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ABSTRACT

Matrix embedding is a general coding method that can be applied to most steganographic schemes to improve
their embedding efficiency—the number of message bits embedded per one embedding change. Because smaller
number of embedding changes is less likely to disrupt statistic properties of the cover object, schemes that employ
matrix embedding generally have better steganographic security. This gain is more important for long messages
than for shorter ones because longer messages are easier to detect. Previously introduced approaches to matrix
embedding based on Hamming codes are, however, not efficient for long messages. In this paper, we present
novel matrix embedding schemes that are efficient for embedding messages close to the embedding capacity. One
is based on a family of codes constructed from simplex codes and the second one on random linear codes of
small dimension. The embedding efficiency of the proposed methods is evaluated with respect to theoretically
achievable bounds.
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1. INTRODUCTION

Statistical undetectability is the main requirement for a steganographic scheme. By undetectability, we under-
stand the inability of an attacker to distinguish between stego and cover objects with success rate better than
random guessing, given the knowledge of the embedding algorithm and the source of cover media. There are
four main factors that influence the steganographic security

1. Type of cover media

2. Method for selection of places within the cover that might be modified

3. The embedding operation

4. The number of embedding changes

If two different embedding schemes share 1)–3), the one that introduces fewer embedding changes will be less
detectable because it is less likely to disturb the statistics of the cover to trigger detection.

Matrix embedding improves embedding efficiency—the expected number of random message bits embedded
with one embedding change. Matrix embedding was discovered by Crandall1 in 1998 and analyzed by Bierbrauer.2

It was also independently re-discovered by Willems et al.3 and Galand et al.4 Westfeld5 was the first one to
incorporate matrix embedding in his F5 algorithm. Intuitively, it is clear that the gain in embedding efficiency
is larger for short messages than for longer ones. However, improving the embedding efficiency for increasingly
shorter messages becomes progressively less important for the overall security because short messages are more
difficult to detect than longer ones. Matrix embedding based on binary Hamming codes5 is, however, far from
theoretically achievable bounds for payloads larger than 67% of embedding capacity.

In this paper, we attempt to remedy this situation and propose two coding methods that enable efficient
matrix embedding for long messages. The first method uses simplex codes and codes derived from them, while
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the second method uses codes of small dimension with random generator matrix. Section 2 introduces the
necessary basic concepts from coding theory. The embedding mechanism of matrix embedding based on binary
Hamming codes is reviewed in Section 3. Relating covering codes with steganography enables us to derive upper
bounds on achievable embedding efficiency in Section 4. In Section 5, matrix embedding based on simplex codes
and random linear codes with small dimension is explained. The code designs and coding algorithms are supplied
with pseudo-codes to ease the code implementation for practitioners. The paper is concluded in Section 6.

2. BASIC CONCEPTS

In this section, we introduce a few elementary concepts from coding theory and some simple facts that will be
needed in the rest of the paper. A good introductory text to this subject is, for example, the book by Sloane et
al.6 Throughout the text, boldface symbols denote vectors or matrices while the caligraphiccalligraphic font is
reserved for sets.

The space of all n-bit column vectors x = (x1, . . . , xn)t, where ()t denotes the matrix transpose, will be
denoted F

n
2 . A binary code C is any subset of F

n
2 . The vectors in C are called codewords. The set F

n
2 is a

linear vector space if we define the sum of two vectors x,y ∈ F
n
2 and a multiplication of a vector by scalar

a ∈ {0, 1} using the usual arithmetics in the finite field GF(2) = {0, 1}. Note that in binary arithmetics, sum
is the same as difference. The Hamming weight w(x) of a vector x is defined as the number of ones in x, i.e.,
w(x) = x1 + · · · + xn. The distance between two vectors x and y is defined as d(x,y) = w(x − y). We denote
as B(x, r) the ball with center x ∈ F

n
2 and radius r,

B(x, r) = {y ∈ F
n
2 |d(x,y) ≤ r}.

The distance between x and subset C ⊂ F
n
2 is defined as d(x, C) = minc∈C d(x, c) = d(c, c′) for some c′ ∈ C. The

covering radius R of C is defined as
R = max

x∈F
n
2

d(x, C).

The covering radius is determined by the vector most distant from C. In this text, we will need one more concept
called the “average distance to code,”

Ra = 2−n
∑

x∈F
n
2

d(x, C),

which is the average distance between a randomly selected vector from F
n
2 and C. It follows directly from the

definitions that Ra ≤ R.

For any subset C and vector x, x + C = {y ∈ F
n
2 |y = x + c, c ∈ C}. The redundancy r of a code C is defined

as r = log2
2n

|C| , where |C| is the cardinality of C.

Codes that form a linear vector subspace of F
n
2 are called linear codes. If the vector subspace C has dimension

k, we say that C is a linear code of length n and dimension k (and codimension n − k). We can also say that
C is an [n, k] code. Since there are 2k codewords in an [n, k] code, the redundancy of a linear code is equal to
its codimension r = n − k. Each [n, k] code has a basis consisting of k vectors. By writing the basis vectors as
rows of an k ×n matrix G, we obtain a generator matrix of C. Each codeword can be written as a unique linear
combination of rows from G.

Given two vectors x,y ∈ F
n
2 , their dot product is defined as x · y = x1y1 + · · · + xnyn, all operations

in GF(2). The vectors x and y are orthogonal if x · y = 0. The orthogonal complement of C is defined as
C⊥ = {x ∈ F

n
2 |x ·c = 0 for all c ∈ C}, which is an [n, n−k] code. It is called the dual code to C and its generator

matrix H has n − k rows and n columns. From orthogonality, Hx = 0 for each x ∈ C. The matrix H is called
the parity check matrix of C.

For any x ∈ F
n
2 , the vector s = Hx ∈ F

n
2 is called the syndrome of x. For each syndrome s ∈ F

n−k
2 , the set

C(s) = {x ∈ F
n
2 |Hx = s} is called a coset. Note that C(0) = C. It should be clear that cosets associated with

different syndromes are disjoint. From elementary linear algebra, every coset can be written as C(s) = x + C,
where x ∈ C(s) is arbitrary. Therefore, there are total of 2n−k disjoint cosets, each consisting of 2k vectors. Any
member of the coset C(s) with the smallest Hamming weight is called a coset leader and will be denoted as eL(s).



The following two simple lemmas will be needed in the text.

Lemma 2.1. Given a coset C(s), for any x ∈ C(s), d(x, C) = w(eL(s)). Moreover, if d(x, C) = d(x, c′) for some
c′ ∈ C, the vector x − c′ is a coset leader.

Proof. d(x, C) = minc∈C w(x − c) = miny∈C(s) w(y) = w(eL(s)). The second equality follows from the fact
that if c runs through C, x − c goes through all members of the coset C(s).

Lemma 2.2. If C is [n, k] with an (n− k)× n parity check matrix H and covering radius R, then any syndrome
s ∈ F

n−k
2 can be written as a sum of at most R columns of H and R is the smallest such number. Thus, the

covering radius can also be defined as the maximal weight of all coset leaders while the average distance to code
is equal to the average weight of coset leaders.

Proof. Any x ∈ F
n
2 belongs to exactly one coset C(s). We know from Lemma 2.1 that d(x, C) = w(eL(s)).

But the weight w(eL(s)) is the smallest number of columns in H that must be added to obtain s.

Lemma 2.3. (Sphere-covering bound) For any code C ⊂ F
n
2 with covering radius R

|C| ≥
2n

V (n, R)
, (1)

where V (n, R) is the volume of a ball of radius R in F
n
2 , V (n, R) =

∑R

i=0

(

n

i

)

. Moreover, for R < n/2,

log2 V (n, R) ≤ nH(R/n), (2)

where H(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function.

Proof. Each ball with radius R covers V (n, R) vectors. The balls with centers at codewords cover the whole
space but they may have non-empty intersection. Thus, we must have |C|V (n, R) ≥ 2n. The upper bound (2)
is a frequently used inequality in coding and its proof is not essential for understanding the rest of this paper.
The reader is referred to Lemma 2.4.4 in Ref. 7.

3. MATRIX EMBEDDING USING BINARY HAMMING CODES

In this section, we describe binary Hamming codes and explain how they can be used for matrix embedding.
Binary Hamming codes are [2p −1, 2p −1−p] linear codes with parity check matrix H of dimensions p× (2p −1)
whose columns are binary expansions of numbers 1, . . . , 2p−1. For example, the parity check matrix H for p = 3
is

H =









0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1









.

For any syndrome s ∈ F
p
2, let dec(s) be the integer whose binary expansion is s. It is easy to see that for any

non-zero syndrome s, the vector eL(s) = (0, . . . , 0, 1, 0, . . . , 0)t with 1 at the dec(s)-th place is the leader of the
coset C(s) because HeL(s) = s.

Let us assume that the cover object is an image consisting of N pixels. Most steganographic schemes assign
a bit to each possible pixel value, for example, as the LSB of the grayscale value. The embedding then usually
proceeds by changing the pixel values to match their assigned bits to the desired message bits. To do so, one
might for example flip the LSB of the pixel grayscale value. Assuming the embedded message is a random
bit-stream, the probability that each pixel will have to be changed is 1/2. Thus, on average we embed 2 bits per
embedding change. We can also say that the scheme has embedding efficiency of 2.

To improve the embedding efficiency using matrix embedding, we divide the cover image into N/n subsets,
each consisting of n pixels, where n is the length of an appropriately chosen code. For matrix embedding using
the binary Hamming code, n = 2p−1. We now show that we can embed p message bits in each subset by making
at most one embedding change.



Let x be the bits assigned to a subset of n cover image pixels. To embed p message bits, consider the bits
as a syndrome m ∈ F

p
2 and replace x with y = x + eL(m − Hx). The receiver extracts the message from y by

calculating Hy = Hx+HeL = Hx+m−Hx = m. The block length n is either shared between the sender and
the recipient or communicated in the stego object, for example as in F5.5

When m−Hx 6= 0, only one embedding change is needed because w(eL(m−Hx)) = 1. The changed pixel
is the dec(m − Hx)-th pixel. When m − Hx = 0 no embedding change is necessary. Thus, assuming m is a
random bit-stream, we make on average 1−2−p embedding changes per block during embedding. Therefore, the
embedding efficiency ep, defined as the number of random bits embedded per one embedding change is

ep =
p

1 − 2−p
. (3)

Since we are embedding p bits into 2p − 1 pixels, the relative message length is p

2p−1 . Table 1 shows the relative
message length and embedding efficiency for p = 1, . . . , 9.

Table 1. Relative message length and embedding efficiency for matrix embedding using binary Hamming codes [2p
−

1, 2p
− 1 − p].

p Relative message length Embedding efficiency

1 1.000 2.000

2 0.667 2.667

3 0.429 3.429

4 0.267 4.267

5 0.161 5.161

6 0.093 6.093

7 0.055 7.055

8 0.031 8.031

9 0.018 9.018

From this table we see that Hamming codes do not improve embedding efficiency for messages whose relative
length is above 2/3. We can also see that embedding efficiency increases as the message becomes shorter. For
short messages this gain becomes less important because short messages are more difficult to detect anyway. The
range where the relative message length is large would benefit the most.

Hamming codes can be used for message lengths larger than 2/3 using a construction called the direct sum.7

We can divide the message into two or more segments and embed them in disjoint parts of the cover using
Hamming codes with different parameters. For instance, a message of relative length 0.8 may be divided into
two halves and embed the first half in 0.4 × n pixels and the second half in 0.6 × n pixels. In the first part,
we do not use matrix embedding at all and embed with efficiency 2. In the second part, we can use matrix
embedding with p = 2 because the relative message length is 0.4/0.6 = 2/3. This will give us embedding
efficiency of 0.8/(0.4/2 + 0.4/e2) = 16/7

.
= 2.286, which is larger than 2—the efficiency we would obtain if we

embedded without using matrix embedding at all. A markedly better performance can be obtained using the
codes described in Section 5.

Before we describe these improved matrix embedding methods, in the next section we derive achievability
bounds on how good a performance one can theoretically expect from applying codes to embedding. The efficiency
of the proposed methods can then be measured against these bounds.

4. BOUNDS ON EMBEDDING EFFICIENCY

In this section, we derive bounds on the theoretically achievable embedding efficiency of steganographic schemes.
We start by reformulating the embedding efficiency in the language of codes. This will enable us to apply the
apparatus developed in coding theory to derive the bounds.



An embedding scheme on F
n
2 is a pair of embedding and extraction functions Emb and Ext,

Emb :Fn
2 ×M → F

n
2

Ext :Fn
2 → M,

such that Ext(Emb(x,m)) = m for all m ∈ M and x ∈ F
n
2 . Here, M is the set of all messages that can be

communicated. Let us further assume that we can embed every message m ∈ M with at most R changes

d(x, Emb(x,m)) ≤ R for all m ∈ M and x ∈ F
n
2 .

The value h(n, R) = log2 |M| is called the embedding capacity of the scheme and e =
log

2
|M|

R
its lower embedding

efficiency. Let Ra be the expected number of embedding changes over uniformly distributed covers x ∈ F
n
2 and

messages m ∈ M. The embedding efficiency e is defined as e = log
2
|M|

Ra
. Note that since R is the upper bound

on the number of embedding changes, for any embedding scheme e ≤ e.

In Section 3, we saw a matrix embedding scheme with n = 2p − 1, R = 1, and h(n, R) = p realized using
binary Hamming codes. We now generalize this construction and derive upper bounds on h and e. The two
propositions below are due to Galland4 and also appeared in the unpublished work by Bierbrauer.2

Proposition 4.1. An [n, k] code C with covering radius R can be used to construct an embedding scheme
capable of communicating n − k bits using at most R changes.

Proof. The proof of this proposition is constructive. In fact, we can simply follow the steps as in embedding
using Hamming codes. Let H be the parity check matrix of the code C. We define the embedding function as
Emb(x,m) = x + eL = y, where eL is a coset leader of the coset C(m − Hx) and m ∈ F

n−k
2 is a segment of

n− k message bits. Since C has covering radius R, we know that d(x,y) = w(eL) ≤ R. The extraction function
Ext is defined as Ext(y) = Hy = Hx + HeL = Hx + m−Hx = m.

The proof of this proposition also explains why we used the symbols R and Ra to denote the maximal number
of embedding changes and the average number of embedding changes. These symbols already have meaning of
the covering radius and average distance to code defined in Section 2. For embedding schemes realized using
linear codes as in Proposition 4, these concepts coincide. Note that, indeed, the average number of embedding
changes for randomly chosen messages (syndromes m) is equal to the average weight of a coset leader.

Proposition 4.2. Conversely, any embedding scheme on F
n
2 with threshold R and embedding capacity log2 |M|

defines a code (not necessarily linear) with covering radius R. Moreover, let C? be the smallest code with radius
R and length n. Then, log2 |M| ≤ n− log2 |C

?|, which means that the embedding capacity is upper bounded by
the redundancy of the smallest code with covering radius R.

Proof. For each message m ∈ M, the set Ext−1(m) is a code with covering radius R. This is, indeed, easy
to see because for an arbitrary x ∈ F

n
2 , y = Emb(x,m) ∈ Ext−1(m) and d(x,y) ≤ R. To prove the rest of

the claim, let m0 be the message that produces a covering of the smallest cardinality |Ext−1(m0)|. Because
Ext−1(m) are mutually disjoint for different messages, we have |M| ≤ 2n

|Ext−1(m0)| ≤
2n

|C?| for the smallest code

C?.

After establishing this formal relationship between codes and embedding schemes, we now return to our
original problem to obtain bounds for the embedding efficiency. Let hmax(n, R) be the maximal number of bits
that can be embedded in an n element cover object (or subset) by making at most R changes. From Proposition 4,
we know that hmax(n, R) is upper bounded by the redundancy of the smallest code with covering radius R and
length n, i.e., hmax(n, R) ≤ log2

2n

|C?| . Moreover, let rL(n, R) be the largest codimension n − k among all [n, k]

codes with covering radius R and length n. From Proposition 4, we know that rL(n, R) ≤ hmax(n, R). Thus,

rL(n, R) ≤ hmax(n, R) ≤ log2

2n

|C?|
. (4)

We now combine (4), (1), and (2) to derive an upper bound on the maximal relative message length
hmax(n, R)/n embeddable using R changes in an n-bit cover object

hmax(n, R)

n
≤ H(R/n). (5)



This inequality enables us to derive an upper bound on the lower embedding efficiency e = h(n,R)
R

for a given

relative message length α = h(n,R)
n

. From (5)

α ≤ H(R/n)

H−1(α) ≤ R/n

e =
h(n, R)

R
≤

α

H−1(α)
. (6)

The same asymptotic upper bound holds for the embedding efficiency e

e =
h(n, R)

Ra

≤
α

H−1(α)
. (7)

The proof of this can be found the journal version of the paper.8

We note that the upper bounds in (5) and (7) are asymptotically achievable using linear codes because the
redundancy rL(n, R) of almost all random linear codes with covering radius R asymptotically achieves nH(R/n)
for R/n fixed as n → ∞ (Theorem 12.3.5 in7). Thus, there exist asymptotically optimal embedding schemes
that are based on linear coverings.

Let us assume that we are interested in matrix embedding schemes on F
n
2 realized using linear codes of length

n capable of embedding messages of relative length α (i.e., schemes that embed αn bits in an n-element cover
object). Such schemes will be realized using [n, n(1−α)] codes (from Proposition 4). It would be useful to have
an upper bound on the embedding efficiency of codes from this class. In other words, we need a lower bound on
Ra for [n, n(1 − α)] codes.

From Lemma 2.2, the average distance to code Ra can be calculated from the parity check matrix H by
counting how many different syndromes can be obtained by adding the columns of H. Clearly, in the most
optimistic case, all

(

n

i

)

possible sums of i columns will lead to different new syndromes for i = 1, . . . , R, where
R is the covering radius. This is indeed the case for perfect codes, such as the Hamming codes. In general, this
will give us a lower bound on Ra.

For any integer n, let Rn be an integer and 0 ≤ ξn < 1, a real number, such that

(

n

0

)

+

(

n

1

)

+ · · · +

(

n

Rn − 1

)

+ ξn

(

n

Rn

)

= 2αn. (8)

We remind that there are 2αn syndromes (messages). From (8), we obtain a lower bound on the average number
of embedding changes Ra and finally an upper bound on the embedding efficiency e

Ra ≥

∑Rn−1
i=1 i

(

n

i

)

+ Rnξn

(

n

Rn

)

2αn
. (9)

e =
nα

Ra

≤
nα2αn

∑Rn−1
i=1 i

(

n

i

)

+ Rnξn

(

n

Rn

)
. (10)

5. MATRIX EMBEDDING FOR LARGE PAYLOADS

5.1. Random linear codes

We have seen in Section 3 that random linear codes are asymptotically optimal. Thus, we may attempt to
construct good codes randomly. The only problematic part in using random codes is that they lack structure
needed to develop fast encoding and decoding algorithms. Fortunately, for large payloads n−k the code dimension
k will be small enough to enable coding by exhaustive search.

We first describe the embedding process in words and then give a pseudo-code summarized in Algorithm 1.
We remind that the sender has a vector of bits x ∈ F

n
2 from the cover object (e.g., LSBs of a subset of pixels)

and a parity check matrix H of dimensions (n − k) × n. Our goal is to change the n − k bit syndrome Hx to a



Algorithm 1 Matrix embedding using random linear codes of small dimension

1. Read the next n bits x from the cover object (along a pseudo-random path generated from the stego key)
and read the next message segment m of length n − k.

2. Calculate the syndrome Hx.

3. Find any e that solves He = m−Hx.

4. In the list of all 2k codewords, find the closest codeword to e, denote it c(e).

5. [Embedding modifications] Modify the cover object so that y = x − e + c(e).

6. If there are no more message bits to be embedded, stop, otherwise go to 1.

7. [Extraction step] The message bits are extracted by following the same embedding path and calculating
n − k bits m from each segment of n bits y of the stego object m = Hy.

desired message segment m = Hy, where y is as close to x as possible. Because H(x − y) = Hx − m, d(x,y)
will be minimal if and only if x − y = eL(Hx − m), a coset leader of the coset C(Hx − m). To find the coset
leader, we first find an arbitrary vector e satisfying He = Hx − m. If c(e) is the closest codeword to e, from
Lemma 2.1, we have that e− c(e) is a coset leader of C(Hx −m).

We note that if H is generated randomly but already in a systematic form∗, finding such a vector e will be
trivial. Therefore, the most time consuming part of encoding is finding the closest codeword c(e). Because there
are total of 2k codewords of length n, keeping the table of all codewords in memory requires n2k bits. Finding
the closest codeword requires the same order of computations O(n2k). Due to the exponentially increasing
complexity and memory requirements, the code dimension k should be small, e.g., k ≤ 14. Note that for a fixed
k, the relative message length αn embeddable using [n, k] codes is αn = n−k

n
.

We are now ready to describe a pseudo-code for steganographic communication using matrix embedding with
random linear codes suitable for large lpayloadsayloads. Let us assume that the sender wants to embed K bits
in an N element cover object. This means that the relative message length α = K/N. The sender first finds n
such that

αn−1 =
n − 1 − k

n − 1
≤ α <

n − k

n
= αn.

The embedding and extraction process will use a random [n, n(1 − αn)] code. Similar to matrix embedding
using Hamming codes, the code length n is communicated to the recipient in the stego image itself. This can
be arranged in a variety of ways, depending on the steganographic scheme. The sender and the recipient also
need to share a set of matrices H for different values of n or at least a procedure that generates them. As in the
original F5 algorithm, the matrices and the parameter k can be a public knowledge. Security should come from
a shared secret stego key that determines a pseudo-random order in which the individual elements of the cover
object are visited.

In Figure 1, we show the embedding efficiency of random linear codes with dimension k = 10 and k = 14 for
code length n ≤ 165. A useful practical property of random codes is that they provide an almost continuously
changing family of codes with the same coding algorithm, allowing the sender to choose the code length n to
closely match αn = (n − k)/n to the relative payload length and thus efficiently use the available embedding
space in the cover object.

In order to see how much the coding improves the embedding efficiency, let us inspect two messages with
relative message lengths α = 0.9 and 0.8. We can read out the embedding efficiency from Figure 1. For random
linear codes of dimension 14, the embedding efficiency improves from 2 (no coding) to approximately 2.7 and
3, respectively. Thus, the coding reduces the impact of embedding the two messages as if we were embedding
without any coding messages of relative length 0.9×2

2.7 = 0.67 and 0.8×2
3 = 0.53, respectively. This appears to be

∗

H = [In−k,D], where In−k is a square (n − k) × (n − k) identity matrix.



Table 2. Embedding time for a 1280 × 1024 grayscale image with block length n = 100 and dimension k = 10, 12, and
14.

Dimension k Embedding time in seconds

10 0.82

12 2.42

14 8.65

a substantial improvement because the performance of current steganalyzers for some embedding methods may
be quite sensitive to the relative message length in this range.9, 10

Also, note that the embedding efficiency of random codes is fairly close to the upper bound (9) on embedding
efficiency of [n, n(1 − α)] codes of the same length n. We point out that the little “ripples” in the upper bound
are not a computing artifact but a real phenomenon.11

Figure 1 also demonstrates how the embedding efficiency increases by comparing codes with dimension k = 10
and 14. However, the code dimension cannot be increased much without severe complexity increase (recall that
the complexity of coding is O(n2n(1−α)). To give the reader an idea of the typical embedding speed achievable
on a PC, we simulated embedding into an image with N = 1280× 1024 pixels using a random code with length
n = 100. We measured the embedding time for code dimensions k = 10, 12, and 14. The test was run on Pentium
IV running at 3.4 GHz with 1 GB RAM. The algorithm was implemented in C++ and compiled under Linux
with GCC 3.4.3. The results are summarized in Table 2.

5.2. Simplex codes

In the previous section, we described an algorithm for matrix embedding using random linear codes suitable for
large payloads. In this section, we study a well-known class of structured codes, the [2q − 1, q] simplex codes.
Because simplex codes are duals of Hamming codes, their generator matrix G is equal to the parity check matrix
of binary Hamming codes. For instance, for q = 3,

G =









0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1









. (11)

Simplex codes are constant-weight codes, which means that all non-zero codewords have the same weight,
equal to 2q−1, which is also the distance between any two codewords.

There are practical and fast decoders of simplex codes that are quantizers, meaning that for any x ∈ F
2q−1
2

the decoding process always finds the closest codeword to x. This means that we can use the decoding algorithm
for simplex codes to implement the embedding function. Below, we state the decoding algorithm for simplex
codes without proof. The proof can be found, for example, in.6 In the following text, we use function bin :
{0, 1, . . . , 2p − 1} → F

p
2 which is the inverse function to dec(). It maps an integer i to its binary representation

bin(i) written as a column vector with the most significant bit as the first element.

Let C be a [2q − 1, q] simplex code with generator matrix G. We denote by vi the i-th row of G. Let
x be a noisy codeword (an arbitrary vector x ∈ F

2q−1
2 ) and x̂ = (0, x1, x2, . . . , x2q−1)

t ∈ F
2q

2 be x prepended
with a zero. Then, the closest codeword c(x) to x is c(x) =

∑q

i=1 uiv
t
i , where u = (u1, . . . , uq) = bin(i0 − 1)

and i0 = arg maxi(1 − 2x̂)tH2q . We stress that the product is carried out in regular integer arithmetic and
the arg max is taken over 2q elements of the vector (1 − 2x̂)tH2q . The symbol 1 is a column vector of 2q ones
and H2q is the Hadamard (Sylvester) matrix of order 2q. This matrix can be obtained, for example, using the
Kronecker product as H2q = H2 ⊗ · · · ⊗H2, where there are q Kronecker products of

H2 =

(

1 1

1 −1

)

.



Algorithm 2 Matrix embedding using simplex codes

1. Read the next p = 2q −1 bits x from the cover object and the next message segment m of length 2q − q−1
(following a pseudo-random path determined by a stego key).

2. Calculate the syndrome Hx.

3. Find an arbitrary vector e that solves He = m−Hx.

4. Form ê = (0, e1, . . . , e2q−1)
t and calculate E = (1 − 2ê)tH2q using the fast Hadamard transform (12)

(a) E(0) = (1− 2ê)t, for i = 1 to q, E(i) = E(i−1)M
(i)
2q .

(b) E = (E1, . . . , E2q ) = E(q).

(c) Find the largest number Ei0 among E1, . . . , E2q .

(d) u = bin(i0 − 1).

(e) The closest codeword to e is c(e) =
∑q

i=1 uiv
t
i , where vi is the i-th row of G.

(f) [Embedding modifications] The modified block of the stego object is y = x + e− c(e).

5. If there are no more message bits to be embedded, stop, otherwise go to 1.

Moreover, H2q , is a square 2q × 2q matrix consisting of 1’s and −1’s whose rows are orthogonal to each other
H2qHt

2q = 2qI2q (orthogonality with respect to the usual dot product in Euclidean space).

The complexity of calculating the product (1 − 2x̂)tH2q is O(22q). Also, keeping the matrix in memory
requires the same amount of space. Fortunately, there is a faster algorithm to obtain the product that also
requires much less memory. It is known as the fast Hadamard transform.

The transform Z
n → Z

n defined as x 7→ xtHn, where Z the set of all integers, is called the Hadamard
transform. The fast transform uses the following fact6

H2q = M
(1)
2q M

(2)
2q · · ·M

(q)
2q , (12)

where
M

(i)
2q = I2q−i ⊗H2 ⊗ I2i−1 . (13)

Each M
(i)
2q is sparse with only two non-zero elements in each row and column, which translates to drastically

reduced memory requirements O(q2q) for storing all q matrices M
(i)
2q . Calculating one single product xtM

(i)
2q

only takes 3× 2q operations. Thus, evaluating the whole Hadamard transform using (12) and (13) takes O(q2q)
operations, which is significantly better than the direct implementation (which has complexity of O(22q)).

We now describe a pseudo-code for matrix embedding using [2q −1, q] simplex codes. Let G be the generator
matrix (11) with rows v1, . . . ,vq . We will be embedding 2q − 1 − q bits in 2q − 1 pixels, which corresponds to

relative message length αq = 2q−1−q

2q−1 . Thus, if the sender plans to communicate K bits in an N element cover
object, he needs to select the parameter q so that

αq−1 ≤
K

N
< αq .

Again, the value q should be communicated in the stego object. To finish the embedding process, the sender
follows the pseudo-code 2. We note that the parity check matrix H should be pre-calculated in the systematic
form to speed up Step 2 and 3.

The embedding efficiency of simplex codes for q = 3, . . . , 11, is shown in Figure 1 using the × symbol. Note
that their performance is not as good as that of random linear codes. Also, they do not cover the range of
relative message length α as densely as random codes (αq = 2q−1−q

2q−1 ). On the other hand, they easily reach into
the range of relative message length α > 0.95 and they do so with low computational complexity. In terms of
code length n = 2q − 1, the complexity is O(n log n).
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Figure 1. Embedding efficiency vs. relative capacity (large payload case).

5.3. Augmented simplex codes

There are other codes derived from simplex codes using common operations on codes, such as lengthening
(increasing length by one) or augmenting (adding a codeword to the generator matrix), that also give good
performance and can be decoded using a simple modification of the decoding algorithm for simplex codes. By
augmenting the simplex code with an all-one vector 1, we obtain a linear [2q −1, q+1] code which coincides with
the punctured first-order Reed-Muller code.6 The generator matrix for the augmented simplex code for q = 3 is

G =













0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

1 1 1 1 1 1 1













.

This code can be decoded using a simple modification of Step 4 of Algorithm 2. Step 4 is now run with e
prepended with both ‘0’ and ‘1’: ê0 = (0, e1, . . . , e2q−1)

t and ê1 = (1, e1, . . . , e2q−1)
t, now obtaining two vectors

c0 and c1 in Step 4e. The vector closer to e is taken as the output. To avoid calculating the Hadamard transform
twice, we note that (1 − 2ê1)

tH2q = (1 − 2ê0)
tH2q − 2h1, where h1 is the first row of H2q .

The performance of the augmented simplex code is better than for the simplex code (see Figure 1) but, again,
not as good as for the random linear codes. The augmented simplex codes also populate the range for α more
sparsely with αq = 2q−2−q

2q−1 . On the other hand, both structured codes can easily reach into the range of α > 0.95
with low computational complexity.

To give an example of the improvement obtained from these codes, for a message of relative length 0.94,
embedding using the augmented simplex code leaves the same impact as an uncoded embedding of a message
with relative length 0.9×2

2.7 = 0.75, which is an improvement of about 20%.



6. CONCLUSIONS

Matrix embedding is a previously introduced method for improving embedding efficiency of steganographic
schemes. It involves a coding procedure can be applied to most steganographic schemes without any other
changes to their embedding mechanism to increase the number of bits embedded using one embedding change.
Embedding schemes that impose fewer embedding changes are more secure because they are less likely to disturb
the statistics of the cover object to trigger detection.

We proposed two new approaches to matrix embedding that are suitable when the embedded message length
is close to the embedding capacity. The first approach is based on random linear codes of small dimension.
Random linear codes provide good embedding efficiency that is fairly close to the theoretical upper bound for
the class of codes of fixed length. Also, their relative embedding capacity densely covers the range of large
payloads, which makes these codes suitable for practical applications.

The second approach to matrix embedding for large payloads proposed in this paper is based on a family of
structured codes—the simplex codes. Structured codes are more computationally efficient and can be used even
for relative payloads above 0.9. Their performance for shorter payloads is however not as good as for the random
codes.
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