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ABSTRACT
Currently, the most secure practical steganographic schemes
for empirical cover sources embed their payload while min-
imizing a distortion function designed to capture statistical
detectability. Since there exists a general framework for this
embedding paradigm with established payload–distortion
bounds as well as near-optimal practical coding schemes,
building an embedding scheme has been essentially reduced
to the distortion design. This is not an easy task as relat-
ing distortion to statistical detectability is a hard and open
problem. In this article, we propose an innovative idea to
measure the embedding distortion in one fixed domain inde-
pendently of the domain where the embedding changes (and
coding) are carried out. The proposed universal distortion
is additive and evaluates the cost of changing an image ele-
ment (e.g., pixel or DCT coefficient) from directional resid-
uals obtained using a Daubechies wavelet filter bank. The
intuition is to limit the embedding changes only to those
parts of the cover that are difficult to model in multiple
directions while avoiding smooth regions and clean edges.
The utility of the universal distortion is demonstrated by
constructing steganographic schemes in the spatial, JPEG,
and side-informed JPEG domains, and comparing their se-
curity to current state-of-the-art methods using classifiers
trained with rich media models.

Categories and Subject Descriptors
I.4.9 [Computing Methodologies]: Image Processing and
Computer Vision—Applications

General Terms
Security, Algorithms, Theory

Keywords
Steganography, distortion function, JPEG, side-informed em-
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1. MOTIVATION
The lack of accurate models for complex sources, such as

digital media, significantly complicates the construction of
secure steganographic schemes. One may even argue that,
fundamentally, perfect steganographic security in such em-
pirical sources is not possible [1]. Postulating this as an as-
sumption gave birth to the study of imperfect steganography
as a subdiscipline that better corresponds to real-world con-
ditions and lead to fundamental new results, such as scaling
laws of secure payload w.r.t. various cover source attributes,
such as the length (the square root law [16, 21, 6]), quan-
tization [8], and resolution [24]. Steganographic capacity of
imperfect steganography is zero as the secure payload scales
sublinearly with cover length.1 Thus, one can say that in
practice, steganographers merely try to increase the stegano-
graphic Fisher information, which defines the root rate [18,
19, 2] – the proper measure of secure payload for imperfect
steganography.

The mainstream (and by far the most successful) approach
is framing the embedding as source coding with a fidelity
constraint [30] and build the embedding around a distortion
function that is minimized to embed a desired payload [5,
3, 22, 31, 28, 13, 15]. Upon closer inspection of these refer-
ences, one discovers that the distortion functions are always
designed either in the embedding domain or in a selected
model (feature) space. The first alternative can be rightfully
challenged as, for example, changing a DCT coefficient has
an effect on an entire block of pixels, and the detectability of
this embedding change needs to consider this fact. Design-
ing distortion in a model space [28, 4] is more appealing but
can only succeed with a sufficiently comprehensive source
model to avoid creating security holes for the Warden who
chooses to work outside of the model [25].

In this paper, we propose a distortion function that al-
lows careful analysis of the impact of making an embed-
ding change on the local content and thus introduce less
detectable artifacts. We work with a wavelet representation
of the cover image (if the image is represented in some other
domain, such as JPEG, it is first decompressed to the spatial
domain prior to the wavelet transform), which can be viewed
as a representation obtained using a bank of directional fil-
ters. Interpreting the highest frequency undecimated sub-
bands as directional residuals, one can assess the impact of
an embedding change in multiple directions, which allows us
to constrain the embedding changes to textures and noisy
regions of the image while avoiding smooth content as well

1This result was derived for a fully-informed Warden and it
may change, depending on Warden’s ignorance [20].



as clean edges. This is a model-free approach as we do not
work with a feature representation of the cover image.

We implement three versions of one embedding algorithm
depending on the cover representation – spatial, JPEG, and
side-informed JPEG domains. To prove the merit of our
construction, a comparison to the current state-of-the-art
steganographic algorithms is included for each domain. Since
the proposed distortion is in the form of a sum of relative
changes between the stego and cover images represented in
the wavelet domain, we named it UNIversal WAvelet Rel-
ative Distortion (UNIWARD). We would like to point out
that this paper is a shortened version of our recent journal
submission to IEEE TIFS, which differs from this article in
several aspects. The journal version contains a thorough
analysis of embedding using the Gibbs construction with
the non-additive version of UNIWARD in the spatial do-
main. Furthermore, to stay within the page limits of this
workshop, we steered this article more towards the JPEG
domain and limited the scale of experiments in the spatial
domain. The wording in this article has also been altered to
avoid copyright conflicts and the flow restructured to give
it a form that is more suitable for a workshop article and
more likely to elicit audience discussions.

The purpose of Section 2 is to introduce notation and
basic concepts. In Section (3), we describe the UNIWARD
costs for images represented in an arbitrary domain as well
as for side-informed JPEG steganography when the sender
has the raw, uncompressed cover available and wishes to
embed in its JPEG compressed form. The common core of
all experiments is summarized in Section 4, where we provide
details about the cover source, machine learning, and the
measure used for empirical evaluation of security. Section 5
contains the results of all experiments in the spatial, JPEG,
and side-informed JPEG domains including the comparison
with previous art. The paper is concluded in Section 6.

2. NOTATION AND BASIC CONCEPTS
To improve the readability of this article, we adopt the

following conventions. Capital and lower-case boldface sym-
bols will be used solely for matrices and vectors, respectively.
The symbols X = (Xij), Y = (Yij) ∈ {0, . . . , 255}n1×n2

will always stand for matrices representing a cover and the
corresponding stego image with n1 × n2 pixels/DCT coeffi-
cients. For simplicity we only work with 8-bit grayscale im-
ages, which means that Xij , Yij ∈ {0, . . . , 255}. For JPEG
images, Xij , Yij ∈ {−1024, . . . , 1023} stand for quantized
JPEG DCT coefficients arranged into an n1 × n2 matrix by
replacing each 8×8 pixel block with the corresponding block
of quantized DCT coefficients. For simplicity and without
any loss on generality, we will assume that n1 and n2 are
integer multiples of 8.

For matrix A, its transpose is AT, while |A| = (|aij |) is
the matrix of absolute values. Furthermore, we reserve the
indices i, j to index pixels or DCT coefficients, while u, v
will always index wavelet decomposition coefficients. The
abbreviation ’w.r.t.’ stands for “with respect to.” Finally,
[S] is the Iverson bracket equal to 1 when the statement S
is true and 0 when S is false.

2.1 JPEG compression
The raw image before JPEG compression will be denoted

as P = (Pij) ∈ {0, . . . , 255}n1 ×n2 . When applying JPEG
compression to P, first a blockwise DCT transform is ap-

plied to each 8×8 block of pixels from a fixed non-overlapping
grid. Then, the DCT coefficients are divided by quantiza-
tion steps and rounded to integers. Formally, let P(b) be
the bth 8 × 8 block when ordering the blocks, e.g., in a
row-by-row fashion (b = 1, . . . , n1 × n2/64). With an 8 × 8
luminance quantization matrix Q = {Qkl}, 1 ≤ k, l ≤ 8,

we denote D(b) = DCT(P(b))./Q the raw (non-rounded)
values of DCT coefficients. Here, the operation ′./′ is ele-
mentwise division of matrices and DCT(.) is the DCT trans-
form used in the JPEG compressor. Finally, we denote by
X(b) = round(D(b)) the quantized DCT coefficients rounded
to integers. We use the symbols D and X to denote the
arrays of all raw and quantized DCT coefficients when ar-
ranging all blocks D(b) and X(b) in the same manner as the
8 × 8 pixel blocks in the uncompressed image.

2.2 DCT transform
The JPEG format allows several different implementa-

tions of the DCT transform, DCT(.), which may especially
impact the security of side-informed steganographic meth-
ods that assign costs based on the DCT coefficients’ round-
ing errors. In this work, we use the DCT(.) implemented
as ’dct2’ in Matlab with the input matrix of pixel values
represented as ’double’. In particular, a block of 8 × 8 DCT
coefficients is computed from a block P(b) as

DCT(P(b))kl =

7
∑

i,j=0

wkwl

4
cos

πk(2i + 1)

16

× cos
πl(2j + 1)

16
P

(b)
ij , (1)

where k, l ∈ {0, . . . , 7} index the DCT mode (spatial fre-
quency) and w0 = 1/

√
2, wk = 1 for k > 0.

To make sure that both the cover and stego images were
created using the same JPEG compressor and to guaran-
tee that our steganalyzers will not be detecting compressor
artifacts but only the impact of embedding, we adopt the
following procedure for all steganographic algorithms that
output JPEG stego images. To obtain an actual JPEG im-
age from a two-dimensional array of quantized DCT coeffi-
cients X (cover) or Y (stego), we first create an (arbitrary)
JPEG image of the same dimensions n1 × n2 using Mat-
lab’s ’imwrite’ with the same quality factor, read its JPEG
data structure using ’jpeg_read’ from Sallee’s JPEG Tool-
box (http://www.philsallee.com/jpegtbx/index.html)
and then merely replace the array of quantized coefficients
in this structure with X and Y to obtain the corresponding
cover and stego images.

3. UNIVERSAL DISTORTION FUNCTION
In this section, we describe the universal distortion func-

tion UNIWARD that will be used to construct stegano-
graphic schemes in all embedding domains. To this end,
in Section 3.1 we first introduce the wavelet directional fil-
ter bank using which UNIWARD is built and then, in Sec-
tions 3.2–3.3 we define the distortion between cover and
stego images as a sum of relative changes between wavelet
coefficients. We do so separately for steganography in the
spatial and JPEG domains and for side-informed JPEG do-
main when the sender has an uncompressed image available.
Since the distortion defined in this manner is non-additive,
in Section 3.4 we explain a general procedure (originally in-
troduced in [3]) that gives UNIWARD an additive form to

http://www.philsallee.com/jpegtbx/index.html


be able to embed in practice near the payload–distortion
bound using Syndrome–Trellis Codes (STCs) [5].

3.1 Wavelet directional filter bank
For a given image X represented in the spatial domain,

we evaluate its smoothness in multiple directions using the
Daubechies 8-tap Wavelet Directional Filter Bank
(D-WDFB) B = {K(1), K(2), K(3)} consisting of the LH,
HL, and HH directional high-pass filters (kernels K). These
three filters are built from one-dimensional low-pass (h) and
high-pass (g) decomposition filters shown in Table 1:

K(1) = h · gT, K(2) = g · hT, K(3) = g · gT. (2)

Observe from Table 1 that the support of each
one-dimensional filter is 16, which gives the kernels the size
of 16 × 16. We define the kth directional residual as R(k) =
K(k)?X, k = 1, 2, 3, where ’?’ is a mirror-padded convolution
that gives each R(k) the dimension of n1 × n2. The purpose
of the mirror-padding is to prevent introducing embedding
artifacts at the image boundary. Also notice that the direc-
tional residuals are essentially the first-level2 undecimated
wavelet LH, HL, and HH directional decomposition of X.
The reason for selecting this filter bank for constructing
UNIWARD is found in [14], where, among the Daubechies
wavelets, the authors studied several different filter banks,
including the Sobel edge detector, non-directional kernels,
and Haar wavelets. Since the Daubechies wavelets gave con-
sistently the best results, we use this filter bank in this article
as well.

3.2 UNIWARD for spatial and JPEG domains
Given a pair of cover and stego images, X, and Y, we will

denote with W
(k)
uv (X) and W

(k)
uv (Y) the uvth wavelet coef-

ficient in the kth decomposition obtained using kernels (2).
If X, and Y are JPEG images, they are first decompressed
to the spatial domain and then the wavelet transform is ap-
plied. The distortion between both images is the sum of
relative changes of the wavelet coefficients w.r.t. the cover
image:

D(X, Y) ,

3
∑

k=1

∑

u,v

|W (k)
uv (X) − W

(k)
uv (Y)|

ε + |W (k)
uv (X)|

, (3)

where the sum over uv is taken over all n1 × n2 subband
coefficients and ε > 0 is a stabilizing constant to avoid di-
viding by zero. In our implementation, we set ε = 10 × eps
(in Matlab), which means that ε ≈ 10−15. From experi-
ments, we found out that the security of embedding using
UNIWARD is rather insensitive to the exact value of this
parameter.

To understand the logic behind this definition, realize that
the ratio in (3) is smaller when a large cover wavelet coef-
ficient is changed, which will happen in textures/noisy re-
gions and near edges. On the other hand, if at least one
coefficient, which is small, is changed by a relatively large
amount, the distortion value will also be large. Thus, (3)
discourages making changes in regions where the content is
smooth (and thus modelable) in at least one direction.

2Experiments with multiple decomposition levels did not
improve security in any noticeable manner.

3.3 UNIWARD for side-informed JPEG em-
bedding

In general, by side-informed embedding we understand
any embedding method where the sender has a higher-quality
version of the cover available (the so-called ’precover’). His-
torically, the first method that used precover was the Em-
bedding by Dithering algorithm [9] that utilized a true-color
image on its input to embed while converting the image to a
256-color palette GIF. The term precover is due to Ker [17].

Specifically in the JPEG domain, the precover attains the
form of the unquantized DCT coefficients Dij obtained from
the raw precover image P. In this case, the embedder may
choose to round Dij “up” or “down” to modulate its parity
(e.g., the least significant bit of the rounded value). When
compressing the precover P to the cover image X, the round-
ing error for the ijth DCT coefficient is

eij = |Dij − Xij |, eij ∈ [0, 0.5]. (4)

By rounding “to the other side,” the sender introduces the
following embedding change

Yij = Xij + sign(Dij − Xij), (5)

which corresponds to a “rounding error” of 1 − eij . There-
fore, every embedding change increases the distortion w.r.t.
the precover by the difference between both rounding errors:

|Dij − Yij | − |Dij − Xij | = 1 − 2eij . (6)

It is thus natural to define the distortion for side-informed
embedding in JPEG domain as the difference:

D(SI)(X, Y) , D(P, Y) − D(P, X)

=

3
∑

k=1

∑

u,v

|W (k)
uv (P) − W

(k)
uv (Y)| − |W (k)

uv (P) − W
(k)
uv (X)|

ε + |W (k)
uv (P)|

.

(7)

We would like to point out that the linearity of DCT
and the wavelet transforms guarantee that D(SI)(X, Y) ≥ 0.
This is because rounding a DCT coefficient to obtain a cover
X corresponds to adding a certain two-dimensional 8×8 pat-
tern in the spatial domain, which depends on the modified
DCT mode, and thus a 23 × 23 pattern in the wavelet do-
main because the support of the 8-tap Daubechies wavelets
is 16 × 16. On the other hand, rounding “to the other side”
to obtain the stego image Y corresponds to subtracting the
same pattern but with a larger amplitude, which is why

|W (k)
uv (P) − W

(k)
uv (Y)| − |W (k)

uv (P) − W
(k)
uv (X)| ≥ 0.

3.3.1 Relationship of UNIWARD to prior art
Equation (7) bears some similarity to the distortion uti-

lized in the recently proposed Normalized Perturbed Quanti-
zation (NPQ) [15]. There, the authors also proposed to com-
pute the embedding distortion as a relative change of cover
DCT coefficients. What distinguishes UNIWARD from the
distortion function of NPQ is the fact that we compute the
distortion using a directional filter bank in the wavelet do-
main, which brings in a very important ingredient – di-
rectional sensitivity – and thus potentially better content
adaptability. Furthermore, in our approach we treat all
DCT coefficients equivalently and do not exclude those that
are zeros in the cover. UNIWARD also naturally incor-
porates the influence of the quantization step because the



Table 1: One-dimensional filters used to construct the kernels of the D-WDFB using (2).

h = Daubechies 8-tap wavelet decomposition low-pass filter
−0.5

0

0.5

g = Daubechies 8-tap wavelet decomposition high-pass filter
−0.5

0

0.5

wavelet coefficients are computed from the decompressed
JPEG image.

Also, distortion (3) is built similarly as the embedding dis-
tortion used in WOW [14] in that it is also capable of assess-
ing local cover content using directional residuals computed
in the wavelet domain. The pixel costs of WOW are, how-
ever, obtained in a different manner. First, for every sub-
band and every pixel it computes the so-called embedding
suitabilities, which are sums of weighted changes of wavelet
coefficients. Then, the suitabilities are aggregated using a
reciprocal Hölder norm to obtain costs with the property
that if at least one suitability is zero (or very small), the
embedding cost is infinite (very large). We refer the reader
to the original publication for more details.

3.4 Additive form of UNIWARD
Note that both (3) and (7) are non-additive because chang-

ing pixel Xij will affect a 16×16 neighborhood of wavelet co-
efficients (the support size of the Daubechies 8-tap wavelet).
As already mentioned above, for images represented in the
JPEG domain, changing a JPEG coefficient Xij will affect
a block of 8 × 8 pixels and thus 23 × 23 wavelet coefficients.
Therefore, when changing neighboring pixels (or DCT co-
efficients), the embedding patterns overlap and the changes
“interact,” causing the non-additivity of D. Even though
there exist methods for embedding using non-additive dis-
tortion functions (e.g., the Gibbs construction [3]), realizing
the embedding using additive distortion is significantly eas-
ier. Moreover, in the case of UNIWARD, it appears that the
interactions among nearby embedding changes are strong
enough to make the Gibbs construction ineffective in prac-
tice. The Gibbs construction is only capable of embedding
the so-called erasure entropy but with a distortion corre-
sponding to the actual entropy of the Markov field. The
stronger the interactions among embedding changes are, the
larger is the difference between both entropies, and the less
effective the Gibbs construction becomes. Detailed techni-
cal explanation of this issue supported with experiments on
real images appears in the journal version of this paper.

As shown in [3], any distortion function D(X, Y) can be
used for embedding in its so-called additive approximation
by using D to compute the cost of changing each pixel/DCT
coefficient. In particular, the cost, ρij , of changing Xij to
Yij when leaving all other cover elements unchanged is:

ρij(X, Yij) , D(X, X∼ijYij), (8)

where X∼ijYij is the cover image X with only its ijth ele-
ment changed: Xij → Yij .3 Note that ρij = 0 when X = Y.
We will denote the additive approximations to (3) and (7)
with a subscript “A.” For example, the additive approxima-

3This notation was used in [3] and is also standard in the
literature on Markov random fields [32].

tion to D(X, Y) is:

DA(X, Y) =

n1
∑

i=1

n2
∑

j=1

ρij(X, Yij)[Xij 6= Yij ]. (9)

Note that the presence of absolute values in D(X, Y) (3)
implies

ρij(X, Xij + 1) = ρij(X, Xij − 1), ∀i, j, and Xij , (10)

which permits us to use a ternary embedding operation for
the spatial and JPEG domains. Practical embedding algo-
rithms can be constructed using the ternary multi-layered
version of STCs (Section IV in [5]). One might seemingly
rightfully argue that the embedding cost should depend on
the polarity of the change, however the equal cost for both
possible changes is given by the distortion function. More-
over, since UNIWARD restricts the embedding changes to
textures, the potential disadvantage of having equal costs
for both polarities is reduced and it allows us to reduce
the embedding distortion for a fixed payload by utilizing
stronger ternary codes. This is expected to become espe-
cially advantageous for larger payloads. Finally, note that

for the side-informed JPEG steganography, D
(SI)
A (X, Y) is

inherently limited to a binary embedding operation because
the sender has only two options – either rounding Xij up or
down.

The embedding methods that use the additive approxima-
tions of UNIWARD for the spatial, JPEG, and side-informed
JPEG domain will be called S-UNIWARD, J-UNIWARD,
and SI-UNIWARD, respectively.

4. SETUP OF ALL EXPERIMENTS
Before reporting the experimental results of embedding

with UNIWARD in all three domains in the next section,
we summarize the common core of all experiments.

4.1 Cover source
All experiments are conducted on the BOSSbase database

ver. 1.01 [7] containing 10,000 512 × 512 8-bit grayscale im-
ages coming from eight different cameras. This database
is very convenient for our purposes because it contains un-
compressed images that serve as precovers for side-informed
JPEG embedding that can be compressed to any desirable
quality factor for the JPEG domain. The fact that the
images are downsampled rather than raw has an effect on
the statistical detectability, especially for algorithms oper-
ating in the spatial domain. According to the study car-
ried out in [24], downsampling without antialiasing (that
is with a fixed-size interpolation kernel) as is done for the
BOSSbase makes detection of steganography more difficult
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Figure 1: Detection error EOOB as a function of rela-
tive payload for S-UNIWARD, HUGO, and LSBM.
The dotted curve shows the performance of UNI-
WARD when implemented with STCs with con-
straint height h = 12.

rather than easier4 despite the presence of resizing artifacts
that might aid detection. This is because resizing in general
decreases statistical dependencies between adjacent pixels,
which seems to have a much stronger effect than the weak
resizing artifacts. Perhaps a more careful statement would
be to say that current empirical steganalyzers built using
rich models are unable to utilize the resizing artifacts to the
point that would outweigh the lowered dependencies among
pixels.

The steganographic security is evaluated empirically us-
ing binary classifiers trained on a given cover source and its
stego version embedded with a fixed payload. Even though
this setup is artificial and does not correspond to real-life
applications, it allows assessment of security w.r.t. the pay-
load size, which is the goal of academic investigations of this
type.

4.2 Features and machine learning
Spatial-domain steganography methods will be analyzed

using the Spatial Rich Model (SRM) [11] consisting of 39
symmetrized sub-models quantized with three different
quantization factors with a total dimension of 34, 671. JPEG-
domain methods (including the side-informed algorithms)
will be steganalyzed using the union of a downscaled ver-
sion of the SRM with a single quantization step q = 1
(SRMQ1) with dimension 12, 753 and the JPEG Rich Model
(JRM) [23] with dimension 22, 510, giving the total feature
dimension of 35, 263.

All classifiers were implemented using the ensemble [26]
with Fisher linear discriminant as the base learner. Security
is quantified using the ensemble’s “out-of-bag” (OOB) error
EOOB, which is an unbiased estimate of the minimal total
testing error under equal priors [26] (equal a priori proba-

4For a fixed root rate [2], embedding in resized images is
more difficult to detect than in cropped images.
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Figure 2: Embedding probability for payload 0.4 bpp
using HUGO (top right), WOW (bottom left), and
S-UNIWARD (bottom right) for a 128×128 grayscale
cover image shown in top left.

bilities of encountering a cover or stego image):

PE = min
PFA

1

2
(PFA + PMD). (11)

To show how the statistical detectability increases with
payload, we produce graphs showing EOOB as a function
of the relative payload. With the feature dimensionality
and the database size, the statistical scatter of EOOB over
multiple ensemble runs with different seeds was typically so
small that drawing error bars around the data points in the
graphs would not show two visually discernible horizontal
lines, which is why we omit this information in our graphs.
As will be seen later, the differences in detectability between
the proposed methods and prior art are so large that there
should be no doubt about the statistical significance of the
improvement. The code for extractors of all rich models as
well as the ensemble is available at
http://dde.binghamton.edu/download.

5. EXPERIMENTS AND COMPARISON TO
PRIOR ART

This section contains the results of all experiments carried
out with the costs obtained from the additive approximation
of UNIWARD for all three embedding domains – spatial,
JPEG, and side-informed JPEG. Spatial-domain methods
are tested for relative payloads 0.05, 0.1, 0.2, . . ., 0.5 bits per
pixel (bpp), while JPEG-domain and side-informed JPEG
methods will be tested on the same payloads expressed in
bits per non-zero cover AC DCT coefficient (bpnzAC). Even
though J-UNIWARD and SI-UNIWARD embed into DC
modes and zero coefficients, we express the payload in terms
of bpnzAC in order to be compatible with previous art.

http://dde.binghamton.edu/download


5.1 Spatial domain
In the spatial domain, we compare S-UNIWARD with

HUGO [28], Wavelet Obtained Weights (WOW) [14], and
LSB Matching (LSBM). HUGO [28] embeds by minimizing
an embedding distortion defined as a weighted norm between
the features of the cover and stego image in the SPAM fea-
ture space [27]. It assigns large weights to well-populated
feature bins and low weights to sparsely populated bins that
correspond to more complex content. We used the HUGO
embedding simulator [7] with default settings γ = 1, σ = 1,
and the switch --T with T = 255 to remove the weakness
reported in [25].

Given the similarity of distortion functions employed in
WOW and S-UNIWARD (see Section 3.3.1 on comparison to
prior art), one can expect a correspondingly similar perfor-
mance of both algorithms, which is confirmed below. Since
both algorithms are highly adaptive, they are expected to
better resists steganalysis using rich models [11] than HUGO.

We report the results of all algorithms for their embed-
ding simulators that operate at the theoretical payload–
distortion bound. The non-adaptive LSBM was simulated at
the ternary bound corresponding to uniform costs, ρij = 1
for all i, j. The only algorithm that we implemented using
STCs (with constraint height h = 12) to assess the coding
loss is the proposed S-UNIWARD method.

Figure 1 shows the EOOB error for all stego methods as
a function of the relative payload expressed in bpp. As
expected, the security of the S-UNIWARD and WOW is
practically the same due to the similarity of their distortion
functions. The improvement over HUGO is, however, quite
significant especially for large payloads. As expected, the
non-adaptive LSBM performs poorly across all payloads.

5.1.1 Content adaptivity
In Figure 2, we contrast the placement of embedding

changes for HUGO, WOW, and S-UNIWARD. Observe that
the cover image has numerous horizontal and vertical edges
and also some textured areas. While HUGO embeds with
high probability into the pillar edges as well as the horizontal
lines above the pillars, S-UNIWARD directional costs force
the changes solely into the textured areas.

While the placement of embedding changes for WOW and
S-UNIWARD is quite similar, S-UNIWARD seems to be
more discriminative than WOW. This higher sensitivity to
content is due to the fact that it only takes one wavelet co-
efficient (among 3 × 162 coefficients affected by changing a
single pixel Xij → Yij) to be close to zero to have a very
large embedding cost ρij . In contrast, in WOW, the costs
are obtained by adding reciprocal values of three “embed-
ding suitabilities,” which are themselves sums over many
wavelet coefficients. This makes encountering a high em-
bedding cost less likely than in S-UNIWARD.

Upon closer inspection of the embedding probabilities for
S-UNIWARD in Figure 2, one observes alternating short
streaks with large differences in embedding probabilities.
This is caused by the properties of the Daubechies 8-tap
filter bank, which has proved to be ideal for compression of
natural images due to its ability to produce many small co-
efficients even in textured regions. In combination with the
oscillation of its high-pass component between positive and
negative values, it creates the streaks as well as some small
low-probability areas in textured regions. While the streaks

may increase the statistical detectability, steganalysis with
rich media models showed no evidence for this.

5.2 JPEG domain
To the best knowledge of the authors, currently the most

secure embedding method for JPEG images that does not
use any side information is the heuristic Uniform Embed-
ding Distortion UED method [13]. It offers a substantially
better empirical security than the nsF5 algorithm [12]. The
authors of UED implemented their algorithm with binary
codes. However, since the UED costs do not depend on
the polarity of the embedding change direction, we included
for comparison the UED implemented using ternary codes
rather than binary as this is likely to produce an even more
secure method.5

All methods were again simulated at their corresponding
payload–distortion bounds. The costs for nsF5 were uniform
over all non-zero DCTs with zeros assigned infinite costs (the
so-called wet elements [10]). Figure 3 shows the results for
JPEG quality factors 75, 85, and 95. J-UNIWARD clearly
outperforms nsF5 as well as both versions of UED by a size-
able margin across all three quality factors. Furthermore,
the coding loss of J-UNIWARD implemented using STCs
with constraint height h = 12 appears rather negligible.

5.3 Side-informed JPEG domain
In the JPEG domain, by far the most successful paradigm

is to minimize the distortion w.r.t. the raw, uncompressed
image, if available [22, 29, 31, 15]. In this section, we com-
pare SI-UNIWARD with three other side-informed JPEG
steganographic schemes that constitute the current state
of the art. The first is the Entropy Block Steganography
(EBS) [31] with the cost of DCT coefficient ij correspond-
ing to the DCT mode kl:

ρ
(kl)
ij =

(

qkl(0.5 − |eij |)
H(X(b))

)2

, (12)

where H(X(b)) is the block entropy defined as H(X(b)) =

−
∑

m
h

(b)
m log h

(b)
m , where h

(b)
m is the normalized histogram

of all non-zero DCT coefficients in block X(b). EBS em-
beds into all DCT coefficients, including the DC term and
coefficients that would otherwise round to zero (Xij = 0).

The second method is the already mentioned Normalized
Perturbed Quantization (NPQ) [15] with embedding costs

ρ
(kl)
ij =

qλ1

kl (1 − 2|eij |)
(µ + |Xij |)λ2

, (13)

where, per the experiments reported in [15], we set µ = 0
as NPQ embeds only in non-zero AC DCT coefficients. We
also set λ1 = λ2 = 1/2 as this setting seemed to produce the
most secure scheme across a wide range of payloads when
tested with various feature sets.

The third algorithm is the BCHopt [29] introduced in
2009. We refer the reader to this publication for more details
about its cost assignment and the actual coding.

5.3.1 Problem with zero embedding costs
We want to point out that the cost ρij for all three prior-

art methods as well as for SI-UNIWARD is equal to zero

5The authors of UED were apparently unaware of this pos-
sibility to further boost the security of their algorithm using
ternary codes.



when the rounding error eij = 1/2. This, however, in-
evitably leads to a technical problem that, to the best knowl-
edge of the authors, has not been disclosed elsewhere. It
is connected to the fact that when eij = 1/2 the cost of
rounding Dij “down” instead of “up” should not be zero be-
cause, after all, this does constitute an embedding change.
This does not affect security much when the number of such
DCT coefficients is small. With an increasing number of co-
efficients with eij = 1/2 (we will call them 1/2-coefficients),
however, the distortion is no longer a good measure of statis-
tical detectability and one starts observing a rather patho-
logical behavior – with payload approaching zero, the detec-
tion error does not saturate at 50% (random guessing) but
rather at a lower value and only reaches 50% for payloads
nearly equal to zero.6 The strength with which this phe-
nomenon manifests depends on how many 1/2-coefficients
are in the image, which in turn depends on the implementa-
tion of the DCT used to compute the costs and the JPEG
quality factor.

The slow DCT (implemented using ’dct2’ in Matlab) typ-
ically produces a negligible number of 1/2-coefficients to
cause any pathological behavior with the exception of high
quality factors (see below). However, in the fast-integer
implementation of DCT (e.g., Matlab’s ’imwrite’), all Dij

are multiples of 1/8, which increases the number of 1/2-
coefficients especially for high JPEG quality factors. To
avoid dealing with this issue in this paper, we computed the
embedding costs using the slow DCT implemented using
Matlab’s ’dct2’ as explained in Section 2.2.

Even with the slow DCT implementation, however, the ef-
fect of 1/2-coefficients does not disappear. As can be easily
verified from the formula for the DCT (1), when k, l ∈ {0, 4},
the value of Dkl is always a rational number because the
cosines are either 1 or

√
2/2, which, together with the mul-

tiplicative weights w, gives again a rational number. In par-
ticular, the DC coefficient (mode 00) is always a multiple of
1/4, the coefficients of modes 04 and 40 are multiples of 1/8,
and the coefficients corresponding to mode 44 are multiples
of 1/16. For all other combinations of k, l ∈ {0, . . . , 7}, Dij

is an irrational number. In practice, any embedding whose
costs are zero for 1/2-coefficients will thus strongly prefer
these four DCT modes, which will cause a highly uneven
distribution of embedding changes among the DCT coef-
ficients. Because rich JPEG models [23] utilize statistics
collected for each mode separately, they are capable of de-
tecting this statistical peculiarity even at low payloads.

To demonstrate the pathological behavior of all four em-
bedding schemes due to concentrating their
embedding changes in DCT modes 00, 04, 40, and 44, we
subjected all embedding methods to steganalysis using the
JRM+SRMQ1 rich media model (see Section 4.2) for the
JPEG quality factor 95. The results displayed in Figure 4
clearly show the saturation of the testing error at ∼ 25−30%
for small–medium payloads. Note that NPQ and BCHopt
do not exhibit the pathological error saturation as strongly
because they do not embed into the DC term (mode 00).

To eliminate this problem, we decided to modify all four
side-informed JPEG embedding schemes in the following
manner. We prohibit embedding changes into all
1/2-coefficients in modes 00, 04, 40, and 44.7

6This is because the embedding strongly prefers 1/2-
coefficients.
7In practice, we assign very large costs to such coefficients.
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Figure 3: Testing error EOOB for J-UNIWARD,
nsF5, and binary (ternary) UED on BOSSbase 1.01
with the union of SRMQ1 and JRM and ensemble
classifier for quality factors 75, 85, and 95.
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Figure 4: Pathological behavior of all four embed-
ding schemes with zero embedding cost for 1/2-
coefficients (JPEG quality factor 95). Notice that
the testing error saturates for small–middle pay-
loads due to the fact that the embedding strongly
prefers DCT coefficients with zero costs, which are
mostly located in DCT modes: 00, 04, 40, and 44.
NPQ and BCHopt exhibit this phenomenon to a
lesser degree because they avoid embedding in the
DC term.

While this measure seems to have largely solved the prob-
lem (see Figure 5), we are obviously facing a much more fun-
damental problem, which is how exactly the side-information
in the form of an uncompressed image should be utilized
for the design of steganographic distortion functions. The
authors postpone a detailed study of this quite intriguing
problem to a separate paper.

Figure 5 shows that SI-UNIWARD achieves the best se-
curity among the tested methods for all payloads and all
JPEG quality factors while its coding loss is quite small.

6. CONCLUSION
The modern paradigm for building steganographic

schemes in empirical cover sources is to formulate the data
hiding problem as source coding with a fidelity constraint
and implement the embedding using existing codes operat-
ing near the rate–distortion bound. Technically, in imperfect
steganography one minimizes the steganographic Fisher in-
formation or, equivalently, embeds as large payload at a
given level of statistical detectability as possible. In practice,
one first defines the fidelity measure (embedding distortion)
and obtains feedback regarding the statistical detectability
empirically on a given source (database of images) using a
steganalyzer built using machine-learning and the best avail-
able cover models.

The main contribution of this paper is a clean, parameter-
free, universal design of the distortion function called UNI-
WARD. What distinguishes our approach from previous art
is that UNIWARD evaluates the embedding impact inde-
pendently of the embedding domain. Whether one embeds
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Figure 5: Testing error EOOB for SI-UNIWARD and
three other methods with the union of SRMQ1 and
JRM and the ensemble classifier for JPEG quality
factors 75, 85, and 95.



in the spatial or JPEG domain, the distortion is always com-
puted in the wavelet domain as a sum of relative changes of
wavelet coefficients in the highest frequency undecimated
subbands. Since the wavelet basis functions are directional,
UNIWARD can assess the neighborhood of each pixel (DCT
block) for the presence of discontinuities in multiple direc-
tions and directs the embedding into the most complex tex-
tures and “noisy” regions in the cover image. In particular,
UNIWARD discourages embedding in regions that can be
modeled along at least one direction, such as “clean edges.”

We implemented this model-free heuristic approach in the
spatial, JPEG, and side-informed JPEG domains. The merit
of the proposed construction is proved in this article by
showing (sometimes quite significant) improvement over pre-
vious art when detecting steganography using rich media
models. This applies especially to the JPEG and
side-informed JPEG domains. The innovative concept to
assess the costs of changing a JPEG coefficient in an alter-
native domain is, indeed, quite promising.

Finally, we have discovered that side-informed JPEG
steganographic schemes that assign zero embedding distor-
tion when the quantization error of DCT coefficients is 1/2
exhibit a pathological behavior that is especially striking for
high quality factors and for fast integer implementation of
the DCT. This is because any embedding that minimizes
distortion starts introducing embedding artifacts that are
quite detectable using the JPEG rich model. This finding
raises an important question, which is how to best utilize
the side information in the form of an uncompressed image
when embedding data into the JPEG compressed form. The
authors postpone detailed investigation of this open problem
to their future effort.

Matlab, MEX, and C++ code for all three UNIWARD al-
gorithms is available at
http://dde.binghamton.edu/download/stego_algorithms/.
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