
USING SENSOR PATTERN NOISE FOR CAMERA MODEL IDENTIFICATION
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ABSTRACT

Sensor photo-response non-uniformity (PRNU) was intro-
duced by Lukáš et al. [1] to solve the problem of digital cam-
era sensor identification. The PRNU is the main component
of a camera fingerprint that can reliably identify aspecific
camera. This fingerprint can be estimated from multiple im-
ages taken by the camera. In this paper, we demonstrate that
the same fingerprint can be used for identification of cam-
era brand and model. This is possible due to the fact that
fingerprints estimated from images in the TIFF/JPEG format
contain local structure due to various in-camera processing
that can be detected by extracting a set of numerical features
from the fingerprints and classifying them using pattern clas-
sification methods. We estimate and classify fingerprints for
more than 4500 digital cameras spanning 8 different brands
and 17 models. The average probability of correctly classified
camera brand was 90.8%.

Index Terms— Digital forensic, camera model identifi-
cation, pattern noise

1. INTRODUCTION

The trustworthiness of a digital image presented as silent wit-
ness in court has recently been questioned. This is mainly due
to ease with which digital images can be manipulated using
common image editing software. Often, the issue at question
is the image origin. Proof that a given digital image was taken
with a specific camera or a certain camera model can play a
vital role whenever the digital object (e.g., image or video) is
a result of a crime, such as in movie piracy cases.

Lukáš et al. [1] studied the problem of digital camera sen-
sor identification using a sensor fingerprint based on photo-
response non-uniformity (PRNU), which is a multiplicative
noise that is unintentionally embedded by the digital camera
into every image it takes. The authors proposed a method for
estimating the fingerprint from a set of digital images and for
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detecting its presence in a specific image under investigation.
Successful detection is indicative of the fact that the image
was taken by the exact same camera. The methodology was
further improved by Chen et al. [2].

Other authors proposed additional applications of this fin-
gerprint to solve a variety of problems in digital forensic,
including identification of cellular phones [3], digital cam-
coders [4], and scanners [5], [6]. The fingerprint can also be
used for forensic classification of image origin [7] and for de-
tection of digital forgeries in images [8].

In this paper, we show that the same fingerprint can be
used to determine the camera model and brand, which is a
problem previously investigated using other means [9, 10,
11]. We formulate the problem of brand/model detection as
pattern classification, where each class corresponds to a dif-
ferent camera model. This work is motivated by the fact that
the fingerprint obtained from images in the TIFF or JPEG for-
mat contains traces of in-camera processing, such as demo-
saicking or filtering. In fact, fingerprints are visually different
across different brands due to presence of simple periodic pat-
terns, which could be quantified and used as features.

The rest of this paper is structured as follows. In Sec-
tion 2, we review a method for the fingerprint estimation from
images. In Section 3, we describe the features computed from
the estimated fingerprint that will be used for distinguishing
camera models. The problem of collecting images for experi-
ments is briefly mentioned in Section 4. The setup of experi-
ments and their results are discussed in Section 5. Finally,the
paper is concluded in Section 6.

2. CAMERA MODEL

The PRNU is a multiplicative noise caused by imperfections
in the manufacturing process (e.g., slightly different pixel di-
mensions) and inhomogenities of sillicone. It has a stochastic
nature and is unique to each sensor. Its high dimensionality
and robustness to processing (it is a spread-spectrum signal)
make it an ideal candidate for forensic aplications, such as
camera identification. The PRNU must be estimated from
raw sensor output. When the PRNU is estimated from im-
ages in typical viewable formats, such as TIFF or JPEG, the
estimate (1), which we call the fingerprint, is already shaped
by in-camera processing and thus carries information about



the camera brand or model.
The fingerprint is estimated using a minimum variance

unbiased estimator derived from a simplified linearized model
of sensor output in [2]

K̂ =

∑m
i=1 WiIi

∑m
i=1(Ii)2

, (1)

where Ii, i = 1, . . . , m stand form images taken by the
same camera,Wi is the noise residual of thei-th image,
Wi = Ii−I

(0)
i , I(0)

i is Ii denoised using a denoising filter. We
used a wavelet-based denoising filter as described in [1]. All
operations among matrices are understood as element-wise.
The number of images needed to obtain a good estimate of
the fingerprintK̂ varies with the camera and the image con-
tent. In this paper, we usedm = 45 images.

3. FEATURES

In this section, we describe the features that will be used in
our pattern-classification approach to recognize camera brand
and model from the fingerprint̂K. The features are designed
to reflect differences in the CFA (color filter array), demo-
saicking algorithm, and the sensor signal transfer. Assuming
the fingerprint was estimated separately in each color channel,
we represent it as a three-dimensional arrayK̂ ∈ R

w×h×3,
wherew andh are the width and height of the image in its
native (highest) resolution.

Statistical moments

The first feature set is formed by the first 3 centralized sample
statistical moments of the fingerprintK̂ in each color channel.
This gives total of 9 features.

These features are influenced by the sensor PRNU. The
estimated noise is approximately zero mean while its variance
varies across different camera brands and models.

Cross-correlation

To capture local dependencies or periodicities among neigh-
boring samples of̂K, we need to use higher-order statistical
features. The local dependencies contain information about
CFA, color interpolation, and processing. The color interpola-
tion error exhibits periodicities mainly due to the periodic na-
ture of the CFA. To describe this periodic structure, we calcu-
late the normalized cross-correlation between color channels.
For each color channel pair(C1, C2), C1, C2 ∈ {R, G, B}
and shift∆1 ∈ {0, . . . , 3}, ∆2 ∈ {0, . . . , 3}, we calculate
the normalized correlation,ρ(∆1, ∆2), betweenC1(i, j) and
C2(i−∆1, j−∆2), where the normalized correlation between
two matricesA,B is defined in the usual way

ρ(A, B) =

∑

i,j(Ai,j − Ā)(Bi,j − B̄)
√

∑

i,j(Ai,j − Ā)2
∑

i,j(Bi,j − B̄)2
.
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Fig. 1. Example of cyclic normalized cross-correlations for
two camera models. Here we plot cyclic normalized cross-
correlation of vectorx ∈ R

h×1, wherexi was obtained as a
mean ofi-th row of red color channel of fingerprint̂K.

whereĀ, andB̄ are sample means calculated from matrices
A andB. This results in6 × 4 × 4 = 96 numbers. Finally,
we applied the principle component analysis (PCA) to obtain
4 features that we call principle components.

Block covariance

The most commonly used CFAs are obtained by periodically
repeating blocks of2 × 2 filters, which have direct impact on
local dependencies among neighboring samples inK̂. We di-
vide the whole matrix̂K into disjoint squares ofk × k pixels
and consider each square as a sample of a random vector of
length3k2. From the whole image, we obtainw×h

k2 such sam-
ple vectors. Denoting their3k2 × 3k2 covariance matrix as
C, we reshape it into a vector and compute its first 4 prin-
cipal components. Usingk = 2 andk = 3, we thus obtain
4 + 4 = 8 features.

Linear-pattern cross-correlation

The last set of features is derived from the Linear Pattern as
introduced in [2]. The PRNU is modeled as a collection of
independent realizations of some random variable. Thus, the
means of rows and columns should be zero. This is, however,
not true for the estimated fingerprint. The row (or column)
means thus contain useful information about in-camera pro-
cessing.

We use this idea and calculate the vectorr ∈ R
h×1, where

thei-th element is the mean of thei-th row from the red chan-
nel of K̂ (we can use any color channel). This vector char-
acterizes the systematic error of the processing algorithms in
each row. To see the structure of the error, we calculate the
cyclic normalized auto-correlation and plot it as a function of
the shift. Figure 1 shows two examples of such plots for two
Canon PowerShot cameras.

Denoting the auto-correlation vector asx ∈ R
h×1, we

define vectorsx1, . . . ,x8 asx
j = (xj ,xj+8,xj+16, . . .) ∈

R
h/8×1. We further calculate the mean of each vectorx

j and
consider the first 4 principal components from this 8 element
vector as 4 features. Visual inspection of the plots ofx for
different camera models (see Figure 1) prompted us to define



C F K M N O P S
Canon C 93.47 ∗ ∗ ∗ 3.46 ∗ ∗ ∗

Fujifilm F 2.5 93.39 ∗ ∗ ∗ ∗ ∗ ∗

Kodak K ∗ ∗ 96.45 ∗ ∗ ∗ ∗ ∗

Minolta M ∗ ∗ ∗ 79.79 18.88 ∗ ∗ ∗

Nikon N 2.35 ∗ ∗ 4.35 86.16 5.12 ∗ ∗

Olympus O ∗ ∗ ∗ ∗ 7.11 87.29 ∗ ∗

Panasonic P ∗ ∗ ∗ ∗ ∗ ∗ 94.44 ∗

Sony S ∗ ∗ ∗ ∗ ∗ ∗ ∗ 95.97

Fig. 2. Confusion matrix calculated for camera brands as an
average over 8 experiments. The symbol∗ represents values
smaller than 2%.

3 more features. Considering each vectorx
j as a curve (plot

of the vectorxj), we compute the sample mean and variance
of the vector(xmin+x

max)/2, wherexmin andxmax are the
vectors with minimal and maximal sample means. Finally, by
calculating the area betweenxmin and x

max, we obtain 7
features.

4. DATA COLLECTION

In order to test the ability of the PRNU based fingerprint to
capture the camera brand or model, we need a large database
of images coming from cameras of various brands and mod-
els. Also, it is very important to have multiple physically dif-
ferent cameras for each brand and model to avoid overtraining
to aspecificcamera rather than aclassof cameras. Simulat-
ing different cameras by dividing images from one camera
to disjoint clusters brings the obvious danger of overtraining,
because the estimated fingerprints would be similar.

The image sharing portal, www.flickr.com, was used as
our image source. From this portal, we downloaded full-
resolution images about which we assumed that they were
not subjected to further geometrical processing. The camera
model and brand was extracted from the EXIF header. We
also made the reasonable assumption that all images posted
by the same user using the same camera model were all taken
by the exact same camera. These assumptions allowed us
to use these images for estimation of the camera fingerprint.
Only landscape oriented images were used in our experiments
to avoid ambiguity in±90◦ rotation.

Table 1 shows the list of available camera models along
with the number of different cameras (different fingerprints).

5. EXPERIMENTAL RESULTS

We now describe the details of our experiment. For each user,
we downloaded 45 randomly chosen images from which we
estimated the fingerprint̂K. We made an effort to find as
many different users on Flickr as possible for each camera
model. In our experiment, we only used those camera models
for which we could obtain at least 100 different users. Hav-

Camera model # of cameras Sensor size (MPix)

Canon PowerShot S3 IS 465 6.0
Canon PowerShot SD400 647 5.0
Canon PowerShot SD600 213 6.0

Fujifilm FinePix A345 140 4.0
Kodak CX7300 150 3.2

Kodak Z740 Zoom 245 5.0
Minolta DiMAGE XT 117 3.1

Nikon Coolpix 3200 352 3.1
Nikon Coolpix 4300 262 3.9
Nikon Coolpix 4600 394 3.9

Olympus C350 Zoom 101 3.1
Olympus Stylus 300 320 3.1

Panasonic DMC-FX01 246 6.0
Panasonic DMC-FX7 119 4.9
Panasonic DMC-FZ7 241 6.0

Sony DSC-P200 283 7.1
Sony DSC-W50 270 6.0

Table 1. List of available camera models.

ing at least 45 images for each user, it was not possible to
find approximately the same number of users for given cam-
era model. The number of different cameras per model thus
varied from 101 to 650.

We used the classical voting system and a set of17×16
2 =

136 binary classifiers to perform the multi-classification. The
following approach was used to train the binary classifiers.
First, we randomly selected 70 estimated fingerprints for
training and left the rest for testing. The features that require
calculating PCA were evaluated on the union of both train-
ing datasets. Thus, the principal components were extracted
separately for each binary classifier. Using this approach,we
obtained 28 features that were specific to the binary classifier.
To avoid possible overtraining, we reduced the number of
features using BAHSIC feature selection method proposed
by Song et al. [12] from 28 to 5. This allowed us to choose
different features for different binary classifiers. Finally,
the SVM classifier [13] with the RBF kernel was used for
classification.

Experimental results obtained by averaging confusion
matrices over 8 trials are presented in Figure 2 and in Fig-
ure 3.

6. CONCLUSION

In this paper we show that the camera brand and model can
be determined from the PRNU based camera fingerprint orig-
inally proposed for identification of a specific camera. The
approach is based on classification of features derived from
the fingerprint. We report an average probability of correctly
classified camera brand at90.8%. We would like to point
out that the presented results were obtained by using a large



C1 C2 C3 F1 K1 K2 M1 N1 N2 N3 O1 O2 P1 P2 P3 S1 S2
Canon PS S3 C1 69.4 ∗ 22.3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Canon PS SD400 C2 ∗ 95.0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Canon PS SD600 C3 22.6 ∗ 65.2 ∗ ∗ ∗ ∗ ∗ ∗ 5.8 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Fuji Finepix A345 F1 ∗ ∗ ∗ 93.4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Kodak CX7300 K1 ∗ ∗ ∗ ∗ 94.6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Kodak Z740 Zoom K2 ∗ ∗ ∗ ∗ ∗ 98.2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Minolta Dimage XT M1 ∗ ∗ ∗ ∗ ∗ ∗ 79.8 10.6 ∗ 8.2 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Nikon Coolpix 3200 N1 ∗ ∗ ∗ ∗ ∗ ∗ 6.8 82.2 ∗ 5.6 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Nikon Coolpix 4300 N2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 85.5 3.9 3.9 ∗ ∗ ∗ ∗ ∗ ∗

Nikon Coolpix 4600 N3 ∗ ∗ ∗ ∗ ∗ ∗ 5.8 8.3 ∗ 71.2 8.2 ∗ ∗ ∗ ∗ ∗ ∗

Olympus C350z O1 ∗ ∗ ∗ 3.2 ∗ ∗ ∗ 3.2 ∗ 8.4 77.8 ∗ ∗ ∗ ∗ ∗ ∗

Olympus S300 O2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 96.2 ∗ ∗ ∗ ∗ ∗

Panasonic DMC-FX01 P1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 90.9 ∗ ∗ ∗ ∗

Panasonic DMC-FX7 P2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 95.9 ∗ ∗ ∗

Panasonic DMC-FZ7 P3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 90.3 ∗ ∗

Sony DSC-P200 S1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 93.4 ∗

Sony DSC-W50 S2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 96.1

Fig. 3. Confusion matrix obtained as an average over 8 experiments. The symbol∗ represents values smaller than 3%.

number of different physical cameras to avoid the danger of
overtraining to a cluster of specific cameras.

This work should be viewed as tool for the camera
brand/model classification that complements existing ap-
proaches based on other principles, such as [9, 10, 11].
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