµ[D] =

∑

y∈Y µ(y)D(y) = Dǫ,
the difference between their entropies,H(πλ) − H(µ) =
DKL(µ||πλ) ≥ 0 [38]. The scalar parameterλ > 0 needs
to be determined from the distortion constraint (5) or from
the payload constraint (7), depending on the type of the
sender. Providedm or Dǫ are in the feasibility region of
their corresponding constraints, the value ofλ is unique. This
follows from the fact that both the expected distortion and the
entropy are monotone decreasing inλ. To see this, realize that
by direct evaluation

∂

∂λ
Eπλ

[D] = −V arπλ
[D] ≤ 0, (10)

whereV arπλ
[D] = Eπλ

[D2] − (Eπλ
[D])

2. Substituting (8)
into (1), the entropy of the Gibbs distribution can be written
as

H(πλ) = log Z(λ) +
1

ln 2
λEπλ

[D]. (11)

Upon differentiating and using (10), we obtain

∂

∂λ
H(πλ) =

1

ln 2

(

Z ′(λ)

Z(λ)
+ Eπλ

[D]− λV arπλ
[D]

)

(12)

= −
λ

ln 2
V arπλ

[D] ≤ 0. (13)

The monotonicity also means that the equality distortion
constraint in the optimization problem (5) can be replaced
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with inequality, which is perhaps more appropriate given the
motivating discussion above.

By varying λ ∈ [0,∞), we obtain a relationship between
the maximal expected payload (1) and the expected embedding
distortion (3). For brevity, we will call this relationshipthe
rate–distortion bound. What distinguishes this concept from a
similar notion defined in information theory is that we consider
the bound for agiven coverx rather than forX, which is a
random variable. At this point, we feel that it is appropriate
to note that while it is certainly possible to considerx to be
generated by a cover source with a known distribution and
approach the design of steganography from a different point
of view, namely one in whichπλ is determined by minimizing
the KL divergence between the distributions of cover and stego
images while satisfying a payload constraint, we do not do so
in this paper.

Finally, we note that the assumption|D(y)| < K implies
that all stego objects appear with nonzero probability,πλ(y) ≥

1
Z(λ) exp(−λK), a fact that is crucial for the theory developed
in the rest of this paper.

Remark 1: In statistical physics, the term distortion is
known as energy. The optimality of Gibbs distribution is
formulated as the Gibbs variational principle: “Among all
distributions with a given energy, the Gibbs distribution (8)
has the highest entropy.” The parameterλ is called the inverse
temperature,λ = 1/kT , whereT is the temperature andk the
Boltzmann constant. The normalizing factorZ(λ) is called the
partition function.

III. T HE SEPARATION PRINCIPLE

The design of steganographic methods that attempt to
minimize embedding distortion should be driven by their
performance. The obvious choice here is to contrast the per-
formance with the rate–distortion bound. This is a meaningful
comparison for the distortion-limited sender who can assess
the performance of a practical embedding scheme by its loss of
payload w.r.t. the maximum payload embeddable using a fixed
distortion. This so-called “coding loss” informs the sender of
how much payload is lost for a fixed statistical detectability.
On the other hand, it is much harder for the payload-limited
sender to assess how the increased distortion of a suboptimal
practical scheme impacts statistical detectability in practice.
We could resolve this rather important practical issue if we
were able to simulate the impact of a scheme that operateson
the bound.2 Because the problems of establishing the bounds,
simulating optimal embedding, and creating a practical em-
bedding algorithm are really three separate problems, we call
this reasoning theseparation principle. It involves addressing
the following three tasks:

1) Establishing the rate–distortion bounds.This means
solving the optimization problems (4) or (6) and express-
ing the largest payload embeddable using a bounded
distortion (or minimal distortion needed to embed a
given payload). These bounds inform the steganographer
about the best performance that can be theoretically

2A scheme whose embedding distortion and payload lay on the rate–
distortion bound derived for a given cover.

achieved. Depending on the form of the distortion
function D, establishing the bounds is usually rather
challenging and one may have to resort to numerical
methods (Section V-B). For an additive distortion (to be
precisely defined shortly), an analytic form of the bounds
may be obtained (Section IV).

2) Simulating an optimal embedding method.Often, it
is very hard to construct a practical embedding method
that performs close to the bound. However, we may be
able to simulate the impact of such an optimal method
and thus subject it to tests using steganalyzers even when
we do not know how to construct a practical embedding
algorithm or even compute the bound (see Section V).
This is important for developers as one can effectively
“prune” the design process and focus on implementing
the most promising candidates. The simulator will also
inform the payload-limited sender about the potential
improvement in statistical undetectability should the the-
oretical performance gap be closed. A simple example is
provided by the case of the Hamming distortion function
D(y) =

∑

i[yi 6= xi]. Here, the maximal relative
payloadα = m/n (in bits per pixel or bpp) is bounded
by α ≤ h(β), whereβ = 1

n
Dǫ is the relative embedding

distortion known as the change rate. In this case, one can
simulate the embedding impact of the optimal scheme
by independently changing each pixel with probability
h−1(α).

3) Constructing a practical near-optimal embedding
method. This point is of most interest to practitioners.
The bounds and the simulator are necessary to evaluate
the performance of any practical scheme. The designer
tries to maximize the embedding throughput (the number
of bits embedded per unit time) while embedding as
close to the distortion bound as possible.

It should be stressed at this point that even though the optimal
distribution of embedding modifications has a known analytic
expression (8), it may be infeasible to compute the individual
probabilitiesπλ(y) due to the complexity of evaluating the
partition functionZ(λ), which is a sum over ally, whose
count can be a very large number even for small images.
(For example, there are2n binary flipping patterns in LSB
embedding.) This also implies that at present we do not know
how to compute the expected distortion (3) or the entropy (1)
(these tasks are postponed to Section V). Fortunately, in many
cases of practical interest we do not need to evaluateπλ(y)
and will do just fine with being able to merelysample fromπλ.
The ability to sample fromπλ is sufficient to simulate optimal
embedding and realize practical embedding algorithms, and,
in our case, even compute the rate–distortion bound.

In some special cases, however, such as when the embed-
ding changes do not interact, the distortionD is additive
and one can easily computeλ and the probabilities, evaluate
the expected distortion and payload, and even construct near-
optimal embedding schemes. As this special case will be used
later in Section VII to design steganography with more general
distortion functionsD, we review it briefly in the next section.
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IV. N ON-INTERACTING EMBEDDING CHANGES

When the distortion functionD is additive over the pixels,

D(y) =

n
∑

i=1

ρi(yi), (14)

with boundedρi : Ii → R, we say that the embedding changes
do not interact. In this case, the probabilityπλ(y) can be
factorized into a product of marginal probabilities of changing
the individual pixels (this follows directly from (8)):

πλ(y) =
n

∏

i=1

πλ(yi) =
n

∏

i=1

exp(−λρi(yi))
∑

ti∈Ii
exp(−λρi(ti))

. (15)

The expected distortion and the maximal payload are:

Eπλ
[D] =

n
∑

i=1

∑

ti∈Ii

πλ(ti)ρi(ti), (16)

H(πλ) = −
n

∑

i=1

∑

ti∈Ii

πλ(ti) log πλ(ti). (17)

The impact of optimal embedding can be simulated by
changingxi to yi with probabilitiesπλ(yi) independently of
the changes at other pixels. Since these probabilities can now
be easily evaluated for a fixedλ, finding λ that satisfies the
distortion (Eπλ

[D] = Dǫ) or the payload (H(πλ) = m)
constraint amounts to solving an algebraic equation forλ
(see [10] or [9]). Because both the expected distortion and
the entropy are monotone w.r.t.λ, the solution is unique. The
only practical near-optimal embedding algorithm for this case
known to the authors is based on syndrome-trellis codes [7].

It will be instructional to work out as an example the
details of the special case of binary embedding for which
Ii = {x

(0)
i , x

(1)
i } with x

(0)
i = xi. Thus,ρi attains only two

values,ρ(t)
i = ρi(x

(t)
i ), t = 0, 1. We stress at this point that

we donot assume thatρ(0)
i = 0 or even thatρ(1)

i ≥ ρ
(0)
i . This

fact will be important when implementing practical embedding
schemes in Section VI-A. The above expressions simplify to

πλ

(

x
(1)
i

)

=
exp

(

−λρ
(1)
i

)

exp
(

−λρ
(1)
i

)

+ exp
(

−λρ
(0)
i

)

(18)

=
1

1 + exp
(

−λ
(

ρ
(0)
i − ρ

(1)
i

))

, pi(λ), (19)

Eπλ
[D] =

n
∑

i=1

ρ
(0)
i (1− pi(λ)) + ρ

(1)
i pi(λ), (20)

H(πλ) =
n

∑

i=1

h(pi(λ)). (21)

The smallest distortion any binary embedding algorithm can
impose isDmin =

∑n

i=1 min{ρ
(0)
i , ρ

(1)
i }, which would be in-

curred when selectingyi = x
(ti)
i , whereti = arg mint{ρ

(t)
i }.

Thus,

D(y) =

n
∑

i=1

ρ
(0)
i

[

yi = x
(0)
i

]

+ ρ
(1)
i

[

yi = x
(1)
i

]

(22)

= Dmin +

n
∑

i=1

̺i

[

yi 6= x
(ti)
i

]

, (23)

where ̺i = |ρ
(1)
i − ρ

(0)
i | is now a vector of non-negative

distortions, which allows us to apply the practical embedding
algorithm described in [8]. It accepts on its input a bit stream
c = (c1(x), . . . , cn(x)) (representing the coverx), the vector
of non-negative distortions(̺1, . . . , ̺n), and a binary message.
It outputs a modified (stego) bit streamy ∈ {0, 1}n that
conveys the message as a syndrome of a suitably chosen
syndrome-trellis code so that the total embedding distortion
∑n

i=1 ̺i[yi 6= ci] is near minimal. It follows from (23)
that binary embedding as defined in this section can be
implemented in practice by applying this algorithm to the bit
streamci(x̃), x̃ = (x

(t1)
1 , . . . , x

(tn)
n ).

Finally, we note that the complete derivation of the rate-
distortion bound for binary embedding appears, e.g., in Chap-
ter 7 of [9].

V. SIMULATED EMBEDDING AND RATE –DISTORTION

BOUND

In Section II, we showed that minimal-embedding-distortion
steganography should select the stego imagey with probability
πλ(y) ∝ exp(−λD(y)) expressed in the form of a Gibbs dis-
tribution. We now explain a general iterative procedure using
which one can sample from any Gibbs distribution and thus
simulate optimal embedding. The method is recognized as one
of the Markov Chain Monte Carlo (MCMC) algorithms known
as the Gibbs sampler.3 This sampling algorithm will allow us
to construct practical embedding schemes in Sections VI and
VII. We also explain how to compute the rate–distortion bound
for a fixed image using the thermodynamic integration. The
Gibbs sampler and the thermodynamic integration appear, for
example, in [38] and [21], respectively.

A. The Gibbs sampler

We start by defining the local characteristics of a Gibbs field
as the conditional probabilities of theith pixel attaining the
valuey′i conditioned on the rest of the image:

πλ(Yi = y′i|Y∼i = y∼i) =
πλ(y′iy∼i)

∑

ti∈Ii
πλ(tiy∼i)

. (24)

For all possible stego imagesy,y′ ∈ Y, the local character-
istics (24) define the following matricesP(i), for each pixel
i ∈ {1, . . . , n}:

Py,y′(i) =

{

πλ(Yi = y′i|Y∼i = y∼i) wheny′∼i = y∼i

0 otherwise.
(25)

Every matrix P(i) has |Y| rows and the same number of
columns (which means it is very large) and its elements are
mostly zero except wheny′ was obtained fromy by modifying
yi to y′i and all other pixels stayed the same. BecauseP(i) is
stochastic (the sum of its rows is one),

∑

y′∈Y

Py,y′(i) = 1, for all rowsy, (26)

3More detailed discussion regarding our choice of the MCMC sampler
appear later in this section.
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Algorithm 1 One sweep of a Gibbs sampler.
1: Set pixel counteri = 1
2: while i ≤ n do
3: Compute the local characteristics:

Py′

σ(i)
y∼σ(i),y(σ(i)), y′σ(i) ∈ Iσ(i) (34)

4: Select oney′σ(i) ∈ Iσ(i) pseudorandomly according to
the probabilities (34) and changeyσ(i) ← y′

σ(i)

5: i← i + 1
6: end while
7: return y

P(i) is a transition probability matrix of some Markov chain
on Y. All such matrices satisfy the so-called detailed balance
equation

πλ(y)Py,y′ (i) = πλ(y′)Py′,y(i), for all y,y′ ∈ Y, i. (27)

To see this, realize that unlessy∼i = y′∼i, we are looking
at the trivial equality0 = 0. For y∼i = y′∼i, we have the
following chain of equalities:

πλ(y)Py,y′ (i)
(a)
= πλ(y)

πλ(y′iy∼i)
∑

ti∈Ii
πλ(tiy∼i)

(28)

(b)
=

πλ(y)πλ(y′)
∑

ti∈Ii
πλ(tiy∼i)

(29)

= πλ(y′)
πλ(y)

∑

ti∈Ii
πλ(tiy′∼i)

(30)

(c)
= πλ(y′)Py′,y(i). (31)

Equality(a) follows from the definition ofP(i) (25), (b) from
the fact thaty∼i = y′∼i, and(c) from πλ(y) = πλ(yiy

′
∼i) and

again (25).
Next, we define the boldface symbolπλ ∈ [0,∞)|Y| as the

vector of |Y| non-negative elementsπλ = πλ(y), y ∈ Y.
Using (27) and then (26), we can now easily show that the
vectorπλ is the left eigenvector ofP(i) corresponding to the
unit eigenvalue:

(πλP(i))y′ =
∑

y∈Y

πλ(y)Py,y′(i) (32)

=
∑

y∈Y

πλ(y′)Py′,y(i) = πλ(y′). (33)

In (32), (πλP(i))y′ is they′th element of the product of the
vectorπλ and the matrixP(i).

We are now ready to describe the Gibbs sampler [14], which
is a key element in our framework. Letσ be a permutation of
the index setS called the visiting schedule (σ(i), i = 1, . . . , n
is theith element of the permutationσ). One sample fromπλ

is then obtained by repeating a series of “sweeps” defined
below. As we explain the sweeps and the Gibbs sampler, the
reader is advised to inspect Algorithm 1 to better understand
the process.

The sampler is initialized by settingy to some initial
value. For faster convergence, a good choice is to selectyi

from Ii according to the local characteristicsπλ(yix∼i). A
sweep is a procedure applied to an image during which all

pixels are updated sequentially in the order defined by the
visiting scheduleσ. The pixels are updated based on their
local characteristics (24) computed from the current values
of the stego imagey. The entire sweep can be described
by a transition probability matrixP(σ) obtained by matrix-
multiplications of the individual transition probabilitymatrices
P(σ(i)):

Py,y′(σ) , (P(σ(1)) · P(σ(2)) · · ·P(σ(n)))y,y′ . (35)

After each sweep, the next sweep continues with the current
imagey as its starting position. It should be clear from the
algorithm that at the end of each sweep each pixeli has a non-
zero probability to get into any of its states fromIi defined by
the embedding operation (becauseD is bounded). This means
that all elements ofY will be visited with positive probability
and thus the transition probability matrixP(σ) corresponds
to a homogeneous irreducible Markov process with aunique
left eigenvector corresponding to a unit eigenvalue (unique
stationary distribution). Becauseπλ is a left eigenvector
corresponding to a unit eigenvalue for each matrixP(i), it
is also a left eigenvector forP(σ) and thus its stationary
distribution due to its uniqueness. A standard result from
the theory of Markov chains (see, e.g. Chapter 4 in [38])
states that, for an irreducible Markov chain, no matter what
distribution of embedding changesν ∈ [0,∞)|Y| we start
with, and independently of the visiting scheduleσ, with
increased number of sweeps,k, the distribution of Gibbs
samples converges in norm to the stationary distributionπλ:

||ν (P(σ))k − πλ|| → 0 with k →∞ (36)

exponentially fast. This means that in practice we can obtain
a sample fromπλ after running the Gibbs sampler for a suffi-
ciently long time.4 The visiting schedule can be randomized in
each sweep as long as each pixel has a non-zero probability of
being visited, which is a necessary condition for convergence.

B. Simulating optimal embedding

When applied to steganography, the Gibbs sampler allows
the sender to simulate the effect of embedding using a scheme
that operates on the bound. It is interesting that this can be
done for any distortion functionD and without knowing the
rate–distortion bound. This is because the local characteris-
tics (24)

πλ(Yi = y′i|Y∼i = y∼i) =
exp(−λD(y′iy∼i))

∑

ti∈Ii
exp(−λD(tiy∼i))

,

(37)

do not require computing the partition functionZ(λ). We do
need to know the parameterλ, though.

For the distortion-limited sender (5), the Gibbs sampler
could be used directly to determine the proper value ofλ in
the following manner. For a givenλ, it is known (Theorem
5.1.4 in [38]) that

1

k

k
∑

j=1

D
(

y(j)
)

→ Eπλ
[D] ask →∞ (38)

4The convergence time may vary significantly depending on theGibbs field
at hand.
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in L2 and in probability, wherey(j) is the image obtained after
the jth sweep of the Gibbs sampler. This requires running
the Gibbs sampler and averaging the individual distortions
for a sufficiently long time. When only a finite number of
sweeps is allowed, the first few imagesy should be discarded
to allow the Gibbs sampler to converge close enough toπλ.
The value ofλ that satisfiesEπλ

[D] = Dǫ can be determined,
for example, using a binary search overλ.

To find λ for the payload-limited sender (4), we need to
evaluate the entropyH(πλ), which can be obtained from
Eπλ

[D] using the method of thermodynamic integration [21].
From (10) and (13), we obtain

∂

∂λ
H(πλ) =

λ

ln 2

∂

∂λ
Eπλ

[D]. (39)

Therefore, the entropy can be estimated fromEπλ
[D] by

integrating by parts:

H(πλ) = H(πλ0) +

[

λ′

ln 2
Eπ

λ′
[D]

]λ

λ0

−
1

ln 2

λ̂

λ0

Eπ
λ′

[D]dλ′.

(40)
The value ofλ that satisfies the entropy (payload) constraint
can be again obtained using a binary search. Having obtained
the expected distortion and the entropy using the Gibbs
sampler and the thermodynamic integration, the rate–distortion
bound[H(πλ), Eπλ

[D]] can be plotted as a curve parametrized
by λ.

In practice, one has to be careful when using (38), since no
practical guidelines exist for determining a sufficient number
of sweeps and heuristic criteria are often used [5], [38].
Although the convergence toπλ is exponential in the number
of sweeps, in general a large number of sweeps may be needed
to converge close enough. Generally speaking, the strongerthe
dependencies between embedding changes the more sweeps
are needed by the Gibbs sampler. In theory, the convergence
of MCMC methods, such as the Gibbs sampler, may also slow
down in the vicinity of “phase transitions,” which we loosely
define here as sudden changes in the spatial distribution of
embedding changes when only slightly changing the payload
(or distortion bound).

In our experiments reported later in this paper, the Gibbs
sampler always behaved well and converged fast. We attribute
this to the fact that the dependencies among embedding
modifications as measured using our distortion functions are
rather weak and limited to short distances. The convergence,
however, could become an issue for other types of cover
sources with different distortion functions. While it is pos-
sible to compute the rate–distortion bounds and simulate
optimal embedding using other MCMC algorithms, such as
the Metropolis-Hastings sampler [38], that may converge faster
than the Gibbs sampler and can exhibit a more robust behavior
in practice, it is not clear how to adopt these algorithms for
practical embedding. This is because all known coding meth-
ods in steganography essentially sample from a distribution of
independent symbols. Thus, the Gibbs sampler comes out as
a natural choice (Section VI) because it works by updating
individual pixels, which is exactly the effect of embedding
using syndrome-trellis codes [7], [8].

+

+

+

+

+

+

+

+

+

+

+

+

+

Figure 1. The four-element cross-neighborhood and the tessellation of the
index setS into two disjoint sublatticesSe andSo.

Figure 2. All three possible cliques for the cross-neighborhood.

A notable alternative to the Gibbs sampler and the thermo-
dynamic integration for computing the rate–distortion bound is
the Wang–Landau algorithm [36] that estimates the so-called
density of stego images (density of states in statistical physics),
g(D), defined as the number of stego imagesy with distortion
(energy)D. The partition function (and thus, via (11), the
entropy) and the expected distortion can be computed from
g(D) by numerical integration:

Z(λ)
.
=

∑

D∈D

g(D) exp(−λD)∆, (41)

Eπλ
[D]

.
=

1

Z(λ)

∑

D∈D

Dg(D) exp(−λD)∆, (42)

whereD = {d1, . . . , dnD
}, d1 = −K, dnD

= K, di−di−1 =
∆ is a set of discrete values into which the dynamic range of
D, [−K, K] is quantized.

The authors note that in general it is not possible to de-
termine ahead of time which method will provide satisfactory
performance. In our experiments described in Section VIII,
the thermodynamic integration worked very well and provided
results identical to the much more complex Wang–Landau
algorithm.

Note that computing the rate–distortion bound is not nec-
essary for practical embedding. In Section VI, we introducea
special form of the distortion in terms of a sum over local
potentials. In this case, both types of optimal senders can
be simulated using algorithms that do not need to compute
λ in the fashion described above. This is explained in Sec-
tions VI-A and VI-B.

VI. L OCAL DISTORTION FUNCTION

Thanks to the Gibbs sampler, we can simulate the impact
of embedding that is optimal in the sense of (4) and (6)
without having to construct a specific steganographic scheme.
This is important for steganography design as we can test
the effect of various design choices and parameters and then
implement only the most promising constructs. However, it is
rather difficult to design near-optimal schemes for a general
D(y). Fortunately, it is possible to give the distortion function
a specific form that will allow us to construct practical em-
bedding algorithms. We will assume thatD is a sum of local
potentials defined on small groups of pixels called cliques.
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Figure 3. The eight-element neighborhood and the tessellation of the index
setS into four disjoint sublattices marked with four different symbols.

Figure 4. All possible cliques for the eight-element neighborhood.

This local form of the distortion will be still quite generalto
capture dependencies among embedding changes and it allows
us to construct a large spectrum of diverse embedding schemes
– a topic left for Section VII.

First, we define a neighborhood system as a collection of
subsets of the index set{η(i) ⊂ S|i = 1, . . . , n} satisfyingi /∈
η(i), ∀i and i ∈ η(j) if and only if j ∈ η(i). The elements of
η(i) are called neighbors of pixeli. A subsetc ⊂ S is a clique
if each pair of different elements fromc are neighbors. The set
of all cliques will be denotedC. We do not use the calligraphic
font for a clique even though it is a set (and thus deviate
here from our convention) to comply with a well established
notation used in previous art.

In this section and in Section VII, we will need to address
pixels by their two-dimensional coordinates. We will thus be
switching between using the index setS = {1, . . . , n} and its
two-dimensional equivalentS = {(i, j)|1 ≤ i ≤ n1, 1 ≤ j ≤
n2} hoping that it will cause no confusion for the reader.

Example 1:The four-element cross neighborhood of pixel
xi,j consisting of{xi−1,j , xi+1,j , xi,j−1, xi,j+1} with a proper
treatment at the boundary forms a neighborhood system (see
Figure 1). The cliques contain either a single pixel (one-
element) cliques{xi,j} or two horizontally or vertically neigh-
boring pixels, {xi,j , xi,j+1}, {xi,j , xi+1,j} (Figure 2). No
other cliques exist.

Example 2:The eight-element3 × 3 neighborhood also
forms a neighborhood system (Figure 3). The cliques are as
in Example 1 as well as all cliques containing pairs of diag-
onally neighboring pixels,{xi,j , xi+1,j+1}, {xi,j , xi−1,j+1},
three-pixel cliques forming a right-angle triangle (e.g.,
{xi,j , xi,j+1, xi+1,j}), and four-pixel cliques forming a2× 2
square ({xi,j , xi,j+1, xi+1,j , xi+1,j+1}) (follow Figure 4). No
other cliques exist for this neighborhood system.
Each neighborhood system allows tessellation of the index set
S into disjoint subsets (sublattices) whose union is the entire
setS, so that any two pixels in each lattice are not neighbors.
For example, for the cross-neighborhoodS = Se ∪So, where

Se = {(i, j)|i + j is even}, So = {(i, j)|i + j is odd}.
(43)

For the eight-element3 × 3 neighborhood, there are four
sublattices,S =

⋃

ab Sab, 1 ≤ a, b ≤ 2, whose structure
resembles the Bayer color filter array commonly used in digital
cameras [9],

Sab = {(a + 2k, b + 2l)|1 ≤ a + 2k ≤ n1, 1 ≤ b + 2l ≤ n2}.
(44)

For a cliquec ∈ C, we denote byVc(y) the local potential,
which is an arbitrary bounded function that depends only on
the values ofy in the cliquec, Vc(y) = Vc(yc). We remind
that Vc may also depend onx in an arbitrary fashion. We are
now ready to introduce a local form of the distortion function
as

D(y) =
∑

c∈C

Vc(yc). (45)

The important fact is thatD is a sum of functions with a small
support. Let us express the local characteristics (24) in terms
of this newly-defined form (45):

πλ(Yi = y′i|y∼i) =
exp(−λ

∑

c∈C Vc(y
′
iy∼i))

∑

ti∈Ii
exp(−λ

∑

c∈C Vc(tiy∼i))
(46)

(a)
=

exp(−λ
∑

c∈C(i) Vc(y
′
iy∼i))

∑

ti∈Ii
exp(−λ

∑

c∈C(i) Vc(tiy∼i))
,

(47)

where C(i) = {c ∈ C|i ∈ c}, i = 1, . . . , n. Equality (a)
holds becauseVc(tiy∼i) does not depend onti for cliques
c /∈ C(i) as they do not contain theith element. Thus, the terms
Vc for such cliques cancel from (47). This has a profound
impact on the local characteristics, making the realization
of Yi independentof changes made outside of the union of
cliques containing pixeli and thus outside of the neighborhood
η(i). For the cross-neighborhood system from Example 1,
changes made to pixels belonging to the sublatticeSe do not
interact and thus the Gibbs sampler can be parallelized by
first updatingall pixels from this sublattice in parallel and
then updating in parallelall pixels fromSo.5

The possibility to update all pixels in each sublattice all at
once provides a recipe for constructing practical embedding
schemes. AssumeS = S1 ∪ . . . ∪ Ss with mutually disjoint
sublattices. We first describe the actions of a payload-limited
sender (follow the pseudo-code in Algorithm 2).

A. Payload-limited sender

The sender divides the payload ofm bits intos equal parts
of m/s bits, computes the local distortions

ρi(y
′
iy∼i) =

∑

c∈C(i)

Vc(y
′
iy∼i) (48)

for pixels i ∈ S1, and embeds the first message part inS1.
Then, it updates the local distortions of all pixels fromS2 and
embeds the second part inS2, updates the local distortions
again, embeds the next part inS3, etc. Because the embedding
changes in each sublattice do not interact, the embedding can
be realized as discussed in Section IV. After all sublattices are

5The Gibbs random field described by the joint distributionπλ(y) with
distortion (45) becomes a Markov random field on the same neighborhood
system. This follows from the Hammersley-Clifford theorem[38].
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Algorithm 2 One sweep of a Gibbs sampler for embedding
m-bit message (payload-limited sender).
Require: S = S1 ∪ . . . ∪ Ss {mutually disjoint sublattices}

1: for k = 1 to s do
2: for every i ∈ Sk do
3: Use (48) to calculate cost of changingyi → y′i ∈ Ii

4: end for
5: Embedm/s bits while minimizing

∑

i∈Sk
ρi(y

′
iy∼i).

6: UpdateySk
with new values and keepy∼Sk

unchanged.
7: end for
8: return y

processed, we say that one embedding sweep was completed.
By repeating these embedding sweeps,6 the resulting modified
images will converge to a sample fromπλ.

The embedding in sublatticeSk will introduce embedding
changes with probabilities (15), where the value ofλk is deter-
mined by the individual distortions{ρi(y

′
iy∼i)|i ∈ Sk} (48)

to satisfy the payload constraint of embeddingm/s bits in
the kth sublattice (again, e.g., using a binary search forλk).
Because each sublattice extends over a different portion of
the cover image while we split the payload evenly across the
sublattices,λk may slightly vary withk because of variations
in the individual distortions. This represents a deviationfrom
the Gibbs sampler. Fortunately, the sublattices can often be
chosen so that the image does not differ too much on every
sublattice, which will guarantee that the sets of individual
distortions {ρi(y

′
iy∼i)|i ∈ Sk} are also similar across the

sublattices. Thus, with an increased number of sweeps,λk will
converge to an approximately common value and the whole
process represents a correct version of the Gibbs sampler.

In binary embedding (Ii = {x
(0)
i , x

(1)
i }), note that the two

distortions ρ
(0)
i (x

(0)
i y∼i) = D(x

(0)
i yη(i)), ρ

(1)
i (x

(1)
i y∼i) =

D(x
(1)
i yη(i)) at pixel i depend on the current pixel values

in its neighborhoodη(i). Therefore, bothρ(0)
i andρ

(1)
i can be

non-zero at the same time and we can even haveρ
(1)
i < ρ

(0)
i .

It is the neighborhood ofi that ultimately determines whether
or not it is beneficial to preserve the value of the pixel!

B. Distortion-limited sender

A similar approach can be used to implement the distortion-
limited sender with a distortion limitDǫ. Consider a simulation
of such embedding by a Gibbs sampler with the correctλ
(obtained from a binary search as described in Section V-B)
on the sublatticeSk ⊂ S. Assuming again that all sublattices
have the same distortion properties, the distortion obtained
from cliques containing pixels fromSk should be proportional
to the number of such cliques. Formally,

Eπλ(YS
k
|Y∼S

k
)[D] = Dǫ

|{c ∈ C|c ∩ Sk 6= ∅}|

|C|
. (49)

As described in Algorithm 3, the sender can realize this by
embedding as many bits to every sublattice as possible while

6After each embedding sweep, at each pixel the previous change is erased
and the pixel is reconsidered again, just like in the Gibbs sampler.

Algorithm 3 One sweep of a Gibbs sampler for a distortion-
limit sender,Eπλ

[D] = Dǫ.
Require: S = S1 ∪ . . . ∪ Ss {mutually disjoint sublattices}

1: for k = 1 to s do
2: for every i ∈ Sk do
3: Use (48) to calculate cost of changingyi → y′i ∈ Ii

4: end for
5: Embedmk bits while

∑

i ρi(y
′
iy∼i) = Dǫ×|{c ∈ C|c∩

Sk 6= ∅}|/|C|.
6: UpdateySk

with new values and keepy∼Sk
unchanged.

7: end for
8: return y and

∑

k mk {stego image and number of bits}

achieving the distortion (49). Note that we do not need to com-
pute the partition function for every image in order to realize
the embedding. Moreover, in practice when the embedding
is implemented using syndrome-trellis codes [8], the search
for the correct parameterλ, as described in Section V-B, is
not needed either as long as the distortion properties of every
sublattice are the same. This is because the codes need the
local distortion ρi(y

′
iy∼i) (48) at each lattice pixeli and not

the embedding probabilities. (This eliminates the need forλ.)
The issue of the minimal sufficient number of embedding

sweeps for both algorithms needs to be studied specifically for
each distortion measure (see the discussion in the experimental
Section VIII). By replacing a specific practical embedding
method with a simulator of optimal embedding, we can
simulate the impact of optimal algorithms (for both senders)
without having to determine the value of the parameterλ as
described in Section V-B. We still need to computeλk for
each sublatticeSk to obtain the probabilities of modifying
each pixel (15), but this can be done as described in Section IV
without having to use the Gibbs sampler or the thermodynamic
integration.

Finally, we comment on how to handle wet pixels within
this framework. Since we assume that the distortion is bounded
(|D(y)| < K for all y ∈ Y), wet pixels are handled by forcing
Ii = {xi}. Because this knowledge may not be available to
the decoder in practice, practical coding schemes should treat
them either by settingρi(yi) = ∞ or to some large constant
for yi 6= xi (for details, see [8]).

C. Practical limits of the Gibbs sampler

Thanks to the bounds established in Section II, we know that
the maximal payload that can be embedded in this manner is
the entropy ofπλ (11). Assuming the embedding proceeds on
the bound for the individual sublattices, the question is how
close the total payload embedded in the image is toH(πλ).
Following the Gibbs sampler, the configuration of the stego
image will converge to a sampley from πλ. Let us now go
through one more sweep. We denote byy[k] the stego image
before starting embedding in sublatticeSk, k = 1, . . . , s. In
each sublattice, the following payload is embedded:

H
(

YSk

∣

∣Y∼Sk
= y

[k]
∼Sk

)

. (50)
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We now use the following result from information theory. For
any random variablesX1, . . . , Xs,

s
∑

k=1

H(Xk|X∼k) ≤ H(X1, . . . , Xs), (51)

with equality only when all variables are independent.7 Thus,
we will have in general

H−(Y) ,

s
∑

k=1

H
(

YSk

∣

∣Y∼Sk
= y

[k]
∼Sk

)

< H(Y) = H(πλ).

(52)
The termH−(Y) is recognized as the erasure entropy [34],
[35] and it is equal to the conditional entropyH(Y(l+1)|Y(l))
(entropy rate) of the Markov process defined by our Gibbs
sampler (c.f., (35)), whereY(l) is the random variable ob-
tained afterl sweeps of the Gibbs sampler.

The erasure-entropy inequality (52) means that the embed-
ding scheme will be suboptimal, unable to embed the maximal
payloadH(πλ). The actual loss can be assessed by evaluating
the entropy ofH(πλ), e.g., using the algorithms described in
Section V. An example of such comparison is presented in
Section VIII-C.

The last remaining issue is the choice of the potentialsVc. In
the next section, we show one example, whereVc are chosen
to tie the principle of minimal embedding distortion to the
preservation of the cover-source model. We also describe a
specific embedding method and subject it to experiments using
blind steganalyzers.

VII. PRACTICAL EMBEDDING CONSTRUCTIONS

We are now in the position to describe a practical embedding
method that uses the theory developed so far. First and
foremost, the potentialsVc should measure the detectability of
embedding changes. We have substantial freedom in choosing
them and the design may utilize reasoning based on theoretical
cover source models as well as heuristics stemming from
experiments using blind steganalyzers. The proper design of
potentials is a complicated subject in itself and is beyond
the scope of this paper, whose main purpose is introducing
a general framework rather than optimizing the design. Here,
we describe a specific example of a more general approach that
builds upon the latest results in steganography and steganalysis
and one that gave us an opportunity to validate the proposed
framework by showing an improvement over the current state
of the art in Section VIII.

A. Additive approximation

As argued in the introduction, the steganography design
principles based on model preservation and on minimizing
distortion coincide when the distortion is defined as a norm of
the difference of feature vectors used to model cover images:

D(y) = ||f(x)− f(y)|| ,
d

∑

k=1

wk|fk(x)− fk(y)|. (53)

7For k = 2, this result follows immediately fromH(X1|X2) +
H(X2|X1) = H(X1, X2) − I(X1;X2). The result fors > 2 can be
obtained by induction overs.

Here, f(x) = (f1(x), . . . , fd(x)) ∈ R
d is a d-dimensional

feature vector of imagex andw = (w1, . . . , wd) are weights.
The properties ofD defined in this manner depend on the
properties of the functionsfk. In general, however,D is
not additive. In the past, steganographers were forced to use
someadditive approximationof D to realize the embedding in
practice. A general method for turning an arbitrary distortion
measure into an additive proceeds is:

D̂(y) =

n
∑

i=1

D(yix∼i). (54)

Embedding with the additive measurêD can be simulated
(and realized) as explained in Section IV. The approximation,
of course, ensues a capacity loss due to a mismatch in
the minimized distortion function. Thanks to the methods
introduced in Section V-B, this loss can now be contrasted
against the rate–distortion bound for the original measureD.
However, we cannot build a practical scheme unlessD can be
written as a sum oflocal potentials. Next, we explain how to
turn D into this form using the idea of a bounding distortion.

B. Bounding distortion

Most features used in steganalysis can be written as a sum
of locally-supported functions across the image

fk(x) =
∑

c∈C

f (k)
c (x), k = 1, . . . , d. (55)

For example, thekth histogram bin of imagex can be written
using the Iverson bracket as

hk(x) =
∑

i∈S

[xi = k], (56)

while theklth element of a horizontal co-occurrence matrix

Ck,l(x) =

n1
∑

i=1

n2−1
∑

j=1

[xi,j = k][xi,j+1 = l] (57)

is a sum over horizontally adjacent pixels (horizontal two-pixel
cliques). For such locally-supported features, we can obtain an
upper bound onD(y) = ||f(x)− f(y)||, y ∈ Y, that has the
required form:

||f(x)− f(y)|| =
d

∑

k=1

wk

∣

∣

∣

∣

∑

c∈C

f (k)
c (x) −

∑

c

f (k)
c (y)

∣

∣

∣

∣

(58)

≤
d

∑

k=1

wk

∑

c∈C

|f (k)
c (x) − f (k)

c (y)| (59)

=
∑

c∈C

d
∑

k=1

wk|f
(k)
c (x)− f (k)

c (y)| (60)

=
∑

c∈C

Vc(y), (61)

where

Vc(y) =

d
∑

k=1

wk|f
(k)
c (x)− f (k)

c (y)|. (62)

Following our convention explained in Section II, we describe
the methodology for a fixed cover imagex and thus do
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not make the dependence ofVc on x explicit. The sum
∑

c∈C Vc(y) will be called thebounding distortion.
We now provide a specific example of this approach. The

choice is motivated by our desire to work with a modern,
well-established feature set so that later, in Section VIII, we
can validate the usefulness of the proposed framework by con-
structing a high-capacity steganographic method undetectable
using current state-of-the-art steganalyzer. The motivation and
justification of the feature set appears in [23]. It is a slight
modification of the SPAM set [22], which is the basis of the
current most reliable blind steganalyzer in the spatial domain.
The features are constructed by considering the differences
between neighboring pixels (e.g., horizontally adjacent pixels)
as a higher-order Markov chain and taking the sample joint
probability matrix (co-occurrence matrix) as the feature.The
advantage of using the joint matrix instead of the transition
probability matrix is that the norm of the feature difference
can be readily upper-bounded by the desired local form (62).

To formally define the feature for ann1 × n2 image x,
let us consider the following co-occurrence matrix computed
from horizontal pixel differencesD→i,j(x) = xi,j+1−xi,j , i =
1, . . . , n1, j = 1, . . . , n2 − 1:

A→k,l(x) =
1

n1(n2 − 2)

n1
∑

i=1

n2−2
∑

j=1

[(D→i,j , D
→
i,j+1)(x) = (k, l)].

(63)
For compactness, in (63) we abbreviated the argument of
the Iverson bracket fromD→i,j(x) = k & D→i,j+1(x) = l to
(D→i,j , D

→
i,j+1)(x) = (k, l). Clearly,A→i,j(x) is the normalized

count of neighboring triples of pixels{xi,j , xi,j+1, xi,j+2}
with differencesxi,j+1 − xi,j = k and xi,j+2 − xi,j+1 = l
in the entire image. The superscript arrow “→” denotes the
fact that the differences are computed by subtracting the left
pixel from the right one. Similarly,

A←k,l(x) =
1

n1(n2 − 2)

n1
∑

i=1

n2
∑

j=3

[(D←i,j , D
←
i,j−1)(x) = (k, l)]

(64)
with D←i,j(x) = xi,j−1 − xi,j . By analogy, we can define
vertical, diagonal, and minor diagonal matricesA↓k,l, A↑k,l,

Aրk,l, Aւk,l, Aցk,l, Aտk,l. All eight matrices are sample joint
probabilities of observing the differencesk and l between
three consecutive pixels along a certain direction. Due to the
antisymmetryD→i,j(x) = −D←i,j+1(x) only A→k,l, Aրk,l, A↑k,l,

Aտk,l are needed sinceA→k,l = A←−l,−k, and similarly for other
matrices.

Because neighboring pixels in natural images are strongly
dependent, each matrix exhibits a sharp peak around(k, l) =
(0, 0) and then quickly falls off with increasingk andl. When
such matrices are used for steganalysis [22], they are truncated
to a small range, such as−T ≤ k, l ≤ T , T = 4, to prevent
the onset of the “curse of dimensionality.” On the other hand,
in steganography we can use large-dimensional models (T =
255) because it is easier to preserve a model than to learn
it.8 Another reason for using a high-dimensional feature space

8Similar reasoning for constructing the distortion function was used in the
HUGO algorithm [23].

Figure 5. The union of all 12 cliques consisting of three pixels arranged in
a straight line in the5 × 5 square neighborhood.

is to avoid “overtraining” the embedding algorithm to a low-
dimensional model as such algorithms may become detectable
by a slightly modified feature set, an effect already reported
in the DCT domain [19].

By embedding a message,A→k,l(x) is modified toA→k,l(y).
The differences between the features will thus serve as a
measure of embedding impact closely tied to the model (the
indicesi andj run from 1 to n1 andn2 − 2, respectively):

|A→k,l(y) −A→k,l(x)| = (65)

=
1

n1(n2 − 2)

∣

∣

∣

∣

∑

i,j

[(D→i,j , D
→
i,j+1)(y) = (k, l)] (66)

− [(D→i,j , D
→
i,j+1)(x) = (k, l)]

∣

∣

∣

∣

(67)

≤
1

n1(n2 − 2)

∑

i,j

∣

∣[(D→i,j , D
→
i,j+1)(y) = (k, l)] (68)

− [(D→i,j , D
→
i,j+1(x) = (k, l)]

∣

∣ (69)

=
∑

c∈C→

H(k,l)→
c (y), (70)

where we defined the following locally-supported functions

H(k,l)→
c (y) =

1

n1(n2 − 2)

·
∣

∣

∣
[(D→i,j , D

→
i,j+1)(y) = (k, l)]− [(D→i,j , D

→
i,j+1)(x) = (k, l)]

∣

∣

∣

(71)

on all horizontal cliquesC→ = {c|c = {(i, j), (i, j+1), (i, j+
2)}}. Notice that the absolute value had to be pulled into the
sum to give the potentials a small support. Again, we drop the
symbol for the cover image,x, from the argument ofH(k,l)

c

for the same reason why we do not make the dependence on
x explicit for all other variables, sets, and functions.

Since the other three matrices can be written in this manner
as well, we can write the distortion function in the following
final form

D(y) =
∑

c∈C

Vc(y), (72)

now with C = C→ ∪ Cր ∪ C↑ ∪ Cտ, the set of three-pixel
cliques along all four directions, and

Vc(y) =
∑

k,l

wk,lH
(k,l)→
c (y), for each cliquec ∈ C→, (73)

and similarly for the other three clique types. Notice that
we again introduced weightswk,l > 0 into the definition of
Vc so that we can adjust them according to how sensitive
steganalysis is to the individual differences. For example, if we
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observe that a certain difference pair(k, l) varies significantly
over cover images, by assigning it a smaller weight we allow
it to be modified more often, while those differences that
are stable across covers but sensitive to embedding should be
intuitively assigned a larger value so that the embedding does
not modify them too much.

To complete the picture, the neighborhood system here is
formed by 5 × 5 neighborhoods and thus the index set can
be decomposed into nine disjoint sublatticesS =

⋃

ab Sab,
1 ≤ a, b ≤ 3,

Sab = {(a + 3k, b + 3l)|1 ≤ a + 3k ≤ n1, 1 ≤ b + 3l ≤ n2}.
(74)

To better explain the effect of embedding changes on the
distortion, realize that each pixel belongs to three horizon-
tal, three vertical, three diagonal, and three minor-diagonal
cliques. When a single pixelxi,j is changed, it affects only
the 12 potentials whose clique containsxi,j . Let us say
that the original pixel valuesc0 = {xi,j , xi,j+1, xi,j+2} had
differencesk, l, and the pixel value changed fromxi,j to
yi,j = xi,j + 1. Then, the pixel differences will be modified
to k− 1, l. Considering just the contribution fromH(k,l)→

c0 to
the potentialVc0 (73), it will increase by the sum ofwk,l (the
pair k, l is leaving cover) andwk−1,l (a new pair appears in
the stego image).

C. Other options

The framework presented in this paper allows the sender
to formulate the local potentials directly instead of obtaining
them as the bounding distortion. For example, the cliques
and their potentials may be determined by the local image
content or by learning the cover source using the method
of fields of experts [26]. The merit of these possibilities
can be evaluated by steganalyzers trained on a large set
of images. The important question of optimizing the local
potential functions w.r.t. statistical detectability is an important
direction the authors intend to explore in the future.

VIII. E XPERIMENTS

In this section, we validate the proposed framework exper-
imentally and include a comparison between simple stegano-
graphic algorithms, such as binary and ternary±1 embedding
and steganography implemented via the bounding distortion
and the additive approximation (54). For the case of the bound-
ing distortion, the capacity loss w.r.t. the optimal payload
given byH(πλ) is evaluated by means of the thermodynamic
integration algorithm from Section V-B.

A. Tested embedding methods

For the methods based on additive approximation and the
bounding distortion, we used as a feature vector the joint
probability matrixA→k,l,m(x) defined similarly as in (63) with
the difference vector computed fromfour consecutive pixels
(D→i,j , D

→
i,j+1, D

→
i,j+2) = (k, l, m). As above, four such ma-

trices corresponding to four spatial directions were computed.
The matrices were used at their full sizeT = 255 leading to
model dimensionalityd = 4× 5113 ≈ 5 · 108.
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Figure 6. Comparison of±1 embedding with optimal binary and ternary
coding with binary embedding algorithms based on the Gibbs construction
with a bounding distortion and the additive approximation as described in
Section VIII-A. The error bars depict the minimum and maximum stegana-
lyzer errorPE (76) over five runs of SVM classifiers with different division
of images into training and testing set.

The weights were chosen to be small for those triples
(D→i,j , D

→
i,j+1, D

→
i,j+2) = (k, l, m) that occur infrequently

in images and large for frequented triples. Following the
recommendation described in [23], since the frequency of
occurrence of the triples falls off quickly with their norm,
we choose the weights as

wk,l,m =
(

σ +
√

k2 + l2 + m2
)−θ

, (75)

with θ = 1 andσ = 1. The purpose of the weights is to force
the embedding algorithm to modify those parts of the model
that are difficult to model accurately, forcing thus the stegan-
alyst to use a more accurate model. Here, the advantage goes
to the steganographer, because preserving a high-dimensional
feature vector is more feasible than accurately modeling it.

Because the neighborhoodη(i) in this case contains7 × 7
pixels, the image was divided into16 square sublattices on
which embedding was carried out independently. We tested
binary embedding,Ii = {xi, x

′
i}, where x′i was selected

randomly and uniformly from{xi − 1, xi + 1} and then
fixed for all experiments with coverx. The payload-limited
sender was simulated using the Gibbs sampler constrained to
only two sweeps. Increasing the number of sweeps did not
lead to further improvement. The curiously low number of
sweeps sufficient to properly implement the Gibbs sampler
is most likely due to the fact that the dependencies dictated
by the bounding distortion are rather weak. The simulation
of embedding for one image took less than5 seconds when
implemented in C++ on a single-processor PC.

To summarize, the following four steganographic methods
were tested:
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1) Binary embedding using the Gibbs construction with
setsIi = {xi, x

′
i} and bounding distortion (72) of (53)

with weights (75) for thed = 4 × 5113-dimensional
feature space given by matricesA→k,l,m, Aրk,l,m, A↑k,l,m,

Aտk,l,m.
2) Additive approximation (54) of (53) for the same sets
Ii, feature space, and norm as in 1).

3) Binary±1 embedding with the same setsIi equipped
with a matrix embedding scheme operating on the binary
bound.

4) Ternary±1 embedding withIi = {xi − 1, xi, xi + 1}
equipped with a ternary matrix embedding scheme op-
erating on the ternary bound (the bounds appear, e.g.,
in [9]).

We note that practical near-optimal codes for the two±1
embedding methods can be found in [10] and [39].

B. Testing methodology and final results

Following the separation principle, we study the security of
all schemes when operating on the rate–distortion bound. All
tests were carried out on the BOWS2 database [1] containing
approximately10800 grayscale images with a fixed size of
512 × 512 pixels coming from rescaled and cropped natural
images of various sizes. Steganalysis was implemented using
the second-order SPAM feature set withT = 3 [22]. The
image database was evenly divided into a training and a testing
set of cover and stego images, respectively. A soft-margin
support-vector machine was trained using the Gaussian kernel.
The kernel width and the penalty parameter were determined
using five-fold cross validation on the grid(C, γ) ∈
{

(10k, 2j)|k ∈ {−3, . . . , 4}, j ∈ {−L− 3, . . . ,−L + 3}
}

,
whereL = log2 d is the binary logarithm of the number of
features.

We report the results using a measure frequently used in
steganalysis – the minimum average classification error

PE = (PFA + PMD)/2, (76)

wherePFA andPMD are the false-alarm and missed-detection
probabilities. Smaller values ofPE correspond to better ste-
ganalysis and thus larger statistical detectability (lower secu-
rity).

Figure 6 displays the comparison of all four embedding
methods listed above. The methods based on the the bounding
distortion and the additive approximation (denoted as “Bound-
ing dist.” and “Additive approx.”) are completely undetectable
for payloads smaller than0.15 bpp, which suggests that the
embedding changes are made in pixels not covered by the
SPAM features. Since both schemes are binary withIi =
{xi, x

′
i} with x′i randomly chosen from{xi− 1, xi + 1}, they

become equivalent to simple binary±1 embedding (Method 3)
asα→ 1 and thus become detectable. Comparing the capacity,
both schemes allow communicating ten times larger payloads
with PE = 40% as compared to ternary±1 embedding. The
advantage of using the Gibbs sampler with the bounding dis-
tortion over the additive approximation becomes more evident
for larger payloads, where the embedding changes start to
interact. This confirms our expectation that in this range the

additive approximation is unable to cope with the interactions
among changes and thus its detectability increases. This result,
however, may change for different distortion measures and
cover sources. The fact that the Gibbs sampler with bounding
distortion did not bring a substantial performance improvement
over the additive approximation indicates that the interactions
among embedding changes are in general quite weak (at least
as far as they are captured by the bounding distortion). The
low strength of interactions also explains why only two sweeps
of the Gibbs sampler were sufficient in practice.

C. Analysis of upper bounds

As described in Section VI-C, Algorithm 2 for the payload-
limited sender is unable to embed the optimal payload of
H(πλ) for three reasons. The performance may be affected
by the small number of sweeps of the Gibbs sampler, the
parameterλ may vary slightly among the sublattices, and the
algorithm embeds the erasure entropyH−(πλ) ≤ H(πλ). The
combined effect of these factors is of great importance for
practitioners and is evaluated below for two images using the
Gibbs sampler and the thermodynamic integration as explained
in Section V-B.

Since the Gibbs construction depends on the cover image
x, we present the results for two grayscale images of size
512 × 512 pixels coming from two different sources. The
test image “0.png” is from the BOWS2 database and “Lenna”
was obtained from http://en.wikipedia.org/wiki/File:Lenna.png
and converted to grayscale using GNU Image Manipulation
Program (GIMP). In both cases, we used the same setsIi

and the same feature set as in the previous section with the
bounding distortion with weight parametersσ = 1 andθ = 1.

The image “0.png” contains more areas with edges and
textures than “Lenna” and thus for small distortions, it offers a
larger capacity than “Lenna” because the weights (75) around
edges and complex texture are small. This is apparent from
the slopes of the rate–distortion bounds in Figure 7.

The same figure compares the rate–distortion performance
of the payload-limited sender simulated by the Gibbs sampler
with only two sweeps as described in Algorithm 2. For a given
payload, the distortion was obtained as an average over100
random messages. The comparison shows that the payload loss
of Algorithm 2 to the optimalH(πλ) is quite small. Note
that the erasure entropy,H−(πλ), plotted in the figure has
been computed over the sublattices after two sweeps and thus
already contains the impact of all three factors discussed at
the beginning of this section.

IX. CONCLUSION

Currently, the most successful principle for designing prac-
tical steganographic systems that embed in empirical covers
is based on minimizing a suitably defined distortion measure.
Implementation difficulties and a lack of practical embedding
methods have so far limited the application of this princi-
ple to a rather special class of distortion measures that are
additive over pixels. With the development of near-optimal
low-complexity coding schemes, such as the syndrome-trellis
codes [8], this direction has essentially reached its limits. It is
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Figure 7. Comparison of the payload loss of Algorithm 2 for cover images “0.png” and “Lenna” shown on the right. The rate–distortion bounds were
obtained using the Gibbs sampler (38) and the thermodynamicintegration (40).

our firm belief that further substantial increase in secure pay-
load is possible only when the sender uses adaptive schemes
that place embedding changes based on the local content, that
dare to modify pixels in some regions by more than 1, and
that consider interactions among embedding changes while
preserving higher-order statistics among pixels. This paper is
an important step in this direction.

We offer the steganographer a complete methodology for
embedding while minimizing an arbitrarily defined distortion
measureD. The absence of any restrictions onD means that
the remaining task left to the sender is to find a distortion
measure that correlates with statistical detectability. An ap-
pealing possibility is to defineD as a weighted norm of
the difference between cover and stego feature vectors used
in steganalysis. This immediately connects the principle of
minimum-distortion steganography with the concept of model
preservation which has so far been limited to low-dimensional
models. Being able to preserve a large-dimensional model
gives the steganographer a great advantage over the steganalyst
because of the difficulties associated with learning a high-
dimensional cover source model using statistical learning
tools.

The proposed framework is called the Gibbs construction
and it connects steganography with statistical physics, which
contributed with many practical algorithms. In particular, the
Gibbs sampler combined with the thermodynamic integration
can be used to derive the rate–distortion bound, simulate
the impact of optimal embedding, and realize near-optimal
embedding algorithms. These three tasks can be addressed
separately (the so-called “separation principle”) givingthe
sender a great amount of design flexibility as well as control
over losses of practical schemes.

An important case elaborated in this paper corresponds
to D defined as a sum of local potentials over small pixel
neighborhoods. Here, the optimal distribution of embedding
modifications reduces to a Markov random field and the Gibbs
sampler can be turned into a practical embedding algorithm
able to consider dependencies among embedding changes.
WhenD cannot be written as a sum of local potentials, prac-
tical (suboptimal) methods can be realized by approximating
D either with an additive distortion measure or with local
potentials. The problem of finding the best approximation
for a given non-localD is of its own interest. We did not
cover the task of minimizing the statistical detectabilitywith



15

respect to the distortion function completely due to its inherent
complexity; it is left as part of our future effort.

We described the proposed methodology both for a payload-
limited sender and the distortion-limited sender. The former
embeds a fixed payload in every image with minimal dis-
tortion, while the latter embeds the maximal payload for a
given distortion in every image. The distortion-limited sender
better corresponds to our intuition that, for a fixed statistical
detectability, more textured or noisy images can carry a larger
secure payload than smoother or simpler images. The fact
that the size of the hidden message is driven by the cover
image essentially represents a more realistic case of the batch
steganography paradigm [17]. We postpone the study of the
distortion-limited sender to our future effort.

Note that the distortion measure is used only by the sender
and thus does not need to be shared. The only information
needed by the receiver to decode the message is its size which
can be communicated separately in the same cover image.
This opens up the intriguing possibility to develop embedding
schemes able to learn the proper distortion function while
observing the impact of embedding on the cover source.

Finally, the proposed methodology can be applied to other
data hiding problems where the statistical detectability con-
straint could be replaced by a perceptual distortion constraint.

The source code used for all experiments in this paper can
be found at http://dde.binghamton.edu/download/gibbs.
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