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Abstract. This paper describes our experience with the BOSS compe-
tition in chronological order. The intention is to reveal all details of our
effort focused on breaking HUGO – one of the most advanced stegano-
graphic systems ever published. We believe that researchers working in
steganalysis of digital media and related fields will find it interesting,
inspiring, and perhaps even entertaining to read about the details of our
journey, including the dead ends, false hopes, surprises, obstacles, and
lessons learned. This information is usually not found in technical papers
that only show the final polished approach. This work accompanies our
other paper in this volume [9].

1 Introduction

Competitions, such as BOSS (Break Our Steganographic System) [5] or BOWS
(Break Our Watermarking System) [2] help focus the attention of the research
community to a specific problem and thus advance the field by a large margin
within a rather short time span. This is because challenges and competitive
environment have always appealed to humans and also due to the fact that the
participants do not need to formulate the problem (a task that is sometimes
more important than the solution). Moreover, the competition guarantees that
the results of different teams are comparable. For BOSS, the performance is
evaluated using a single scalar value – the BOSSrank score.

According to our understanding, the original intention behind BOSS was
to investigate whether content-adaptive steganography improves steganographic
security for empirical covers in the form of raster, never-compressed images. The
fact that in adaptive steganography the selection channel (placement of embed-
ding changes) is publicly known, albeit in a probabilistic form, could in theory
be exploited by an attacker. Adaptive schemes also introduce more embedding
changes than non-adaptive schemes because some pixels are almost forbidden
from being modified. Thus, an adaptive scheme will embed with a larger change
rate than a non-adaptive one. On the other hand, the changes are constrained to
those regions of images that are hard to model and thus the change rate is not
an appropriate measure of statistical detectability as it puts the same weight
to all pixels. The organizers of BOSS proposed a different distortion measure
and argued that it better corresponds to detectability of embedding. To further
substantiate their claim, the measure was incorporated in the steganographic al-
gorithm HUGO (Highly Undetectable SteGO) [16] and the stego community was



challenged to attack it. Preliminary tests with existing steganalyzers indeed in-
dicated that HUGO is significantly more resistant to steganalysis than previous
algorithms.

The BOSS competition, including the rules and the materials made available
to the competitors, is described in a different paper in this volume [1]. Our team
entered the competition at the end of August. This paper reveals the details of
our investigation in chronological order. This technical narrative will hopefully
be inspiring and maybe even amusing to those who tried to break HUGO and,
in general, to all interested in steganalysis of digital media. Portraying our effort
including the final results as well as our false beliefs and dead ends will convey
those aspects of research work that is typically not found in technical papers.
Our understanding of the field has evolved much over the last few months. We
were forced to abandon established paradigms and reevaluate existing empirical
truths. As a result, we learned quite a bit and we certainly hope that the reader of
this paper will as well. This paper accompanies another paper [9] in this volume,
which contains additional technical details of our final approach together with
an extensive experimental section.

Everywhere in this article, lower-case boldface symbols are used for vectors
and capital-case boldface symbols for matrices or higher-dimensional arrays. The
symbols X = (xij) ∈ X = {0, . . . , 255}n1×n2 and Y = (yij) ∈ X will always rep-
resent pixel values of grayscale cover and stego images with n = n1n2 pixels.
When the two-dimensional character of the pixel arrays is not important, for
convenience, and hopefully without introducing any confusion, we index pixels
with a single symbol instead of a pair. We will use E[X ] and V ar[X ] for the
expected value and variance of random variable X . For any x ∈ R, the largest
integer smaller than or equal to x is floor(x). The detection accuracy of stegana-
lyzers will always be evaluated on a test set never seen by the steganalyzer using
a scalar score defined as

ρ , 1−min
PFA

1

2
(PFA + PMD(PFA)), (1)

where PFA and PMD are the probabilities of false alarm and missed detection.
When the score is computed from BOSSrank images, it will always be referred
to as the “BOSSrank score.”

2 Early ideas – is the public selection channel a problem?

The very first idea that naturally lends itself is whether it is possible to somehow
utilize the fact that the attacker can approximately determine the probabilities
with which each pixel was changed during embedding. According to the folklore,
revealing where embedding changes are made and where they are not may be a
weakness of adaptive embedding that may be exploited.

HUGO modifies pixel xi by ±1 with probability pX

i that can be determined
from the cover image X and the payload.1 Since the source code of HUGO

1 For details, see [1] in this volume.



is public, one can easily extract the algorithm that computes the probabili-
ties. However, when the image inspected by the attacker is a stego image, the
probabilities computed from the stego image will in general be slightly different
pY

i 6= pX

i . Fig. 1 shows pY

i versus pX

i , i = 1, . . . , n, for BOSSbase image no. 50.
Overall, pX

i ≈ pY

i with the largest relative errors for small pX

i . In particular,
|pY

i − pX

i | ≤ 0.05 for 99.4% of pixels, |pY

i − pX

i | ≤ 0.01 for 85.2% pixels, and
|pY

i − pX

i | ≤ 0.001 for 40.4% of pixels.

Fig. 1. Left: Probability of embedding change computed from the stego image, pY

i ,
vs. pX

i (for image no. 50 from BOSSbase). Right: LSB plane of the upper-right corner
of image no. 235 from BOSSrank. The embedding changes are visible as black dots
around the image boundary.

Because the payload is known and because pX

i ≈ pY

i , one could in theory
derive (at least in expectation) the values of cover-image statistics, such as his-
tograms or co-occurrence matrices. However, even if we succeeded in accurately
estimating the cover-image statistics, using these estimates for steganalysis may
still be problematic because HUGO does not introduce any easily detectable
changes and we may not have any way of telling whether we are inspecting a
cover or a stego image.

Having abandoned this direction, it is rather amusing that HUGO’s embed-
ding changes can be detected visually in seven images from BOSSrank – images
no. 62, 195, 235, 396, 438, 948, and 983.2 All seven images contain a region
of pixels saturated either at 255 or at 0 while the rest of the image lacks any
complex texture. Since HUGO was forced to embed 0.4 bpp in every image and
since the probability of embedding in saturated areas is not completely zero,
the embedding leaves suspicious salt-and-pepper noise in the least significant
bit plane. An example is shown in Fig. 1 right. Notice that most of the visible

2 These images were all classified correctly using our feature-based approach described
below in this paper, thus the visual attack did not help us increase our BOSSrank
score.



embedding changes are concentrated around the image boundary – most likely
a consequence of how the embedding probabilities are computed at boundary
pixels.

2.1 Detection by correlation?

If we were able to estimate from the stego image whether a given pixel was mod-
ified by 1 or −1 with probability better than random guessing, we could detect
HUGO (and ±1) embedding using a correlation just like a spread-spectrum wa-
termark. This idea is essentially identical to the Weighted Stego steganalysis [8].
Using yi = xi + si, si ∈ {−1, 0, 1}, we have 1/n

∑

i s2
i = β, the change rate. (For

HUGO with payload 0.4 bpp, β ≈ 0.1, depending on the content.) Furthermore,
let x̂i = xi + Ξi be an estimate of xi from Y (e.g., x̂ij = (yi,j−1 + yi,j+1)/2),
with Ξi being the estimation error. Assuming that the embedding change si

can be estimated from Y with probability better than random guessing, i.e.,
∑n

i=1 ŝisi ∝ bnβ with b > 0, we now analyze the following correlation for a
cover and a stego image:

ρ =
∑

i

(yi − xi)ŝi =
∑

i

(si −Ξi)ŝi =
∑

i

siŝi −
∑

i

Ξiŝi. (2)

When Y is a stego image and if Ξ and ŝ are uncorrelated, E[ρ] ∝ n while for
a cover image X, E[ρ] ≈ 0. Also, V ar[ρ] ∝ n in both cases. This opens the pos-
sibility to detect embedding by thresholding ρ. This idea, however, hinges upon
two assumptions – that we can estimate the direction of an embedding change
with probability better than random guessing and the assumption of Ξ and ŝ

being uncorrelated. While it is, indeed, possible to estimate ŝi with probability
better than random guessing, for example by testing if a change of yij by 1 or
−1 decreases the sum

∑

0<|a|+|b|≤2 |yij − yi+a,j+b|, Ξ and ŝ are, unfortunately,
correlated. The reason is the content-adaptive character of embedding. As a re-
sult, even though E[ρ(Y)] > E[ρ(X)], it is not possible to find a threshold for ρ
as it varies greatly across images. For some images, we observed the increase in
correlation up to 60% but the average increase (over BOSSbase) was only 1.74%,
which is by several orders of magnitude smaller than the variations of ρ across
images.

3 Pixel domain is not useful, right?

HUGO preserves complex statistics in a 107-dimensional feature space built from
joint statistics of pixel differences on 7 × 7 neighborhoods. Thus, it may seem
that features computed from differences between neighboring pixels will lead
to weak detection simply because the embedding algorithm was designed to
preserve statistics in this domain. One argument supporting this point of view
is the experimental result reported in the original publication [16]: While the
performance of the second-order SPAM feature set [15] (dimensionality 686) on
HUGO is quite weak (ρ = 58%), after augmenting SPAM with the DCT-based



Cartesian-calibrated Pevný set [13] (dimensionality 548), the score improved to
ρ = 65%.3 This line of reasoning initially motivated us to compute features in
an alternative domain, such as the wavelet domain. To this end, we decided to
modify the WAM feature vector originally introduced in [10].

The WAM features are computed by first transforming the image to the
wavelet domain using the Daubechis D8 wavelet, (H, V, D, L) = W (X). When
an undecimated transform is used, the first-level wavelet transform produces
four subbands, H, V, D, L, of the same size as the original image. The three
high-frequency subbands, H = (hij), V, D, are denoised using the Wiener filter
with variance σ2

W:

ĥi =
σ̂2

i

σ̂2
i + σ2

W

hi, (3)

where σ̂2
i is the local variance at wavelet coefficient i estimated from its neighbor-

hood. Finally, the WAM features, µh
m, µv

m, µm
m ∈ R

9, are formed as nine central
moments of their corresponding high-frequency subband noise residuals:

µh
m =

1

n

n
∑

i=1

∣

∣ĥi − hi − (Ĥ−H)
∣

∣

m
, m ∈ {1, . . . , 9}, (4)

which gives a feature vector of dimension 27.
Our initial tests were done on BOSSbase 0.9 containing 2 × 7, 518 images.

The database was randomly divided into two equal-size subsets, one used for
training and the other for testing. A Gaussian Support Vector Machine (G-
SVM) was trained using standard five-fold crossvalidation on a multiplicative
grid. The original WAM classifier with default σ2

w = 1/2 gave the score of ρ =
55.85%. To improve this rather weak performance, we decided to extend WAM
by adding 27 moments (4) computed directly from the subbands H, V, D to
inform the steganalyzer about the image content. This, indeed, makes sense to
do for spatially-adaptive steganography. This content-informed WAM feature
(WAMC) of dimensionality 54 reached the score of ρ = 57.40%.

Exploring a different extension of WAM features, we augmented them with
the same feature computed from an image re-embedded with the same payload of
0.4 bpp. This 54-dimensional vector (WAMre) produced a respectable ρ = 59%.

The final and most significant improvement of WAM involved replacing the
Wiener filter (3) with its adaptive version in which the fixed noise variance σ2

w

was replaced with the variance of the stego noise si at pixel i, σ2
w,i = pY

i . The
best performance was achieved by merging the original 27 WAM features, 27
content features, and 27 WAM features obtained using the adaptive filter and
adding to it the same set of 81 features from a re-embedded image (total of 162
features WAMCPre). The final performance is summarized in Table 1.

As part of our investigation of alternative embedding domains, we also tested
the Cross-Domain Features (CDF) [13], which is a merger of the second-order
SPAM with Cartesian-calibrated Pevný set (total dimensionality 1234). A G-
SVM produced a prediction file with BOSSrank score of 68%, which is higher

3 This result was reported on the BOWS2 database [2].



Feature Dimension Score ρ [%]

WAM 27 55.85
WAMC 54 57.40
WAMre 54 59.00

WAMCPre 162 62.97

Table 1. Performance of the WAM steganalyzer and its various extensions.

than the score of 65% obtained using the same feature set reported by the Czech
University Team. This difference is most likely caused by a different training set.
While we trained on all images from BOSSbase 0.91, the Czech University Team
trained on one half of this database.

4 Going back to pixel domain

Even though alternative domains may be useful in steganalysis, the best detec-
tion is usually achieved by forming features directly in the embedding domain.
This is where the embedding changes are localized and thus most pronounced.
This strategy, originally coined in 2004 [6], was later confirmed in [6, 10, 17, 15,
18, 4]. Because HUGO’s embedding domain is known, after the early failures de-
scribed in the previous two sections, we revisited the pixel domain and achieved
a major breakthrough on September 23, 2010.

HUGO approximately preserves the joint distribution of first-order differ-

ences r
(1)
ij = xi,j+1 − xij between four neighboring pixels – the co-occurrence of

triples (r
(1)
ij , r

(1)
i,j+1, r

(1)
i,j+2) truncated4 to a finite dynamic range, rij ← truncT (rij),

where truncT (x) = x when x ∈ [−T, T ] and truncT (x) = T sign(x) otherwise.

Thus, to detect traces of embedding, a fourth-order co-occurrence (r
(1)
ij , r

(1)
i,j+1,

r
(1)
i,j+2, r

(1)
i,j+3) is needed. However, with increasing order of the co-occurrence its

elements will be rather sparse when computed from small images and thus too
noisy for steganalysis. The key idea and a major breakthrough in our effort to
break HUGO was the realization that another way to form a statistic that spans
more than four pixels is to use higher-order pixel differences (residuals).

Because the second-order residuals, r
(2)
ij = xi,j−1−2xij +xi,j+1, involve three

pixels, one needs to consider the joint statistic of only three adjacent differences

(r
(2)
ij , r

(2)
i,j+1, r

(2)
i,j+2). This keeps the co-occurrence matrix well-populated and thus

useful for detection. The second-order residuals better remove content that is
locally linear – while r

(1)
ij may get out of the dynamic range [−T, T ] in locally

linear regions, r
(2)
ij may be mapped back inside the interval [−T, T ]. One can

also interpret r
(2)
ij = 2(x̂ij − xij), where x̂ij − xij is the noise residual at pixel ij

obtained using a simple denoising filter that predicts the value of the central pixel
as an arithmetic average of its two closest neighbors: x̂ij = 1

2 (xi,j−1 + xi,j+1). It

4 The truncation is an established way to keep the dimensionality low prior to forming
joint statistics.



is very important that the denoised value does not depend on the central pixel
in any way, otherwise x̂ij would be affected by the stego signal sij , which would

thus be undesirably suppressed in r
(2)
ij .

Before describing the first successful feature set that gave us BOSSrank over
70%, we introduce four types of operators that can be applied to any two-
dimensional array A = (aij). The horizontal co-occurrence is a matrix Ch(A)
whose (d1, d2, d3)th element, d1, d2, d3 ∈ [−T, T ], is

Ch
d1d2d3

(A) = |{(i, j)|(ai,j , ai,j+1, ai,j+2) = (d1, d2, d3)}|. (5)

The operators Cv, Cd, and Cm are defined analogically.
After many initial experiments, we arrived at the following two feature vec-

tors that allowed us to improve our BOSSrank score by a rather large margin.
First, compute four second-order residuals at each pixel along the horizontal,
vertical, diagonal, and minor diagonal direction:

rh
ij = xi,j−1 − 2xij + xi,j+1, rv

ij = xi−1,j − 2xij + xi+1,j ,

rd
ij = xi−1,j−1 − 2xij + xi+1,j+1, rm

ij = xi−1,j+1 − 2xij + xi+1,j−1. (6)

and then form the MIN and MAX residuals:

rMIN
ij = truncT (min{rh

ij , rv
ij , rd

ij , rm
ij}) rMAX

ij = truncT (max{rh
ij , rv

ij , rd
ij , rm

ij}).
(7)

The MINMAX feature vector is defined as

FMINMAX = (Ch(RMIN) + Cv(RMIN), Ch(RMAX) + Cv(RMAX)). (8)

Since each cooccurrence matrix has (2T + 1)3 elements, FMINMAX has dimen-
sionality of 2(2T + 1)3.

By training the MINMAX feature vector with T = 4 using Fisher Linear
Discriminant (FLD) on 9,074 cover and stego images from BOSSbase 0.91, we
achieved a BOSSrank score of 71% on October 3, 2010.

The next discovery we made can be interpreted as a clever marginalization of
the MINMAX vector for T = 8. Before forming rMIN

ij and rMAX
ij , the differences

are quantized using a scalar quantizer Qq(x) = floor(x/q) with q a positive
integer:

FQUANT,q =
(

Ch(Qq(RMIN)) + Cv(Qq(RMIN)), Ch(Qq(RMAX)) + Cv(Qq(RMAX))
)

. (9)

For q = 2, this QUANT feature can “see” twice as far as MINMAX but in
a quantized manner to keep the dimensionality of the feature unchanged. By
training a G-SVM on BOSSbase 0.91 on the 2,916-dimensional feature vector
(FMINMAX, FQUANT,2), with T = 4, we obtained a BOSSrank score of 73% on
October 4, 2010.

On October 11, the organizers announced that the first 7,518 stego images
from BOSSbase 0.9 and 0.91 were created with a different set of parameters



(σ = 10, γ = 4, see [16] or [1] for details of the embedding algorithm) than
all BOSSrank stego images and the rest of the stego images in BOSSbase 0.91
(which were created with σ = 1, γ = 1). This change in parameters caused a
mismatch between the training and testing stego sources. After recomputing the
MINMAX and QUANT features on the correct stego images, on October 12 we
achieved the score of 75% by merging the MINMAX and QUANT into a 2,916-
dimensional feature set. Thus, the drop of performance due to this stego-source
mismatch was 2%. To us, it was a HUGE difference even though the BOSS Team
claimed on their blog on October 11 that HUGO behaves “similarly” for both
choices of the parameters.

At this point, our team became confident that the 80% milestone was within
reach by the end of October. We could not have been more wrong! Not only
have we become hopelessly stuck at 75% for more than a month, but it would
take us two and half months of very hard work to reach 80%. And we did so on
December 23 with a feature vector of dimensionality 22, 307 trained on 2×24, 184
images. To be able to train a classifier at this scale, we had to abandon SVMs
and reinvent the entire machine learning approach. But before we get to that,
in the next section we describe the Warden’s nightmare.

5 The dreaded cover-source mismatch

The next logical step in our attack was to fine-tune our feature set by finding
the optimal value of the threshold T , adding other versions of the features, and
perhaps by training on a larger number of images. We also moved to a four-
dimensional co-occurrence operator for the QUANT feature set, obtaining thus
a 4,802-dimensional feature vector (2× (2×3 + 1)4 = 4802). To our big surprise,
while we steadily improved detection accuracy on BOSSbase by adding more
features, the BOSSrank score was moving in the opposite direction. We began
facing the dreaded cover-source mismatch issue5 – our classifier was trained on
a different source of cover images (BOSSbase) than the source of BOSSrank
images. Thus, as we optimized our detector on the training set, the performance
on the testing set was steadily worsening. Our detector lacked what is recognized
in detection theory as robustness.

Google search on “robust machine learning” returned publications that con-
cerned only the case of training on noisy data or on data containing outliers.
Our problem seemed different – we trained on one distribution and tested on
another.

Perhaps using classifiers with less complicated decision boundary than the
one produced by a G-SVM might help. The performance of a linear SVM (L-
SVM), however, was consistently subpar to G-SVM and disturbingly comparable
to the much simpler FLD classifier (see Table 2).

Another way to increase robustness, or so we thought, was to train on a larger
set of images. We added to BOSSbase 0.91 another set of 6,500 images taken

5 Cover source mismatch differs from overtraining as the latter refers to the lack of
ability of the detector to generalize to unseen examples from the same source.



Feature Dimensionality Training set G-SVM L-SVM FLD

MINMAX 1458 BOSSbase 0.92 73 70 71
QUANT 1458 BOSSbase 0.92 73 72 71

MINMAX+QUANT 2916 BOSSbase 0.92 75 72 71
MINMAX+QUANT 2916 BOSSbase+CAMERAS 71 70 -

Table 2. BOSSrank score of the first successful feature sets, MINMAX and QUANT,
for three different machine learning approaches.

in raw format by 22 different cameras converted using the same script that was
used for creating the BOSSbase. Training on more images, however, seemed to
make the BOSSrank score only worse (see the last row in Table 2).

The cover-source mismatch has been recognized by the research community
as a serious issue that may complicate deployment of steganalysis in real life.
The authors of [10] reported that the performance of the WAM steganalyzer
on images could be vastly improved if the steganalyzer was trained on images
from the exact same camera or, to a slightly lesser degree, on images from a
camera of the same model. However, training WAM on a mixture of images from
CAMERAS, the performance was significantly worse. The cover-source mismatch
problem was also mentioned in the more recent publication [3], where the authors
tested various steganalyzers on multiple sources for the ±1 embedding. Thus,
as the next logical step in our quest we decided to find out as much as possible
about the source of covers for BOSSrank. We saw this as the only way to further
improve our BOSSrank score.

5.1 Forensic analysis of BOSSrank

On October 14, we extracted the sensor fingerprint [7] for each camera from
BOSSbase (we did so from the resized grayscale 512 × 512 images). Then, we
tested all BOSSrank images for the presence of the fingerprints. Only one camera
tested positive – the Leica M9. Its fingerprint was found in approximately 490
images. We knew the source of one half of the database.

Visual inspection of BOSSrank images revealed that at least some portion
of images was taken in the Pacific Northwest because many pictures contained
license plates from the State of Oregon and Washington. One image (see Fig. 2
upper left) contained an address, which, after plugging it in GoogleMaps, re-
turned the exact location – Portland, Oregon. And after the photographer was
identified in a window pane reflection in image no. 558 (see Fig. 2 right), we
knew what the camera was – Panasonic Lumix DMC-FZ50 – and it belonged to
Tomáš Filler, a BOSS Team member.6 However, we could not use this finding in
competition because we relied on information other competitors did not have ac-
cess to. Therefore, we closed our forensic investigation knowing that roughly one
half (and potentially more) BOSSrank images were from Leica M9. The source

6 The camera was confirmed by identifying its fingerprint in about 90 BOSSrank
images. Here, we extracted the fingerprint from other images taken by Tomáš Filler
during our previous trips to the SPIE conference.



of the remaining images in BOSSrank was declared unknown. All we needed to
do now was to obtain more images from Leica.

Since stealing the camera from Patrick Bas seemed too dangerous and buy-
ing it too expensive ($7,000), we rented it from http://www.lensrentals.com/
for a week (October 23–30). The camera was rented with the standard 50mm
lens.7After a grueling work with a heavy and boxy camera with no auto focus,
we managed to take a total of 7,301 images in their original resolution of 18
megapixels. All images were processed using the BOSS conversion script and
subsequently embedded with payload 0.4 bpp. After the MINMAX+QUANT
features were extracted from them, we built two detectors – one G-SVM trained
on all BOSSbase images that would be used for detection of all non-Leica images
from BOSSrank, and the second G-SVM specifically trained on the union of our
7,301 Leica images and the 2,267 Leica images from BOSSbase. The decisions
would then be merged into one prediction file. The result was quite disheartening
– a measly 74% (BOSSrank score). We ran a couple of more experiments, such as
training a G-SVM on a union of BOSSbase and 7,301 Leica images and testing
the entire BOSSrank with it, but none of these experiments would produce a
BOSSrank score higher than 74%.

This rather time-consuming exercise was an important lesson for us because
we realized what makes a cover source and how hard it is to duplicate it. First,
we took images with a different lens (50mm) than the BOSSbase images (35mm).
The lens may have a significant impact on steganalysis because a longer focal
length means lower depth of field, which implies less content in focus and more
content slightly out of focus. Of course, an out-of-focus content is easier for the
steganalyst.

The content of images has obviously a major influence on content-adaptive
steganalysis. The cover source is a very complex entity that is affected by the
lens, the environment in which pictures are taken and even the photographer’s
habits – stopping the lens more leads to a higher depth of field but also darker
images with potentially more motion blur, while opening the lens leads to shorter
exposures and less dark current but lower depth of field. Our images were all
taken in the Fall in a little town of Binghamton in upstate New York. On the
contrary, a large number of the Leica images in BOSSrank showed scenes with
an ocean, ships, beaches, etc. As one of us sighed: “Binghamton in the Fall is
a poor replacement for French Riviera.” Consequently, it was rather foolish to
think that we could duplicate the cover source.

6 Diversity is important

One important lesson we learned by now is that one should not be afraid of
high feature dimensionality. After all, we successfully trained a 2,916-dimensional
feature vector on 2×9, 074 images and obtained a high BOSSrank score. However,
scaling up the dimensionality simply by increasing the threshold T or the order of

7 Only later it was pointed out to us that the lens information is in the EXIF headers
of BOSSbase images. And the lens used for BOSSbase had a focal length of 35mm.



Fig. 2. Identifying the source of BOSSrank.

the co-occurrence matrix did not lead to better results because the added features
were increasingly sparsely populated. Thus, we refocused our effort to creating
a more diverse feature set while keeping the dimensionality around 3,000, what
seemed as a sweet spot for the given training set (BOSSbase). To this end, we
used a lower threshold T = 3 and incorporated higher-order differences among
neighboring pixels. One can easily extend the MINMAX and QUANT feature
vectors (8) and (9) to higher-order residuals:

r
(3)
ij = xi,j−1 − 3xij + 3xi,j+1 − xi,j+2 (10)

r
(4)
ij = −xi,j−2 + 4xi,j−1 − 6xij + 4xi,j+1 − xi,j+2. (11)

We also built features using fourth-order co-occurrence operators. To limit
the growth of feature dimensionality, we used T = 2 for all fourth-order co-
occurrences. This reasoning gave birth to the following 3,872-dimensional feature
set SUM3 consisting of four different subsets (see Table 3).

Difference order q Cooc. order T Dimensionality

2nd 2 3 3 686
3rd 2 3 3 686
2nd 2 4 2 1,250
3rd 2 4 2 1,250

Table 3. A merger of four feature sets, SUM3, computed from second- and third-order
differences among pixels forming co-occurrence matrices of order 3 and 4. The feature
dimensionality is 3,872.

The strategy of increasing feature diversity was successful. By training a G-
SVM on images from BOSSbase and with the feature set shown in Table 3 we ob-
tained a BOSSrank score of 76% on November 13. The direction that was opening



for us was clear – instead of blindly increasing the threshold and co-occurrence
order, increase the feature diversity! For example, one could form higher-order
residuals (differences) using two-dimensional kernels instead of one-dimensional
or extract the residuals along edges to improve detection for textured images.
The complexity of training a G-SVM, however, was beginning to limit the speed
of development, while the performance of the much faster L-SVMs was sub-
par compared to G-SVMs. We needed an alternative machine learning tool that
would enable faster development and testing of many ideas and combinations of
features. Fortunately, our other research direction that we were simultaneously
pursuing independently of the BOSS competition gave us just what we needed
– an inexpensive, fast, and scalable machine learning approach.

7 Ensemble classifiers – a great alternative to SVMs

In this section, we only provide a rather brief description, referring to [14] and our
other paper in this volume [9] for a more detailed exposition of this methodology,
experimental evaluation and comparison to SVMs as well as a discussion on the
relationship of our approach to prior art in machine learning.

Starting with a feature set of full dimensionality d, we build a simple classifier
(base learner), such as an FLD, on a randomly selected subset of dred � d
features while using all training images. The classifier is a mapping F : Rd →
{0, 1}, where 0 and 1 stand for cover and stego classes. This is repeated L
times with a different random subset of the features. Consequently, we obtain L
classifiers (FLDs) F1, . . . , FL. Given a feature vector b ∈ R

d from the testing set,
the ensemble classifier makes a decision by fusing the individual decisions of all
L FLDs, F1(b), . . . , FL(b). Although many fusion rules can certainly be used,
we used simple voting as it gave us the same performance as more complicated
rules.

To give the reader an idea about the savings, the ensemble classifier can be
trained on 2× 9, 074 images with a 10, 000-dimensional feature set with L = 31
and dred = 1600 and at the same time make decisions about the entire BOSSrank
in about 7 minutes. This was achieved on a DELL Precision T1500 machine
with 8GB of RAM and 8 Intel Cores i7 running at 2.93GHz. The same task
when approached using a G-SVM takes substantially longer. Just obtaining the
performance for a single grid point in cross-validation took between 2–17 hours,
depending on the SVM parameters. Most importantly, however, the speed and
simplicity of ensemble classifiers does not seem to compromise their performance.
When comparing our BOSSrank scores obtained using the ensemble classifier
and G-SVMs, the values were comparable and often in favor of the ensemble
classifier. We view this approach to steganalysis as a viable fully-functional and
scalable alternative to SVMs.



8 The behemoths and the final attack – when 1% seems
like infinity

The scalability and low-complexity of the ensemble classifier enabled us to im-
prove our BOSSrank score simply by gradually scaling up our features and train-
ing sets. On November 15, we reached the milestone of 77% with a set consisting
of 5,330 features trained with L = 31 and dred = 1600 on the entire BOSSbase.
The set was obtained by adding the 1, 458-dimensional MINMAX vector with
T = 4 to SUM3 (see Table 3).

On November 29, we added more features to our 5,330-dimensional set to
form a feature vector with 9,288 elements. The added features were: 1) the
QUANT feature vector (9) with q = 2 constructed from fourth-order residuals
and a 4D co-occurrence (dimensionality 2 × 625) formed from horizontal and
vertical samples as in (9) and 2) an equivalent of the QUANT feature (9) with q =
2 constructed from second-order residuals and a 4D co-occurrence of residuals
arranged into a 2×2 square (2×625), and 3) a vector constructed from residuals
computed using a translationally-invariant Ker–Böhme kernel [12]
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and a 3D co-occurrence Ch(R)+Cv(R) (729 features) and the same co-occurrence
after quantizing the residual with q = 2 (another 729 features). All together, the
new set had 5330 + 2500 + 1458 = 9288 features. When trained on BOSSbase,
this set produced a score of 76%. However, after enlarging the training set by
adding images from CAMERAS to 2× (9074 + 6500) = 2 × 15, 574 images, we
obtained another Hall-of-Fame entry of 78% (again with L = 31 and d = 1600
as these parameters were becoming our “sweet spot”). This submission was an
eye-opener. We learned that to maximize the BOSSrank score, we had to keep a
certain balance between the feature dimensionality, d, and the number of images
in the training set. Given 2N images for training, the best results were obtained
when N was by 20–50% larger than d. Training on too few images or too many
would make the BOSSrank score worse. And we observed this peculiar behavior
until the end of the competition. We do not have a good explanation for this
oddity but hypothesize that it is one of the strange consequences of the cover-
source mismatch. This rule of thumb does NOT hold when the cover-source
mismatch is absent. Without the mismatch, the detection accuracy simply keeps
on improving with increased feature dimensionality (see our other paper [9] in
this volume).

The rest of our record submissions are displayed in Fig. 3. The last three were
achieved with L = 51, 51, 71 and dred = 2400. The winning 24,993-dimensional
feature set B is described in the Appendix. Our strategy was simple – keep on
adding various types of features computed from different types of residuals and
their quantized versions and scale the training set accordingly. We observed that
the detection performance on BOSSrank was rather flat w.r.t. the parameters



of the ensemble classifiers L and dred. With increasing feature dimensionality,
we had to increase dred from 1600 to 2400 or 2800, while the number of base
learners, L, did not affect the performance as much and we kept it in the range
31–81. The individual predictions converged rather fast with increased L – for
the winning submission, the prediction files for BOSSrank differed in only 37
images (for L = 31 and 51) and in 18 images for L = 51 and 81.

We have also tried increasing the dimensionality up to 37,859 and the training
set to 2 × 44, 138 images but we started observing a drop in BOSSrank. This
may mean that we saturated our approach but a more likely explanation is
that our saturation in performance was another consequence of the cover-source
mismatch.

The winning submission we selected for the final ranking reached the score
of 80.3%. After the ground truth was revealed, we found out that our best
prediction file had a score of 80.5%.
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68   1458     3759
71   1458     9074
73   1458     9074
75   2916     9074
76   3872     9074
77   5330     9074
78   9388     16375
79   17933   24184
80   22307   24184
81   24933   34719

Fig. 3. Chronological development of our BOSSrank score. The table shows the feature
dimensionality and the number of cover images on which the classifier was trained.
Scores 77% and larger were obtained using ensemble classifiers.

9 What have we learned?

Quite a bit. First, there is no reason why steganalysts should frown at high-
dimensional feature sets. To the contrary, we believe that high-dimensional fea-
tures are a necessity to attack advanced steganography. The dimensionality could
probably be reduced by clever marginalization, however, automatized design us-
ing ensemble classifiers is preferable to hand-crafting the features. The ensemble
classifiers offer a scalable and quite simple classification with very similar per-
formance to that of the much more complex SVMs.



The second important lesson is the existence of the Warden’s nightmare – the
cover-source mismatch that manifests when a detector optimized on one source
when applied on another experiences a loss of accuracy. Solving this problem ap-
pears to be extremely difficult because the mismatch can have too many forms.
Just like robust statistics and robust versions of the likelihood-ratio test were
developed to address the problems with robustness of optimal detectors and
estimators, machine learning needs the same. Unfortunately, to the best knowl-
edge of the authors very little appears to have been published on this important
topic. If the BOSS oragizers had strictly adhered to the Kerckhoffs’ principle,
the cover source mismatch would never manifest and the competition would be
more about breaking HUGO, which was perhaps the original motivation behind
BOSS.

The steganalyst can improve the detection by training on a source with prop-
erties as close to the one from which the test images came. We tried to alleviate
the negative impact of the cover-source mismatch by adding to BOSSbase all
BOSSrank images after denoising (and pronouncing them as “covers”) and all
images after embedding in them payload of 0.4 bpp with HUGO (and pronounc-
ing them as “stego”). The feature vectors of these 2 × 1000 images added to
the training database should be rather close to the feature vectors of BOSSrank
images, which might improve robustness to the cover source. We called this idea
“training on a contaminated database” but were unable to improve our results
with it. We plan to explore this rather interesting idea as part of our future
effort.
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Appendix – the final 24,993-dimensional behemoth

For compactness, we use the following convention. Each feature set type is de-
scribed using four parameters (s, q, m, T ): s – the span of the difference used to
compute the residual (s = 3, 4, 5, . . . for second-order residuals, third-order, etc.),



Feature type Feature parameters (s, q, m, T ) Dimensionality

MINMAX (3, {1, 2}, 3, 3), (4, {2, 3}, 3, 3), (5, 6, 3, 3) 5 × 686
(3, {1, 2}, {5, 6}, 1) 2 × 486 + 2 × 1458
(3, 2, 4, 2), (4, {2, 3}, 4, 2), (5, {1, 6}, 4, 2) 5 × 1250
(2, {1, 2}, 4, 2) 2 × 1250

MARKOV (3, {1, 2}, 3, 3) 2 × 686

KB (9, {1, 2, 4}, 3, 4) 3 × 729

SQUARE (3, 2, 4, 2) 1250

CALI (3, 2, 3, 3), (4, {2, 3}, 3, 3) 3 × 686

EDGE (6, {1, 2, 4}, 3, 3) 3 × 686

Table 4. The BOSS winner – the behemoth B of dimensionality 24,993.

q is the quantization step, m the order of the co-occurrence matrix, and T the
truncation threshold. When a parameter is a set, the features are to be formed
using all values from the set. The KB set was formed using (12) as described
in Section 8. The SQUARE set is obtained from the MINMAX residual with
co-occurrence elements formed by putting together residuals from 2× 2 squares
instead of straight lines. In the CALI set, prior to computing the features from
the MINMAX residual, the image was convolved with an averaging 2× 2 kernel
to “erase” the embedding changes in a manner similar to calibration as proposed
by Ker [11]. The residuals, REDGEMIN and REDGEMAX, for EDGE were formed
by taking MIN and MAX from residuals obtained using four directional kernels
meant to follow edges in the image. An example of a kernel oriented along the
minor-diagonal direction is:
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 . (13)

The final feature set for EDGE is formed as Ch(REDGEMIN) + Cv(REDGEMIN),
Ch(REDGEMAX) + Cv(REDGEMAX).
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