
JPEG-Phase-Aware Convolutional Neural Network for
Steganalysis of JPEG Images

Mo Chen, Vahid Sedighi, Mehdi Boroumand, and Jessica Fridrich
Binghamton University
Department of ECE

Binghamton, NY 13902
mochen8@gmail.com,{vsedigh1,mboroum1,fridrich}@binghamton.edu

ABSTRACT
Detection of modern JPEG steganographic algorithms has tradi-
tionally relied on features aware of the JPEG phase. In this paper,
we port JPEG-phase awareness into the architecture of a convo-
lutional neural network to boost the detection accuracy of such
detectors. Another innovative concept introduced into the detector
is the “catalyst kernel” that, together with traditional high-pass
filters used to pre-process images allows the network to learn ker-
nels more relevant for detection of stego signal introduced by JPEG
steganography. Experiments with J-UNIWARD and UED-JC embed-
ding algorithms are used to demonstrate the merit of the proposed
design.

KEYWORDS
Steganography, steganalysis, convolutional neural network, JPEG,
phase aware, catalyst kernel

ACM Reference format:
Mo Chen, Vahid Sedighi, Mehdi Boroumand, and Jessica Fridrich. 2017.
JPEG-Phase-Aware Convolutional Neural Network for Steganalysis of JPEG
Images. In Proceedings of IH&MMSec’17, Philadelphia, PA, USA, Jun 20-22,
2017, 10 pages.
https://doi.org/http://dx.doi.org/10.1145/3082031.3083248

1 INTRODUCTION
Steganography in its modern form is a private, covert communi-
cation method in which the sender hides the message inside an
innocuous looking cover object using an algorithm driven by a
secret shared with the recipient. The communication channel is
observed by an adversary or warden who tries to establish whether
the communicating parties use steganography. While covers can
have many different forms, the most popular and also practical
choices for the steganographers are digital media files. Among
them, the JPEG format is by far the most prevalent image format in
current use due to its efficiency to compress images with a small
loss of perceptual quality.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IH&MMSec’17, Jun 20-22, 2017, Philadelphia, PA, USA
© 2017 Association for Computing Machinery.
ACM ISBN ISBN 978-1-4503-5061-7/17/06. . . $15.00.
https://doi.org/http://dx.doi.org/10.1145/3082031.3083248

The first steganographic algorithms designed for the JPEG for-
mat were Jsteg [26] and OutGuess [17], followed by the F5 [28],
Steghide [11], and Model-Based Steganography [20]. Because Jsteg
andOutGuess predictablymodify the histogram of DCT coefficients,
the early attacks were based on first-order statistics of Discrete Co-
sine Transform (DCT) coefficients [32]. Later, significantly more
accurate detectors were constructed as likelihood ratio tests with
the aid of better models of cover DCT coefficients [24, 25]. The
best detectors for F5 and its improved version nsF5 [7] as well as
for Model-Based Steganography and Steghide are currently con-
structed as classifiers trained on features formed from quantized
DCT coefficients, the JPEG RichModel (JRM) [15]. Modern schemes,
such as J-UNIWARD [14] and variants of UED [9, 10] are currently
best detected using the so-called JPEG-phase-aware features formed
from residuals extracted in the spatial domain split by their JPEG
phase. Examples of such features include DCTR [12], GFR [22],
PHARM [13], and their selection-channel-aware versions [5]. The
key concept in their design is the notion of JPEG phase, which is
the location of the residual with respect to the JPEG 8 × 8 grid. By
splitting the statistics collected from the residuals by their phase
more accurate detectors can be built.

Recently, novel detector architectures implemented within the
paradigm of Convolutional Neural Networks (CNN) have been pro-
posed for steganalysis of spatial-domain steganography [18, 23,
29, 30]. In this paper, we adapt CNN-based detectors for detection
of modern JPEG-domain steganography by porting the concept
of JPEG-phase-awareness into the network architecture. To this
end, we implement a new phase-split layer and study two ways
for incorporating phase awareness within the network architec-
ture. Additionally, we augment the KV kernel traditionally used
to prefilter images for CNN detectors by a second fixed kernel
that works as a “catalyst” and allows the network to learn ker-
nels that are more suitable for detecting stego noise introduced by
JPEG-domain embedding schemes. After initial experiments with
the number of layers, kernels, the network depth and height, and
forming ensembles of networks by bagging on the training set, we
arrived at a design capable of improving upon the state-of-the-art
selection-channel-aware Gabor Filter Residuals (GFR) [5].

In the next section, we briefly introduce what we call JPEG phase.
In Section 3, we describe two possible network architectures capable
of working with phase-aware feature maps, the PNet and the VNet,
and explain our design choices. Section 4 contains the results of all
experiments on two steganographic algorithms, J-UNIWARD and
UED-JC across a range of payloads and two JPEG quality factors.
The performance is reported for both PNets and VNets in their
individual forms as well as ensembles over bagged training sets.

https://doi.org/http://dx.doi.org/10.1145/3082031.3083248
https://doi.org/http://dx.doi.org/10.1145/3082031.3083248

IH&MMSec’17, Jun 20-22, 2017, Philadelphia, PA, USA Mo Chen, Vahid Sedighi, Mehdi Boroumand, and Jessica Fridrich

Additionally, we study the impact of both cover and stego source
mismatch on the detectors’ accuracy. The paper is concluded in
Section 5 where we also outline our future effort.

2 JPEG PHASE
In this section, we briefly review the concept of JPEG phase as used
in steganalysis. WLOG, we will assume that the image is grayscale
with n1 × n2 pixels with n1,n2 multiples of 8. In a decompressed
JPEG, the statistical properties of the stego signal are not spatially
invariant within each 8 × 8 block because they depend on the
position of the pixel and its neighborhood within the JPEG 8 × 8
pixel grid. It thusmakes sense to collect statistics of pixels separately
for each phase (i, j), 0 ≤ i, j ≤ 7, which is defined as a sublattice of
pixels with indices

Li j = {(i + 8k, j + 8l)|0 ≤ k < n1/8, 0 ≤ l < n2/8}. (1)

The computation of JPEG-phase-aware features starts
with computing noise residuals by convolving the decompressed
(non-rounded) JPEG image x ∈ Rn1×n2 with kernels g ∈ Rk1×k2
from some filter bank B, z(x, g) = x⋆ g. For example, in GFR [22]
the bank B is formed by discretized 2D Gabor bases

дλ,θ,ϕ (x ,y) = e−(x ′2+γ 2y′2)/2σ 2
cos

(
2π

x ′

λ
+ ϕ

)
, (2)

where x ′ = x cosθ + y sinθ , y′ = −x sinθ + y cosθ , σ = 0.56λ,
γ = 0.5. Next, z is quantized, r = QQ (z/q), where q > 0 is a
fixed quantization step and Q = {−T , . . . ,−1, 0, 1, 2, . . . ,T } a set
of 2T + 1 bin centroids with a truncation thresholdT . Each residual
is used to compute 64 histograms for each JPEG phase 0 ≤ i, j ≤ 7,
0 ≤ m ≤ T :

h
(i, j)
m (x, g,Q) =

∑
(a,b)∈Li j

[|rab (x, g,Q)| =m], (3)

where [P] is the Iverson bracket equal to 1 when the statement P is
true and 0 otherwise. All T + 1 values, h(i, j)0 , . . . , h

(i, j)
T from each

histogram are concatenated into a vector of 64 × (T + 1) values
and these vectors are then concatenated for all kernels g ∈ B.
The resulting feature vector with 64 × (T + 1) × |B| elements is
finally symmetrized based on the symmetries of natural images
and kernels g. Depending on the filter bank, different versions of
JPEG-phase-aware features can be obtained [12, 13, 22].

In [5], the authors showed how the knowledge of the selection
channel (the embedding change probabilities) can be incorporated
into phase-aware features in a manner that can be considered as
a generalization of the principle used in the maxSRM feature vec-
tor [4] used for steganalysis in the spatial domain. The detectors
proposed here will be evaluated against this selection-channel-
aware version of GFR features abbreviated as SCA-GFR.

3 THE PROPOSED PHASE-AWARE CNN
In this section, we describe the overall architecture of the proposed
JPEG-phase-aware CNN. All key design components are explained
and justified through experiments.

Recently, Xu et al. [29, 30] introduced a five-layer CNN for spatial-
domain steganalysis with competitive performance. Each layer in
this network processes the feature maps outputted by the previous
layer in four steps: convolution, batch normalization, non-linear

activation, and pooling. This CNN structure design contains a few
key elements that are important to CNN-based steganalysis. In
the first convolutional layer, an absolute value activation (ABS)
layer is used to facilitate and improve statistical modeling in the
subsequent layers. The TanH activation is employed at the early
stages to limit the range of data values and prevent the deeper
layers from modeling statistically insignificant large values, while
the batch normalization (BN) is applied before each non-linear
activation to normalize the weak stego noise and improve the net
convergence. The spatial size of convolutional kernels in deeper
layers is 1×1 to limit the receptive filter size and reduce the support
region of modeling. From now on, we refer to this architecture as
XuNet.

In our investigation, we started with the XuNet and modified it
to allow the network to process information for each JPEG phase
separately, together with several other important modifications. We
view the first two layers of XuNet (not counting the fixed kernel) as
“feature extractors” (non-linear residuals), which are then in layers
3–5 combined and compacted into a low-dimensional feature vector
used for detection.

To incorporate phase awareness into this architecture, we need
to disable pooling in the first two layers because it would mix
different phases. The phase-split layer is applied to feature maps
outputted by the second layer by subsampling each feature map on
64 sublattices (1). The network than continues the computation on
64 eight-times smaller feature maps.

We investigated two possibilities for the network architecture
behind the phase-split layer. In what we termed a ’PNet’ (Fig. 1 left),
after the phase split we let each JPEG phase go through its own
independent channel. This is similar in spirit to how JPEG-phase-
aware features are formed. Forcing the split, however, increases
the number of channels from 16 to 1024 (by factor of 64) and the
net becomes wider towards the last layers. This increases memory
requirements and also slows down training and testing due to
increased computational complexity.

As an alternative, we allowed the net itself to merge or split the
channels, which resulted in an alternative architecture depicted in
Fig. 1 right, the VNet. This version allows channel merging and is
more compact and faster to train. It also allows the model to take
advantage of the correlation between different phases in layers 3–5.

In a VNet, instead of being grouped the outputs of the PhaseSplit
module, 64 16×(64×64) feature maps, are concatenated into 1024×
(64 × 64) feature maps and fully convolved in the convolutional
layer in Group 3. This channel reduction speeds up training and
testing. Both versions of the CNN are shown in Fig. 1 in their final
forms, which will now be justified on experiments.

To determine the network architecture, we used a greedy ap-
proach in which we incrementally modified one layer of the CNN
while keeping everything else fixed and tested it on a fixed experi-
mental setup described next. We describe the details of this process
for the PNet only due to space limitations.

3.1 Standard developer setup
This setup involves attacking J-UNIWARD [14] at payload 0.4 bpn-
zac (bits per non-zero AC DCT coefficient) on BOSSbase 1.01 [1]
compressed with JPEG quality factor 75. This source was split

JPEG-Phase-Aware Convolutional Neural Network for Steganalysis of JPEG ImagesIH&MMSec’17, Jun 20-22, 2017, Philadelphia, PA, USA

Figure 1: Two phase-aware CNN architectures: PNet (left) and VNet (right). Layer types and parameter sizes are inside the
boxes. Data sizes are displayed on the sides. The dimensions of convolution kernels follow the format: (number of kernels) ×
(height × width × number of input feature maps) and the dimensions of data: (number of feature maps) × (height × width).
Padding by 2 is applied in all convolutional layers and pooling layers except for the last pooling layer.

into a training and testing set by randomly selecting the images
in a 60/40 ratio. The detection performance was measured with
the total classification error probability under equal priors PE =
minPFA

1
2 (PFA + PMD), where PFA and PMD are the false-alarm and

missed-detection probabilities. Sometimes in this paper, we will
present the error PE ∈ [0, 1] in percentage units, which is PE × 100.
To assess the robustness of the detector, we also report the testing
error on BOWS2 [2] to see the impact of testing on a different
source than the source on which the detector was trained.

3.2 Overall architecture
The PNet depicted in Fig. 1 left consists of a convolutional module
that transforms an input image into a “feature vector” of dimen-
sionality 8192, and a linear classification module consisting of a
fully-connected layer and a softmax layer outputting the probabili-
ties for each class (cover vs. stego).

Similar to XuNet, the convolutional module has five groups of
layers marked as ’Group 1’ to ’Group 5’ in Fig. 1. The CNN is also
equipped with the TanH non-linear activation in Groups 1 and 2,
and the Rectified Linear Unit (ReLU) in Groups 3–5. In Group 1, an
absolute value activation (ABS) layer is used to force the statistical
modeling to take into account the sign symmetry of noise residuals.

Additionally, Batch Normalization (BN) is performed right before
each non-linear activation layer to normalize each feature map to
zero-mean and unit-variance, and thus help the gradient descend
back-propagation algorithm avoid being trapped in local minima.
The network employs TanH instead of ReLU in Groups 1 and 2
to limit the range of data values and prevent the deeper layers
from modeling large values, as they are sparse and not statistically
significant. In Groups 3–5, the size of the convolutional kernels
is limited to 1 × 1 to model patterns of correlations in small local
regions.

The main differences between PNet (VNet) and XuNet can be
summarized as follows:

(1) Group 1 consists of two concatenated convolutional layers
(1F) and (1T). The 1F layer consists of four 5 × 5 high pass
kernels whose parameters are fixed during training. The
layer 1T contains eight 5× 5 kernels whose parameters are
learned during training. The fixed kernels increase the SNR
between the cover image and the stego signal. They also act
as regularizers to narrow down the feasible feature space
and thus help facilitate the convergence of the network.

(2) There is no pooling in Groups 1 and 2 because it would
lead to phase loss and mixing.

IH&MMSec’17, Jun 20-22, 2017, Philadelphia, PA, USA Mo Chen, Vahid Sedighi, Mehdi Boroumand, and Jessica Fridrich

(3) We insert a PhaseSplit module between Groups 2 and 3,
that splits Group 2’s outputs 16× (512× 512) by their JPEG
phase into 64 groups of 16× (64× 64). In other words, each
512 × 512 feature map will be split into 64 64 × 64 maps,
one map per JPEG phase.

(4) The last three layers are similar to XuNet but each of the 64
JPEG feature groups consisting of 16×(64×64) featuremaps
are first convolved with 32×(1×1) kernels to get 32×(32×
32) feature maps with ReLU and average pooling by 2. In
the next layer, convolution with 64×(1×1) kernels leads to
64×(16× 16) feature maps with ReLU and average pooling
by 2. And, in the last convolutional layer, convolutions with
128 × (1 × 1) kernels are applied to obtain a 128 × (1 × 1)
feature map with ReLU and average pooling by 16. In a
PNet, each phase group is processed independently, which
means that in the end there are 64 × 128 outputs fully
connected to the “classifier” part of the network.

Note that the 64 parallel channels do not need to be implemented
as a directed acyclic graph. They can be implemented by chain-
ing layers by using the convolutional filter group options sup-
ported by most CNN packages. To be more specific, the convo-
lutional module computes the convolution of the input map x with
a bank of D” multi-dimensional filters f to get the output y. Here,
x ∈ RH×W×D , f ∈ RD′′×(H ′×W ′×D), y ∈ R(H ′′×W ′′×D′′), where the
data x and y have a spatial structure (height×width×number of
feature maps), and the filter f has the structure output feature
map×(height×width×number of input feature maps). The filter
group option is the flexibility to group input feature maps x and
apply different subsets of filters to each group. To use this feature,
one specifies as input a bank of D” filters f ∈ RD′′×(H ′×W ′×D′)

such that D ′ divides the number of input dimensions D. These are
treated as д = D/D ′ filter groups; the first group is applied to di-
mensions d = 1, . . . ,D ′ of the input x; the second group is applied
to dimensions d = D ′ + 1, . . . , 2D ′ of the input x, and so on.

3.3 PhaseSplit module
The JPEG phase-split module is illustrated in Fig. 2. Each feature
map x is subsampled on 64 sublattices Li j (1) obtaining thus 64
feature submaps (for each sublattice Li j) from each feature map x.

Figure 2: PhaseSplit module.

3.4 Refined batch normalization
Batch normalization is an important design element for training the
proposed CNNs. Its allows us to use a larger learning rate and thus
speed up the learning, making the training process less dependent
on proper initialization. It also improves the detection accuracy.

The standard way to learn the BN’s per-channel mean and stan-
dard deviation is via moving average during training. However, our
architecture has too many BN parameters. For example, the PNet
has 8 + 16 + 2048 + 4096 + 8192 = 14,360 pairs of mean and stan-
dard deviation. Small errors propagate to the end and diminish the
performance. This “moment drift” is especially undesirable in ste-
ganalysis because the stego signal is very week. The consequence
of this are large fluctuations in the validation error during training.
To alleviate this problem, we refined the BN moment learning in
the following manner:

(1) Train the network as usual, without paying attention to
the BN moment learning rate.

(2) Every 8–10 epochs, freeze all net parameters and put the
net into the evaluation mode. Feed it with 2000/ 3000 mini-
batches from the randomized training set and calculate and
record the BN moments (mean and standard deviation) for
all these mini-batches.

(3) Set the BN moments to the median values across the com-
puted moments, validate, and test.

To further improve the accuracy, the batch size used in this refine-
ment step can be chosen to be a very large number compared with
the one used during training since there is no need for backward
propagation of the gradients during this step.

3.5 Fixed linear filters
The four 5 × 5 high pass kernels in the convolutional layer 1F
are shown in Fig. 3. The first filter, FKV, is ’SQUARE5x5’ from the
Spatial Rich Model (SRM) [6], also used in one of the first CNN
steganalysis detectors [18] and in XuNet. Due to its sign-changing
symmetric checkerboard pattern, this filter suppresses correlated
components (image content) while largely preserving the high-
frequency stego signal. The second filter FP is a point high-pass
filter chosen to complement FKV. It acts like a catalyst (activator
in chemical reactions) and allows the network to learn the kernels
in the second layer that are better at extracting the stego noise
introduced by JPEG steganography as will be seen below. The FH
and FV are two second-order horizontal and vertical Gabor filters (2),
with φ = π/2,σ = 1,θ = 0 and θ = π/2, respectively. These two
filters are added because FKV and FP are not directional.

Fig. 4 shows the effect of different combinations of fixed kernels
on the detection error for our standard developer setup (Sec. 3.1).
With only the FKV kernel, the detection error rate saturates at about
18–19%. However, after adding the catalyst high-pass filter FP, the
detection error rate quickly drops to 8.6%. With the addition of FH
and FV, the error rate further decreases to 7.9%.

Leveraging the fact that convolution is associative and distribu-
tive, the combined action of the convolutional layers 1F and 1T is
equivalent to convolutions with eight 9 × 9 kernels. The equivalent
kernels of the CNN trained with only FKV and with both FKV and
FP are illustrated in Fig. 5, which sheds light on the role of the point
filter FP. With only FKV, the trained 9 × 9 kernels in Group 1 still

JPEG-Phase-Aware Convolutional Neural Network for Steganalysis of JPEG ImagesIH&MMSec’17, Jun 20-22, 2017, Philadelphia, PA, USA

FKV =

−.0833 +.1667 −.1667 +.1667 −.0833
+.1667 −.5000 +.6667 −.5000 +.1667
−.1667 +.6667 −1.0000 +.6667 −.1667
+.1667 −.5000 +.6667 −.5000 +.1667
−.0833 +.1667 −.1667 +.1667 −.0833

(a) KV filter.

FP =

0 0 +.0199 0 0
0 +.0897 +.1395 +.0897 0

−.0199 +.1395 −1.0000 +.1395 +.0199
0 +.0897 +.1395 +.0897 0
0 0 +.0199 0 0

(b) Point high-pass filter.

FH =

+.0562 −.1354 0 +.1354 −.0562
+.0818 −.1970 0 +.1970 −.0818
+.0926 −.2233 0 +.2233 −.0926
+.0818 −.1970 0 +.1970 −.0818
+.0562 −.1354 0 +.1354 −.0562

(c) Horizontal 2D Gabor filter.

FV =

−.0562 −.0818 −.0926 −.0818 −.0562
+.1354 +.1970 +.2233 +.1970 +.1354

0 0 0 0 0
−.1354 −.1970 −.2233 −.1970 −.1354
+.0562 +.0818 +.0926 +.0818 +.0562

(d) Vertical 2D Gabor filter.

Figure 3: Four fixed 5 × 5 kernels used in the first convolu-
tional layer (1F).

adhere to the checkerboard pattern similar to FKV (c.f. a similar ob-
servation made in [21]). However, with the introduction of FP, they
exhibit a correlated structure more suitable for detection of stego
signal spanned by discrete cosines. To put this another way, while
the FKV filter works well for detection of high-frequency stego
signals introduced by typical spatial-domain embedding schemes,
the impact of embedding in the JPEG domain examined in the spa-
tial domain is very different because the difference between cover
and stego images is due to changes to quantized DCT coefficients.
And because most DCT coefficients that are modified are in the
low to medium frequency band, the nature of the stego signal is
different. High-pass filters, such as FKV, suppress together with
the content also the stego signal. In fact, this is most likely why
Gabor filters work better for steganalysis of JPEG files than SRM
high-pass filters.

As our last note in this section and to complete the investigation
of the most appropriate structure of the 1F layer, we tested whether
another improvement can be obtained by including a larger set of
Gabor kernels in this layer. Specifically, we formed the 1F layer with
eight 8 × 8 filters obtained from Eq. (2) with parameters σ = 1, φ =
[0, π/2], and θ = [0, π/4, π/2, 3π/4]. In our standard developer
setup, a PNet with these fixed filters, however, lagged 2% behind
the PNet with the above mentioned four fixed kernels.

0 25 50 75 100 125 150 Epoch 200 225 250
0

0.04

0.08

0.12

0.16

0.20

0.24

PE

0.32

0.36

Trn FKV

Trn FKV,FP

Trn FKV,FP,FH,FV

Tst FKV

Tst FKV,FP

Tst FKV,FP,FH,FV

Figure 4: Detection error with different filter combinations
under standard developer setup.

Table 1: Detection error (in %) of three PNet configurations
under standard developer setup.

C1F4 ×C1T8 ×C216 C1F4 ×C1T12 ×C216 C1F4 ×C1T12 ×C224

BOSSbase (8,000) 7.91±0.03 8.10±0.10 8.08±0.11
BOWS2 (20,000) 9.15±0.09 8.91±0.07 9.09±0.18

3.6 Configuration before phase split
Fixing the parameters of the fixed filter (1F) and the portion of the
net after the PhaseSplit module, we investigate if further perfor-
mance gain is possible by deepening the architecture, inserting
more convolutional layers, and by widening the net. We abbreviate
the net architecture in the first two groups by the number of con-
volutional feature maps. For example, the configuration in Fig. 1
left is named C1F4 ×C1T8 ×C216. The following alternatives were
studied:

(1) Increased number of kernels (1T) in Group 1 from 8×(5×5)
to 12 × (5 × 5), abbreviated as C1F4 ×C1T12 ×C216.

(2) Increased the number of kernels (1T) in Group 1 from
8 × (5 × 5) to 12 × (5 × 5) and the number of kernels in
Group 2 from 16 × (5 × 5) to 24 × (5 × 5), abbreviated
C1F4 ×C1T12 ×C224.

The impact of these modifications on the PNet was evaluated on
the standard developer setup (Sec. 3.1) with the results shown in
Table 1. In summary, we did not observe any statistically significant
gain by enlarging the configuration of the PNet.

3.7 PNet vs. VNet
In this section, we compare the performance of PNet and VNet from
Fig. 1. For a fair comparison, both detectors were trained with iden-
tical training and testing settings with the standard developer setup.
The training and testing detection errors are shown in Fig. 6 and
in Table 3. The ensembles of five nets were obtained by randomly
splitting the training set into five disjoint subsets, training on four
of them and using the fifth for validation as described in [29]. In

IH&MMSec’17, Jun 20-22, 2017, Philadelphia, PA, USA Mo Chen, Vahid Sedighi, Mehdi Boroumand, and Jessica Fridrich

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Figure 5: Convolutions of FKV with the kernels from the sec-
ond convolutional layer (1T) equivalent to eight 9 × 9 ker-
nels of the convolutional module in Group 1. Top: Kernels
learned with only FKV. Bottom: learned with both FKV and
FP.

contrast to [29], in our ensemble we applied the majority voting
rule on the decisions returned by the individual five nets.

The individually trained PNet is 1.1% better than the VNet when
tested on both BOSSbase (5,000 images) and BOWS2 (20,000 images).
The ensemble of five PNets improves upon the individual PNet by
1.04%, from 7.60% to 6.56%. On the other hand, since VNets are
more over-trained (see Fig. 6), the ensemble of five VNets produces
a larger boost (1.65%), decreasing the detection error of the ensemble
of VNets from 8.70% to 7.05%. Therefore, the ensemble of five PNets
is only 0.49% better than VNets. Similarly, when testing on BOWS2,
the average testing detection error for PNets and VNets are 9.01%
and 10.11%, respectively. The ensemble of five PNets is 7.66%, while
the ensemble of VNets is 8.07%.

In summary, PNet gives a slightly better performance than VNet
but is also more computationally demanding and takes longer to
train (about two times longer). Table 2 contrasts the complexity of
the two explored architectures. In the end, the specific demands
of the application should determine which detector type is more
suitable.

The experiments in this section also indicate that the cover
source mismatch between BOSSbase and BOWS2 does not de-
grade the performance of either net architecture by any significant

Table 2: Net structure complexity of PNet and VNet under
standard developer setup. The speed is evaluated on two
GTX 1080 GPU cards using MatConvNet and batch size 40.

Data Memory Parameters Memory Train Speed Test Speed

PNet 11 GB 7.7e+05 25.4 images/sec 100.4 images/sec
VNet 4 GB 3.0e+05 57.1 images/sec 218.1 images/sec

Table 3: Detection error (in %) of PNet and VNet and their
bagging ensembles under standard developer setup.

Individual PNets Ensemble PNets Individual VNets Ensemble VNets

BOSSbase 7.60±0.24 6.56±0.10 8.70±0.28 7.05%±0.09
BOWS2 9.01±0.24 7.66±0.08 10.11±0.41 8.07%±0.10

amount. In contrast, the cover source mismatch in the spatial do-
main had a bigger negative impact on XuNet [30]. This is most
likely due to the fact that JPEG compression has a tendency to
equalize differences between sources.

4 EXPERIMENTS
In this section, we report the detection accuracy of the proposed
JPEG-phase-aware CNNs and interpret the results.

4.1 Dataset and software platforms
Two JPEG-domain content-adaptive steganographic algorithms
were tested: J-UNIWARD and UED-JC with a range of embedding
rates. The results are contrasted with what can be achieved using
conventional feature-based steganalysis with SCA-GFR features [5]
with the FLD-ensemble [16]. All experiments using the CNNs were
performed with a modified MatConvNet toolbox [27]. All tests are
done using GTX 1080 and Titian X GPU cards.

As in the standard developer setup, we used BOSSbase 1.01 for
training all detectors. The testing was done on the unused part of
BOSSbase and in some experiments on BOWS2 to see the robustness
of the detectors to cover source mismatch.

4.2 Training, validation, and testing
For each experiment reported in Table 4, BOSSbase was randomly
split into 75/25 ratio. To build the ensembles, the training set was
furthermore randomly split into five equally sizes folds, using four
of them for training and the fifth fold for validation (bagging). Thus,
each CNN detector was trained on 6,000 cover-stego pairs and
validated on 1,500 pairs.

The testing is carried out on the remaining 2,500 cover-stego
pairs from BOSSbase images and also on the entire BOWS2 database.
The detection error and the statistical spread of each individual net-
work is computed as the mean and standard deviation of error rates
from the last five evaluation steps of each network during training
using refined batch normalization (Section 3.4). The corresponding
values for ensemble networks are computed over error rates from
the last five steps of five different splits of the training set (a total
of 25 values).

4.3 Hyper-parameters
Mini-batch stochastic gradient descent was used to train all CNNs.
The momentum was fixed to 0.9, the learning rate for all parame-
ters was initialized to 0.001 and scheduled to decrease 25% every 20
epochs (20×300 = 6, 000 iterations), up to 240 epochs. A mini-batch

JPEG-Phase-Aware Convolutional Neural Network for Steganalysis of JPEG ImagesIH&MMSec’17, Jun 20-22, 2017, Philadelphia, PA, USA

0 25 50 75 100 125 150 Epoch 200 225 250
0

0.02

0.04

0.06

0.08

0.10

0.12

PE

0.16

0.18

Trn Pnet

Trn Vnet

Tst Pnet

Tst Vnet

Figure 6: Detection error of PNets and VNets as a function
of training epochs under standard developer setup.

of 40 images (20 cover/stego pairs) was input for each iteration.1
The training database is also randomly shuffled at the beginning
of each epoch to help batch normalization and give the CNN de-
tector a better ability to generalize. The parameters of convolution
kernels were initialized from a zero-mean Gaussian distribution
with standard deviation 0.01. As in XuNet [30], the bias learning in
all convolutional layers, except for the last fully connected layer
whose bias learning rate is set to be twice of the learning rate, were
fixed to zero to make the feature maps sign symmetric. The param-
eters in the last fully-connected (FC) layers were initialized using
Xavier initialization [8]. The weight decay (L2 regularization) was
not enabled, except for the FC layer, which was set to 0.01.

For BN layers, the learning rate is the same as the global learning
rate of the network with all scale and shift parameters initialized
with 1 and 0, respectively. As explained in Sec. 3.4, the per-channel
mean and standard deviation in BN were implemented using the
moment refinement performed every 8 (or 4) epochs during training,
which gives the net 2000 random mini-batches of size 48 from the
training set to compute the refined moments.

4.4 Curriculum learning for steganalyzing
different payloads

Due to the PhaseSplit module and the catalyst filter kernel, both
PNets and VNets converge relatively quickly even for small pay-
loads, such as 0.1 bpnzac, and high JPEG quality. The training can be
further sped up by adopting the transfer learning strategy [19, 31]
widely used in CNNs. In particular, for each steganographic scheme
and JPEG quality factor, we first train a CNN on a training set em-
beddedwith 0.4 bpnzac payload (from randomly initialized weights).
To train a detector for the other payloads (0.1–0.3, and 0.5), we ini-
tialized with the model trained on 0.4 bpnzac and then fine-tuned

1As shown in Table 2, the memory requirement for PNet with batch size 40 is more
than 11 GB, whichexceeds the GPU memory of any single common GPU card. This
problem is solved by employing two GPUs for training. More specifically, the data (40
images) are further divided in two sub-batches of 20 images and distributed among
two GPUs with some communication overhead.

Table 4: Detection error comparison between individual
(Ind.) and ensemble of (Ens.) PNet(s) and VNet(s) with SCA-
GFR features on J-UNIWARD and UED-JC.

(a) Detection error (in %) for J-UNIWARD

QF Detector 0.1 0.2 0.3 0.4 0.5

75

SCA GFR 35.54±0.54 22.47±0.38 13.44±0.28 7.53±0.21 4.15±0.13
Ind. PNet 37.26±0.31 23.50±0.34 13.80±0.41 7.60±0.24 4.13±0.27
Ens. PNets 35.75±0.25 21.26±0.32 12.28±0.13 6.56±0.10 3.36±0.05
Ind. VNet 37.59±0.45 24.57±0.54 15.05±0.41 8.70±0.28 4.74±0.24
Ens. VNets 36.15±0.16 22.40±0.17 13.32±0.08 7.05±0.09 3.74±0.14

95

SCA GFR 46.03±0.35 40.07±0.48 32.92±0.31 25.54±0.63 19.35±0.54
Ind. PNet 46.76±0.22 41.52±0.50 34.74±0.84 28.01±1.14 20.42±1.15
Ens. PNets 45.89±0.29 39.89±0.17 31.91±0.11 25.36±0.23 17.49±0.15
Ind. VNet 47.43±0.51 43.65±1.49 34.76±0.41 28.02±0.40 21.31±0.25
Ens. VNets 47.07±0.22 42.73±0.58 33.28±0.12 25.93±0.21 19.67±0.15

(b) Detection error (in %) for UED-JC

QF Detector 0.1 0.2 0.3 0.4 0.5

75

SCA GFR 22.54±0.67 11.56±0.32 6.35±0.20 3.46±0.14 1.74±0.19
Ind. PNet 20.11±0.38 9.55±0.21 4.56±0.23 2.81±0.17 1.48±0.17
Ens. PNets 17.77±0.31 8.52±0.11 3.90±0.05 2.34±0.43 1.33±0.02
Ind. VNet 21.62±0.44 10.07±0.46 5.48±0.10 3.07±0.15 1.63±0.18
Ens. VNets 18.97±0.16 8.04±0.12 4.07±0.04 2.32±0.03 1.20±0.02

95

SCA GFR 39.20±0.51 30.48±0.62 22.55±0.61 15.92±0.48 10.52±0.45
Ind. PNet 39.27±0.53 29.93±0.59 21.36±1.10 15.00±0.91 9.51±1.04
Ens. PNets 37.18±0.36 27.21±0.37 18.46±0.39 12.27±0.34 7.31±0.13
Ind. VNet 42.00±1.11 31.52±1.41 22.39±0.62 15.75±0.51 9.98±0.45
Ens. VNets 40.63±0.13 28.55±0.19 19.46±0.23 13.18±0.13 7.95±0.04

this model on the same training set embedded with the correspond-
ing payload. Curriculum learning enables us to decrease the number
of training epochs by a factor of two.

Our experiments consistently show that the use of a pre-trained
CNN outperforms, or in the worse case, performs as well as a CNN
trained from randomly initialized weights. In addition, it is also
possible to train CNNs with the pre-trained CNNs of other stegano-
graphic schemes, for example, to train UED-JC CNN detector, we
can use a CNN pre-trained on J-UNIWARD.

4.5 Analysis
Below, we summarize lessons learned and the main results of our
experiments.

• Batch normalization with proper moment refinement plays
an important role in training JPEG-phase-aware CNNs
because it normalizes each individual phase at different
stages. Because the training batches are small, themoments
computed over training and testing sets exhibit large fluc-
tuations, makes it unclear when the network converged.
The refined BN smooths the training and validation perfor-
mance curves, helps find better convergence points, and
also improves the model accuracy by 3–7% over models
trained using moving average.

• While the individual phase-aware nets are slightly infe-
rior to the SCA GFR for J-UNIWARD, an ensemble of five
individually trained nets improves upon SCA GFR by 1%.

IH&MMSec’17, Jun 20-22, 2017, Philadelphia, PA, USA Mo Chen, Vahid Sedighi, Mehdi Boroumand, and Jessica Fridrich

0.1 0.2 0.3 α(bpnzac) 0.5
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

PE

0.45

0.50

QF75, Ens. Pnets

QF75, SCA GFR

QF95, Ens. Pnets

QF95, SCA GFR

(a) J-UNIWARD

0.1 0.2 0.3 α(bpnzac) 0.5
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

PE

0.45

0.50

QF75, Ens. Pnets

QF75, SCA GFR

QF95, Ens. Pnets

QF95, SCA GFR

(b) UED-JC

Figure 7: Performance comparison between the ensemble of
five PNets and SCA GFR for two embedding schemes.

• For UED-JC, the proposed CNN detectors clearly outper-
form conventional steganalysis. In general, each trained
individual net is better than the SCA GFR with the FLD-
ensemble. The ensemble of five PNets (or VNets) brings
further improvement.

4.6 On the net transfer ability
In this section, we study the ability of the detector trained on one
embedding algorithm to detect a different embedding algorithm to
see how well it transfers to a different stego source. In particular,
we trained a PNet on examples of cover and stego images embedded
with J-UNIWARD and then tested it on UED-JC stego images, all
stego images at 0.4 bpnzac (see Table 5). Although the test error
rate 3.79% is higher when compared to the detector trained for
UED-JC (2.3–2.4%), the detection accuracy drop is rather small. On
the other hand, a PNet trained on UED-JC stego images performs
rather poorly on J-UNIWARD images; the error rate is around

Table 5: Detection error (in %) to evaluate the transfer abil-
ity of three detectors when training on J-UNIWARD images
and testing on UED-JC images and vice versa. Standard de-
veloper setup.

Detector TRN Images J-UNI TST Images UED TST Images

SCA GFR J-UNI 7.53±0.21 6.07±0.21
Ind. PNet J-UNI 7.60±0.24 4.66±0.28
Ens. PNets J-UNI 6.56±0.10 3.79±0.10
SCA GFR UED 12.19±0.70 3.46±0.14
Ind. PNet UED 27.50±1.51 2.81±0.17
Ens. PNets UED 27.25±0.40 2.34±0.43

27.50%. This indicates that UED-JC introduces artifacts that the
PNet discovers and that J-UNIWARD avoids. We hypothesize that
a portion of the weights in the model trained on UED-JC become
noticeably larger than the rest as the network focuses on a portion
of the “features” that are strongly related to the artifacts created by
UED embedding. The network thus basically “overtrains to UED”
and does not generalize well to J-UNIWARD. This could likely be
alleviated by introducing dropout.

For comparison, in the table we also report the performance of
an FLD-ensemble trained on SCA GFR features. While this detector
does not generalize as well as the PNet to UED test images when
trained on J-UNIWARD, the loss observed when training on UED
and testing on J-UNIWARD images is much smaller (12.19% vs.
27.50 for the PNet).

5 CONCLUSION AND FUTUREWORK
Convolutional neural networks (CNNs) only recently e-merged in
the field of steganalysis as a competitive alternative to the “classical”
approach based on training a classifier on features extracted from
examples of cover and stego images. Since the moment they were
introduced by Qian et al. in 2015 [18], they were touted as “fully
automatic” tools in the sense of not requiring hand crafted features.
The authors of this article feel that we are still rather far away from
this ultimate goal of fully automatizing the process of developing
steganalysis detectors. Human insight currently remains an indis-
pensable element in designing network architectures and insight
painstakingly gathered from classical approach to steganalysis is
still extremely valuable. This paper only seems to confirm this
thesis.

Inspired by the success of features aware of the JPEG phase, we
introduce phase awareness into the architecture of a CNN to see
whether current state-of-the-art steganalysis tools for detection
of modern JPEG steganography can be improved. To this end, we
started with a structural CNN design proposed by Xu et al. [29, 30]
for spatial domain steganalysis and adjusted it for steganalysis in
the JPEG domain in two different ways. The result are two network
architectures, the PNet and VNet. While PNet gives slightly better
results than VNet, the latter is faster to train and test and enjoys
smaller memory requirements. We leave the choice of the detector
in practice to the specifics required by the application.

While our investigation focused on phase awareness, along the
way we discovered another interesting phenomenon,

JPEG-Phase-Aware Convolutional Neural Network for Steganalysis of JPEG ImagesIH&MMSec’17, Jun 20-22, 2017, Philadelphia, PA, USA

which we termed “catalytic kernel.” Stego signal is a high-frequency
noise modulated by content. Thus, to force the network to pay atten-
tion to this signal (and to converge), images need to be pre-filtered
to incease the SNR between the signal of interest (the weak stego
noise) and the noise – the image content. Fixed high-pass filters
are usually used for this job in current network designs. While
sign-changing high-pass filters, such as the ubiquitous “KV filter”
work well for steganalysis of spatial-domain steganography, the
stego signal introduced in the spatial domain by modifying quan-
tized DCT coefficients is no longer high frequency in nature. After
all, it is spanned by quantized discrete cosines and thus “inhabits”
medium and low spatial frequencies as well. Pre-filtering images
with filters, such as the KV, thus inevitably and undesirably sup-
presses the stego signal as well. To help the network find more
suitable filters, we supply in the fixed layer another “point filter”
that seems to play the role of a catalyst (regularizer) that allows
the filters in the first convolutional layer to accept shapes more
suitable for detecting stego noise caused by JPEG steganography.
Just augmenting the KV filter with this point catalytic filter brought
the detection performance of our networks frommediocre to highly
competitive. We hypothesize that a similar effect may be achieved
with the constrained convolutional layer recently proposed by Ba-
yar et al. [3]. A more detailed investigation of this is postponed to
our future effort.

In summary, we showed that JPEG phase awareness can be built
into CNN architectures and that it indeed improves detection accu-
racy over classical steganalysis. The observed gain was significantly
larger for UED-JC than for J-UNI-WARD. We also investigated the
ability of the trained networks to generalize to previously unseen
cover and stego sources.

All code used to produce the results in this paper, including
the network configuration files, the PhaseSplit Layer, and the re-
fined Batch Normalization layer will be available from http://dde.
binghamton.edu/download/ upon acceptance of this manuscript.

ACKNOWLEDGMENTS
The work on this paper was supported by Air Force Office of Scien-
tific Research under the research grant number FA9950-12-1-0124.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
notation there on. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied of
AFOSR or the U.S. Government. The authors would like to thank
anonymous reviewers for their insightful comments.

REFERENCES
[1] P. Bas, T. Filler, and T. Pevný. 2011. Break Our Steganographic System – the

Ins and Outs of Organizing BOSS. In Information Hiding, 13th International
Conference (Lecture Notes in Computer Science), T. Filler, T. Pevný, A. Ker, and
S. Craver (Eds.), Vol. 6958. Springer Berlin Heidelberg, Prague, Czech Republic,
59–70.

[2] P. Bas and T. Furon. 2007. BOWS-2. http://bows2.ec-lille.fr. (July 2007).
[3] B. Belhassen and M. C. Stamm. 2016. A Deep Learning Approach to Universal

Image Manipulation Detection Using a New Convolutional Layer. In The 4th
ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec ’16),
F. Perez-Gonzales, F. Cayre, and P. Bas (Eds.). Vigo, Spain, 5–10.

[4] T. Denemark, V. Sedighi, V. Holub, R. Cogranne, and J. Fridrich. 2014. Selection-
Channel-Aware Rich Model for Steganalysis of Digital Images. In IEEE Interna-
tional Workshop on Information Forensics and Security. Atlanta, GA.

[5] T. D. Denemark, M. Boroumand, and J. Fridrich. 2016. Steganalysis Features
for Content-Adaptive JPEG Steganography. IEEE Transactions on Information
Forensics and Security 11, 8 (August 2016), 1736–1746. https://doi.org/10.1109/
TIFS.2016.2555281

[6] J. Fridrich and J. Kodovský. 2011. Rich Models for Steganalysis of Digital Images.
IEEE Transactions on Information Forensics and Security 7, 3 (June 2011), 868–882.

[7] J. Fridrich, T. Pevný, and J. Kodovský. 2007. Statistically Undetectable JPEG
Steganography: Dead Ends, Challenges, and Opportunities. In Proceedings of
the 9th ACM Multimedia & Security Workshop, J. Dittmann and J. Fridrich (Eds.).
Dallas, TX, 3–14.

[8] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (AISTATS ’10). Sardinia, Italy,
249–256.

[9] L. Guo, J. Ni, and Y.-Q. Shi. 2012. An Efficient JPEG Steganographic Scheme
Using Uniform Embedding. In Fourth IEEE International Workshop on Information
Forensics and Security. Tenerife, Spain.

[10] L. Guo, J. Ni, and Y. Q. Shi. 2014. Uniform Embedding for Efficient JPEG Steganog-
raphy. IEEE Transactions on Information Forensics and Security 9, 5 (May 2014),
814–825. https://doi.org/10.1109/TIFS.2014.2312817

[11] S. Hetzl and P. Mutzel. 2005. A Graph-Theoretic Approach to Steganography.
In Communications and Multimedia Security, 9th IFIP TC-6 TC-11 International
Conference, CMS 2005 (Lecture Notes in Computer Science), J. Dittmann, S. Katzen-
beisser, and A. Uhl (Eds.), Vol. 3677. Salzburg, Austria, 119–128.

[12] V. Holub and J. Fridrich. 2015. Low-Complexity Features for JPEG Steganalysis
Using Undecimated DCT. IEEE Transactions on Information Forensics and Security
10, 2 (February 2015), 219–228.

[13] V. Holub and J. Fridrich. 2015. Phase-Aware Projection Model for Steganalysis
of JPEG Images. In Proceedings SPIE, Electronic Imaging, Media Watermarking,
Security, and Forensics 2015, A. Alattar and N. D. Memon (Eds.), Vol. 9409. San
Francisco, CA, 0T 1–11.

[14] V. Holub, J. Fridrich, and T. Denemark. 2014. Universal Distortion Design for
Steganography in an Arbitrary Domain. EURASIP Journal on Information Security,
Special Issue on Revised Selected Papers of the 1st ACM IH and MMS Workshop
2014:1 (2014).

[15] J. Kodovský and J. Fridrich. 2012. Steganalysis of JPEG Images Using Rich
Models. In Proceedings SPIE, Electronic Imaging, Media Watermarking, Security,
and Forensics 2012, A. Alattar, N. D. Memon, and E. J. Delp (Eds.), Vol. 8303. San
Francisco, CA, 0A 1–13.

[16] J. Kodovský, J. Fridrich, and V. Holub. 2012. Ensemble Classifiers for Steganalysis
of Digital Media. IEEE Transactions on Information Forensics and Security 7, 2
(2012), 432–444.

[17] N. Provos. 2001. Defending Against Statistical Steganalysis. In 10th USENIX
Security Symposium. Washington, DC, 323–335.

[18] Y. Qian, J. Dong, W. Wang, and T. Tan. 2015. Deep learning for steganalysis via
convolutional neural networks. In Proceedings SPIE, Electronic Imaging, Media
Watermarking, Security, and Forensics 2015, A. Alattar and N. D. Memon (Eds.),
Vol. 9409. San Francisco, CA, 0J 1–10.

[19] Y. Qian, J. Dong, W. Wang, and T. Tan. 2016. Learning and transferring repre-
sentations for image steganalysis using convolutional neural network. In IEEE
International Conference on Image Processing (ICIP). Phoenix, AZ, 2752–2756.

[20] P. Sallee. 2005. Model-Based Methods for Steganography and Steganalysis.
International Journal of Image Graphics 5, 1 (2005), 167–190.

[21] V. Sedighi and J. Fridrich. 2017. Histogram Layer, Moving Convolutional Neural
Networks Towards Feature-based Steganalysis. In Proceedings IS&T, Electronic
Imaging, Media Watermarking, Security, and Forensics 2017, A. Alattar and N. D.
Memon (Eds.). Burlingame, CA.

[22] X. Song, F. Liu, C. Yang, X. Luo, and Y. Zhang. 2015. Steganalysis of Adaptive JPEG
Steganography Using 2D Gabor Filters. In The 3rd ACMWorkshop on Information
Hiding and Multimedia Security (IH&MMSec ’15), A. Alattar, J. Fridrich, N. Smith,
and P. Comesana Alfaro (Eds.). Portland, OR.

[23] S. Tan and B. Li. 2014. Stacked convolutional auto-encoders for steganalysis of
digital images. In Signal and Information Processing Association Annual Summit
and Conference (APSIPA), 2014 Asia-Pacific. 1–4. https://doi.org/10.1109/APSIPA.
2014.7041565

[24] T. Thai, R. Cogranne, and F. Retraint. 2014. Statistical Model of Quantized
DCT Coefficients: Application in the Steganalysis of Jsteg Algorithm. IEEE
Transactions on Image Processing 23, 5 (May 2014), 1–14.

[25] T. H. Thai, R. Cogranne, and F. Retraint. 2014. Optimal Detection of OutGuess us-
ing an Accurate Model of DCT Coefficients. In Sixth IEEE International Workshop
on Information Forensics and Security. Atlanta, GA.

[26] D. Upham. Steganographic algorithm JSteg. Software available at
http://zooid.org/ paul/crypto/jsteg.

[27] A. Vedaldi and K. Lenc. 2014. MatConvNet - Convolutional Neural Networks for
MATLAB. CoRR abs/1412.4564 (2014). http://arxiv.org/abs/1412.4564

[28] A. Westfeld. 2001. High Capacity Despite Better Steganalysis (F5 – A Stegano-
graphic Algorithm). In Information Hiding, 4th International Workshop (Lecture

http://dde.binghamton.edu/download/
http://dde.binghamton.edu/download/
http://bows2.ec-lille.fr
https://doi.org/10.1109/TIFS.2016.2555281
https://doi.org/10.1109/TIFS.2016.2555281
https://doi.org/10.1109/TIFS.2014.2312817
https://doi.org/10.1109/APSIPA.2014.7041565
https://doi.org/10.1109/APSIPA.2014.7041565
http://arxiv.org/abs/1412.4564

IH&MMSec’17, Jun 20-22, 2017, Philadelphia, PA, USA Mo Chen, Vahid Sedighi, Mehdi Boroumand, and Jessica Fridrich

Notes in Computer Science), I. S. Moskowitz (Ed.), Vol. 2137. Springer-Verlag,
New York, Pittsburgh, PA, 289–302.

[29] G. Xu, H.-Z. Wu, and Y. Q. Shi. 2016. Ensemble of CNNs for Steganalysis: An
Empirical Study. In The 4th ACMWorkshop on Information Hiding and Multimedia
Security (IH&MMSec ’16), F. Perez-Gonzales, F. Cayre, and P. Bas (Eds.). Vigo,
Spain, 5–10.

[30] G. Xu, H. Z. Wu, and Y. Q. Shi. 2016. Structural Design of Convolutional Neural
Networks for Steganalysis. IEEE Signal Processing Letters 23, 5 (May 2016),

708–712. https://doi.org/10.1109/LSP.2016.2548421
[31] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. 2014. How Transferable Are

Features in Deep Neural Networks?. In Proceedings of the 27th International
Conference on Neural Information Processing Systems (NIPS’14). Cambridge, MA,
3320–3328.

[32] T. Zhang and X. Ping. 2003. A Fast and Effective Steganalytic Technique Against
Jsteg-like Algorithms. In Proceedings of the ACM Symposium on Applied Comput-
ing. Melbourne, FL, 307–311.

https://doi.org/10.1109/LSP.2016.2548421

	Abstract
	1 Introduction
	2 JPEG phase
	3 The proposed phase-aware CNN
	3.1 Standard developer setup
	3.2 Overall architecture
	3.3 PhaseSplit module
	3.4 Refined batch normalization
	3.5 Fixed linear filters
	3.6 Configuration before phase split
	3.7 PNet vs. VNet

	4 EXPERIMENTS
	4.1 Dataset and software platforms
	4.2 Training, validation, and testing
	4.3 Hyper-parameters
	4.4 Curriculum learning for steganalyzing different payloads
	4.5 Analysis
	4.6 On the net transfer ability

	5 CONCLUSION AND FUTURE WORK
	Acknowledgments
	References

