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ABSTRACT

Computational photography is quickly making its way from research labs to the market. Recently, camera man-
ufacturers started using in-camera lens-distortion correction of the captured image to give users more powerful
range of zoom in compact and affordable cameras. Since the distortion correction (barrel/pincushion) depends
on the zoom, it desynchronizes the pixel-to-pixel correspondence between images taken at two different focal
lengths. This poses a serious problem for digital forensic methods that utilize the concept of sensor fingerprint
(photo-response non-uniformity), such as “image ballistic” techniques that can match an image to a specific cam-
era. Such techniques may completely fail. This paper presents an extension of sensor-based camera identification
to images corrected for lens distortion. To reestablish synchronization between an image and the fingerprint,
we adopt a barrel distortion model and search for its parameter to maximize the detection statistic, which is
the peak to correlation energy ratio. The proposed method is tested on hundreds of images from three compact
cameras to prove the viability of the approach and demonstrate its efficiency.

1. MOTIVATION

Camera identification based on sensor fingerprint is nowadays a mature area of research2, 3, 5, 11 that has already
found its way to courtrooms.∗ The method works by first estimating the sensor fingerprint from a set of images
positively known to have been taken by the camera. Then, to prove that a given image under investigation was
taken by the exact same camera (not just the same model), one establishes the presence of the fingerprint in
the image. A positive match between an image and a camera fingerprint ties the image with very high certainty
to the camera. Applications of this technology include all cases when a crime is committed by taking a picture,
such as in child pornography and movie piracy cases.

The basis of the sensor fingerprint is the so-called Photo-Response Non-Uniformity (PRNU),9 which quantifies
the fact that each pixel on the sensor consistently outputs a photon count (charge) that very slightly but
consistently differs from its nominal value. Consequently, each image the sensor takes is overlaid with a unique
noise-like pattern modulated by the scene light intensity. The presence of the fingerprint in an image can be
established using standard deterministic-signal detectors, whose form depends on the statistical nature of the
modeling noise. An especially convenient detection statistic is the Peak to Correlation Energy (PCE) ratio. A
large-scale test with nearly 6900 cameras and over one million images5 indicates that thresholding the PCE with
τ = 60 corresponds to probability of 10−5 of falsely identifying an image as taken by a specific camera (false
alarm).

As with any correlation-based detector, it is important that the fingerprint and the image be synchronized.
Due to the random character of the fingerprint, however, even a small desynchronization by a single pixel may
lead to a missed detection. In particular when some geometrical processing was applied to the image under
investigation, the detector needs to resynchronize it with the fingerprint, which typically requires searching over
all possible parameter values of the transformation (see, e.g., the camera identification from scaled and cropped
images6).

∗This forensic method passed the Daubert challenge http://en.wikipedia.org/wiki/Daubert_standard in the State
of Alabama in July 2011. In March 2009, M. Goljan testified in Scotland as an expert witness in a high-profile case that
involved child abuse crimes by a pedophile ring. See the article “Operation Algebra” at http://p10.hostingprod.com/

@spyblog.org.uk/blog/2009/05/.



Recently, camera manufacturers started using in-camera lens-distortion correction to compensate for picture
distortion as well as chromatic aberration. They were forced to cover the ever increasing demand for powerful
zoom even in compact cameras where it is not feasible or economical to use a complex lens assembly with
high quality rendering under a wide range of focal lengths.† Due to the ever-increasing power of processors
incorporated in modern digital cameras, this convenient picture correction is quickly becoming quite wide-spread.
Indeed, it is more economical to use a cheap lens and correct the distortion later through software than to try to
manufacture a high-quality lens. The natural selection went the same way – although the human eyes contain
fairly poor optics, the picture we perceive is high quality due to powerful post-processing inside the brain.

The lens distortion can be quite complicated. The most common flaw is the pincushion and barrel distor-
tion (Figure 4). The strength of the distortion is, in general, dependent on the camera focal length. Thus,
when identifying a given image using sensor fingerprint, one encounters a problem – an image can only be posi-
tively identified with a fingerprint estimated from images taken with the exact same focal length as fingerprints
estimated from images taken at other focal lengths will be desynchronized.

The easiest solution that would not require any modification of the existing camera identification method3 is
to read the focal length from the EXIF header of the image under investigation and estimate the fingerprint from
images taken at the same focal length. However, even when the EXIF header can be trusted, the focal length
may be only approximate or “quantized” and it may be rather hard to focus the camera to the exact same focal
length to take images from which the fingerprint can be estimated. Moreover, this approach cannot be taken if
the EXIF header is removed by post-processing or when the camera is not available to the investigator. What
is needed is an automatic search for the distortion parameters to resynchronize the fingerprint with the tested
image. This is the subject of this paper.

In Section 2, we introduce basic notation and briefly recapitulate the original camera identification method.
The purpose of Section 3 is to demonstrate that the lens-distortion correction constitutes a problem and assess
its severity. In Section 4, we describe the lens-distortion correction model and validate it by experiments in which
defective pixels are used as anchors. The search algorithm for finding the parameter of the lens distortion is
described in Section 5. This section also contains error analysis and a detailed pseudo-code for the final detection
algorithm. Finally, the method is put to test on three compact cameras. We report the missed detection rates by
testing random pairs of fingerprints and images taken from the entire range of focal lengths offered by the camera.
A summary of the paper together with a list of possible improvements and extensions appear in Section 7.

2. NOTATION AND PRELIMINARIES

Everywhere in this chapter, boldface font will denote vectors (or matrices) of length specified in the text. For
X an M × N matrix, Xij denotes the i, jth element, while Xi is the ith component of X when converted to
a vector by columns. Unless mentioned otherwise, all operations among vectors or matrices, such as product,
ratio, raising to a power, etc., are element-wise. The Euclidean dot product of vectors is denoted as X ·Y with
‖X‖ =

√
X ·X being the L2 (Euclidean) norm of X. Denoting the sample mean with a bar, the normalized

correlation and the PCE are defined as

ρ(X, Y) =
(X−X) · (Y−Y)
∥

∥X−X
∥

∥

∥

∥Y−Y
∥

∥

, PCE(X, Y) =
ρ2

1
MN−|N |

∑

s∈I−N ρ2(s)
, (1)

where I = {0, . . . , M−1}×{0, . . . , N−1} and N = {s = (s1, s2); (s1 ≤ 5 ∨ s1 ≥M−5) ∧ (s2 ≤ 5 ∨ s2 ≥ N−5)}
is a small neighborhood of s = (0, 0). For brevity, we use

ρ(s) = ρ (Xi+s1,j+s2 , Yi,j) , (2)

with the remark that the indices wrap up cyclically whenever they get out of their original ranges (e.g., i + s1 is
understood as mod(i + s1, M)).

†http://www.zdnet.com/blog/digitalcameras/is-in-camera-lens-distortion-correction-cheating-or-not/

3130, http://www.dpreview.com/articles/distortion/
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Figure 1. Logarithm of PCE(K̂(1), K̂
(2)) for all pairs of fingerprints estimated from images taken at 15 different focal

lengths.

We reserve the symbols I, W(I), and K for a grayscale image, its noise residual, and for camera fingerprint;
all three are M × N , n matrices of integers, I ∈ {0, . . . , 255}n, and real numbers, K, W ∈ R

n. The noise
residual is obtained using a denoising filter F , W = I − F (I). In this paper, as well as in our entire previous
work, we use the wavelet denoising filter12 with σ2 = 3. The denoising filter is applied to each color channel
and then the three color components are combined using the formula for conversion from RGB to grayscale as
described in Ref. 3.

The fingerprint estimation and post-processing follows the same citation. In particular, we use the maximum
likelihood estimator of K and apply the zero-meaning to each of the four sub-matrices of K̂ that correspond to
red, blue, green, and second green pixels in the layout of the Bayer filter array. We then extract the noise from
the magnitude of K̂ in the Fourier domain using the Wiener filter, W (., σ2), with noise variance σ2 = 1

n

∑n

i=1 K̂2
i

(all operations elementwise):

F = F(K̂), K̂← Real

[

F−1

(

F · |F| −W (|F|, σ2)

|F|

)]

, (3)

where F is the orthonormal Fourier transform. Both the zero-meaning and the filtering are necessary to remove
Non-Unique Artifacts (NUAs) of in-camera signal and image processing that may otherwise increase the false
alarm probability. In the presence of lens-distortion correction, however, the correct removal of NUAs is quite
challenging. More on this topic appears in Section 6.2. The presence of fingerprint K in noise residual W is
established using the test statistic in the form of PCE(W, K̂).

3. WHEN THE ORIGINAL APPROACH FAILS

The purpose of this section is to assess the severity of the problem and quantify how much of the distinguishing
power is lost due to desynchronization introduced by lens distortion correction.

For our initial experiments, we chose a Panasonic Lumix DMC-ZS7 camera equipped with a 14.5 Mpixel
sensor (3000× 4000 pixels effective output) and 12× optical zoom. We estimated 15 fingerprints for this camera
taken at 15 different focal lengths by taking 10 snapshots of cloudy sky‡ with no zoom, zooming a little, taking

‡A gray scene with an approximately uniform content, such as cloudy sky, has all three color components in balance
and allows for easy separation of noise from content.



another 10 snapshots, until we collected 15× 10 images.§ In total, we covered the focal lengths in the range of
4.1− 49.2 mm as determined from the EXIF headers (also see Figure 1). We also turned off the digital zoom.

Figure 1 shows log10 PCE(K̂(1), K̂(2)) for every pair of fingerprints estimated above. Note that the PCE
drops rather sharply once the focal lengths between fingerprints do not match. This sensitivity is the largest for
short focal lengths, where the PCE drops below 100, while in the telephoto range the effect of desynchronization
dissappears. It is shown in the appendix that the PCE between high-quality fingerprints (the values on the
diagonal) is approximately equal to nρ2(K(1), K(2)). Realize that when testing a single image w.r.t. a fingerprint
rather then two high quality fingerprint estimates, the drop of PCE is even larger depending on the SNR
between the fingerprint and the noise residual (23) and often prevents successful detection of the original camera
identification method as demonstrated in Section 6.

4. LENS DISTORTION MODEL

In this paper, we adopt a simple model for radially symmetric barrel/pincushion distortion.8, 10, 13 Denoting the
original pixel coordinates before and after distortion as (x, y) and (x′, y′), the geometrical transformation is a
one-to-one mapping Ta : (x, y)→ (x′, y′)

x′ = xp + (x − xp)(1 + ar2) (4)

y′ = yp + (y − yp)(1 + ar2) (5)

where r2 = (x− xp)2 + (y− yp)2 is the squared radial distance to the optical center of the image at (xp, yp) and
a is a parameter. The distance is scaled so that r = 1 corresponds to one half of the image diagonal. When
a < 0, we speak of barrel distortion, while a > 0 corresponds to the pincushion distortion.

At this point, it is important to realize that our task is not really to model the true lens distortion but to
invert the transformation performed inside the camera. The shift between the center of the image and the optical
center is mostly caused by a mechanical misalignment between the lens and the sensor. As such discrepancy
will almost certainly be different from camera to camera, it is unlikely that manufacturers correct for it as that
would require an algorithm individualized for each camera made. Thus, we will assume (xp, yp) = (0, 0) and use
a simplified model, which now can be writen only using the radial distance to the image center:

r′ = r(1 + ar2). (6)

Using Taylor expansion, it is routine to show that the mapping between two images, one distorted with
parameter a and the other with b, r′′ = r(1 + br2), requires additional higher-order terms of even power:

r′′ = r′ (

1 + (a− b)r′2 + 3a(a− b)r′4 + · · ·
)

. (7)

With each additional parameter, however, the complexity of the parameter search significantly increases.
Fortunately, the coefficient at the quartic term is of higher order when compared to the quadratic one. Thus,
we adopted (6) as a single-parameter model between distorted images (fingerprints) and verified its accuracy
using defective pixels as anchor points (since for most consumer-end cameras the raw sensor output before any
processing is applied is not available). We performed this model validation for the Panasonic Lumix camera.

First, we identified all dead and hot pixels whose distance to the image center was at least 1/4 of the diagonal
as defects closer to the center move only by a small amount and taint the estimation of the transform. The
defects were identified in fingerprints from the lower half of zoom range covered by 15 fingerprints (see the
previous section for details). First, we confirmed that the optical center is in the geometrical center of the image
by fitting straight lines to the defect positions as they change with zoom (see Figure 2). The optical center
appears to coincide with the image center within about ten pixels (see the center closeup on the right).

§To make sure that 10 images are sufficient for a reasonably good estimate of the fingerprint, we set the exposure
manually in an attempt to maintain the pixel intensities high but not saturated.
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Figure 2. Left: optical center assessment by fitting straight lines through defects (marked by crosses). Right: central
detail with image center marked by a black circle at coordinates (1500.5, 2000.5).

For each focal length, we fit the quadratic model 6 to the pixels’ radial distance using least squares. The
results are shown in Figure 3. The deviation of the defect position from the model fit was always within one
pixel, which confirms the validity of the quadratic model. Notice that even for two relatively close focal length
values of f = 7.9 and f = 4.1 the pixels located far from the center are displaced by hundreds of pixels. One
defect positioned at r = 2250 was moved by 250 pixels (or by 11%).

5. METHODOLOGY

In this section, we describe a method for detecting whether noisy estimates of two fingerprints, K̂(1), K̂(2),
contain a common signal – the sensor fingerprint K. It is assumed that K̂(i) were estimated from Ni ≥ 1 images
taken at focal length (zoom setting) fi and that, in general, f1 6= f2. When N1 = N2 = 1, we speak of image
pairing,4 which corresponds to the most challenging problem when only two images are available and our task
is to determine whether or not they were taken using the same device. The most common application, and one
we focus on in this paper, is when one observable is a noise residual and the other a fingerprint estimate.

Formally, our task is a two-channel problem:

H0 : K̂(1) = K + ξ(1), K̂(2) = Ta(K′) + ξ(2) (8)

H1 : K̂(1) = K + ξ(1), K̂(2) = Ta(K) + ξ(2), (9)

where K and K′ are two sensor fingerprints, ξ(i), i = 1, 2, are i.i.d. Gaussian modeling noise terms with unknown
variances, and Ta is the lens distortion mapping (6) parametrized by a scalar parameter a. The null hypothesis
corresponds to the situation when the observables come from two different devices, while under the alternative
hypothesis both observables come from the same device.

A generalized likelihood ratio detector for this problem, which appears in Ref. 7, is standardly applied to
camera identification from fingerprints.3–6 The detection statistic is the PCE maximized over all possible values

of a, maxa PCE
(

K̂(1), T −1
a (K̂(2))

)

. The detection thus involves numerical maximization of the PCE as a function

of a. As explained in Section 5.1 below, it is easier to implement the inverse mapping, T −1
a , between discrete

lattices that the forward transform Ta..

First, a range for the parameter a is adopted, a ∈ [−A, A]. The interval is symmetrical to cover both
pincushion and barrel distortions. The proposed method consists of two parts: a grid search on a progressively
refined grid and then a golden section search is run on a neighborhood of the grid point with the maximal
PCE. The first hierarchical grid search starts with the initial grid A1 = {−A, 0, A}. Given a union of grids

∪k
m=1Am = {a(k)

1 , . . . , a
(k)
nk
}, the next grid is Ak+1 = { 1

2 (a
(k)
1 + a

(k)
2 ), 1

2 (a
(k)
2 + a

(k)
3 ), . . . , 1

2 (a
(k)
nk−1 + a

(k)
nk

)}. The
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Figure 3. Model (6) fit to defective pixels’ shifts.

algorithm never checks further than kmax, which corresponds to the total number of grid points, |A| = 2kmax + 1,
where A = ∪kmax

m=1Am. If the grid search goes through all 2kmax +1 points while the maximal PCE? (found at grid

point a
(k?)
i? ∈ Ak? ) is below some threshold τ1, the entire algorithm stops and mismatch is proclaimed (hypothesis

H0). If PCE? > τ1, the algorithm continues with the golden search refinement. To speed up the grid search, we
stop it and proceed to the golden search once the PCE is sufficiently large (PCE > τ2 ∧ k > 4) instead of going
through all points in A as in this case it would be too slow and unnecessary to try all grid points.

Having found a
(k?)
i? , the second, refining, step is a golden section search on the interval [a

(k?)
i?−1, a

(k?)
i?+1] of width

A/2k?−1 defined by two grid points in Ak? closest to a
(k?)
i? . The golden section search stops when the width of

the search interval reaches

A/2k?−1 ≈ 1

4d
, (10)

where d is the image diagonal in pixels.¶ The parameter value outputted by the golden section search is denoted
â.

Since we do not know which of the two observables was corrected more strongly, it is not clear whether in
the objective function we should be applying T −1

a to K̂(2) or Ta to K̂(1). It is intuitively clear that one option
could give significantly higher PCE than the other due to cumulative artifacts of repeated resampling. We take
care of this dilemma by taking as the final value of the PCE the maximum:

PCEfinal = max
{

PCE
(

Tâ(K̂(1)), K̂(2)
)

, PCE
(

K̂(1), T −1
â (K̂(2))

)}

. (11)

For practical implementation, it is useful to know that the inverse to the model (6) is

r = r′(1 − ar′2 + 3a2r′4 + O(r′6)). (12)

The entire algorithm proclaims a match (hypothesis H1) if and only if PCEfinal > τ3. In all other cases,

including the one when the golden search is entirely skipped because PCE at a
(k?)
i? is less than τ1, we decide H0.

¶In other words, the search stops when the changes to a are so small that T −1
a

at the boundary differs by at most a
quarter of a pixel.



Algorithm 1 Detection algorithm for image identification.

1: Set A = 0.22, τ1 = 15, τ2 = 75, τ3 = 75
2: for k = 1 to kmax do

3: Ak = {a(k)
1 , . . . , a

(k)
nk
}

4: for i = 1 to nk do

5: if PCE(K̂(1), T −1

a
(k)
i

(K̂(2))) > PCE? then

6: PCE? = PCE(K̂(1), T −1

a
(k)

i

(K̂(2))), i? = i, k? = k, a? = a
(k)
i

7: if PCE? > τ2 then

8: go to 16
9: end if

10: end if

11: end for{i}
12: end for{k}
13: if PCE? < τ1 then

14: Decide H0

15: end if

16: â = GOLDEN_SEARCH
(

[a
(k?)
i?−1, a

(k?)
i?+1], Ngold

)

17: if PCEfinal , max
{

PCE(Tâ(K̂(1)), K̂(2)), PCE(K̂(1), T −1
â (K̂(2)))

}

> τ3 then

18: Decide H1, output PCEfinal

19: else

20: Decide H0

21: end if

22: FUNCTION â = GOLDEN_SEARCH([r, s], Ngold)
23: Run Ngold iterations of golden section search on [r, s] with PCE as the objective function, return â
24: end

5.1 Implementation issues

To lower the complexity of the grid search as well as the golden section search, we carry out these searches with
both the image and the fingerprint downsampled by a factor of three. This works better than center-cropping
the signals since the distortion is the least pronounced in the center. We used simple subsampling of rows and
columns starting at the image center to avoid creating an artificial shift by subsampling. Specifically, given an
image/fingerprint with 2Nr×2Nc pixels, the center of the image is at (Nr +1/2, Nc+1/2), and we downsample by
skipping rows no. Nr +3k and Nr +1+3k and columns no. Nc +3k and Nc +1+3k for k = . . . ,−2,−1, 0, 1, 2, . . .

In the computation of PCEfinal on line 17 of Algorithm 1, however, we compute both PCEs at the full
resolution to avoid loss of PCE due to the downsampling.

The radial mapping Ta (6) needs to be realized to work between two square lattices of pixels, L′ and L. It
turns out that it is easier to work with the inverse T −1

a . Let us assume that we have a signal sampled on the
square lattice L′ and we wish to determine the grayscale intensity after applying the inverse transformation to
L′. Since we need to map to another square lattice, L, let (x, y) ∈ L. We transform it using (6), obtaining thus
real-valued coordinates (x′, y′). The intensity value at (x, y) is determined as a weighted average of intensities
of the following four lattice points from L′: (bx′c , by′c), (bx′c , dy′e),(dx′e , by′c), and (dx′e , dy′e), where the
two types of brackets denote the operations of rounding down and up. The weights are determined by square-
distances between the lattice points and (x′, y′). We use the approximation (12) when implementing the forward
transform.

5.2 False alarms and threshold setting

The large scale test5 provides useful practical data to estimate the probability of obtaining a false match in the
proposed algorithm. Let P (τ3) = Prob(PCEfinal > τ3|H0). Since under H0 the PCE values obtained in the search



Figure 4. Example of the most severe pincushion (left) and barrel (right) distortion correction encountered in our tests
with Canon Powershot SX230 HS.

are independent realizations, we obtain the following bound on the probability of false alarm

PFA(τ3) = 1− (1− P (τ3))Neval ≈ NevalP (τ3), (13)

where Neval = Ngrid + Ngold is the maximal total number of PCE evaluations. Since the interval width in the

golden section search decreases by the factor of ϕ =
√

5+1
2 per evaluation,

A/2k?−1

ϕNgold
=

1

4d
. (14)

For example, for an image with d = 2500 and A = 0.3, Ngold ≈ 12 . . . 8 for k? = 5 . . . 7.

The threshold τ3 thus controls the false alarm probability. For τ3 = 60, it was experimentally determined
using a large scale test that P (τ3) ≈ 10−5. The experiment could not be used to estimate P (τ3) for larger values
of τ3 due to lack of points in the right tail of the distribution of PCE under H0. Since for kmax = 7, Neval ≤ 138,
to keep PFA below 10−6, the threshold needs to be increased. In this paper, we used τ3 = 75 to compensate for
the increase in PFA due to the search. Unfortunately, since no experimental data is available to estimate P (τ3)
for such a high value of the threshold, we hypothesize that the false alarm probability is sufficiently low given
the character of the right tail in the distribution of H0 (see Ref. 5).

Finally, in our practical implementation, we set τ1 = 15 and τ2 = τ3. The thresholds τ1 and τ2 affect the
missed detection probability, which is why we set τ1 to a rather low and τ2 to a high value.

6. EXPERIMENTS

In order to validate the methodology from Section 5 we added two Canon SX230 HS cameras with 14×optical
zoom to our experimental setup. In the camera menu, we selected the image resolution to match the Panasonic’s
3000×4000. We intentionally chose two cameras of the same model to investigate the effect of leftover non-unique
artifacts on the probability of false alarm. Below, we summarize the image sets taken with each camera.

• Panasonic Lumix DMC-ZS7 (further denoted as Panasonic), focal length range 4.1 − 49.2 mm, 225 test
images, 34 fingerprints each estimated from 10 images of overcast sky with focal lengths f =4.1, 4.4, 4.7,
5, 5.3, 5.7, 6.1, 6.5, 6.9, 7.3, 7.9, 8.5, 9.1, 10.3, 11, 12.8, 13.7, 14.7, 15.8, 17, 18.2, 19.5, 21, 22.5, 24.1, 25.9,
27.8, 29.9, 32.1, 37, 39.7, 42.6, 45.7, 49.2. With increased zoom, the sky shots became increasingly dark,
which lowered the quality of the estimated fingerprints.

• Canon SX230 HS (Canon-I), focal length range 5−70 mm, 189 test images, 41 fingerprints, from 10 images
(taken in the burst mode) of overcast sky with focal lengths f =5, 5.58, 5.68, 6, 6.7, 7.09, 7.52, 7.98, 8.13,
9.75, 10.8, 11.73, 12.22, 12.48, 14.12, 15.01, 16.29, 17.66, 18.02, 20.72, 21.14, 22.42, 22.86, 23.31, 24.24,
25.2, 25.69, 26.7, 28.29, 29.97, 31.15, 36.42, 37.91, 39.49, 42.04, 42.94, 44.86, 53.03, 54.47, 57.62, 70.



• Canon SX230 HS (Canon-II), focal length range 5−70 mm, 50 fingerprints, 275 test images, 41 fingerprints
of cloudy sky with focal lengths f =5, 5.58, 5.78, 6.33, 6.58, 6.96, 7.52, 7.67, 7.82, 8.64, 8.99, 9.18, 9.36,
9.95, 11.49, 11.73, 11.97, 12.22, 12.48, 12.74, 13, 13.27, 13.83, 14.12, 14.41, 15.01, 16.29, 16.62, 16.96, 17.66,
18.39, 20.32, 21.56, 27.22, 28.29, 29.97, 30.56, 31.15, 32.38, 33.66, 36.42, 37.16, 37.91, 39.49, 42.04, 44.86,
48.04, 55.99, 57.62, 70.

Both camera models offer a large zoom range sampled in discrete steps. The zoom in the Canons is hard to
control if one needs to adjust it by the smallest step. This explains why we did not prepare fingerprints at all
possible (more than 50) zoom settings.

6.1 Open set test with three cameras

For each fingerprint, we randomly chose 20 test images from each of the three cameras and ran the detection
algorithm 1. The total of 3× (34 + 41 + 50)× 20 = 7500 image/fingerprint pairs entered the tests. We ran the
entire experiment as an “open set problem” in the sense that we do not a priori assume that one of the three
cameras took a given test image and thus may decide in some cases that the image does not match any of the
three cameras. One technical note: based on preliminary tests, we set A = 0.22 to cover the parameter range
for all the three cameras.

The main diagonals in Table 1 are the true detection rates (in percents) observed in the experiment, off
diagonal values represent the false alarm rates. The effect of the resynchronization is apparent by comparing the
left and right tables. While the detection rates for the original camera ID method without resynchronization3

fell below 50% (left), when supplied with the proposed resynchronization (right), all tested images from both
Canons and about 92% of images from Panasonic were correctly identified.

The lower detection rate (91.62%) for Panasonic can be partly explained by the lower quality of fingerprints
due to dark sky images taken at long focal lengths. Repeating this experiment with fingerprints estimated from
20 images gave us a slightly higher detection rate of 93.74%. Five missed detections occured for images taken
with the maximum zoom at f = 49.2; four of them were indoor snapshots. Even though taking pictures with a
maximum zoom indoors is not common, as part of our future research we plan to investigate whether the camera
image stabilization or other processing associated with extreme zoom may have affected the pixel synchronization
between the sensor and the camera image output.

The detection rates obviously depend on the prior distribution of focal lengths for images and fingerprints.
Most missed detections occurred when either the fingerprint or the image were taken at focal length f < 10 as
this is the range where the distortion is the most severe and also the range where most photographs are taken
under normal circumstances. In the bottom portion of Table 1, we report the detection rate only for images and
fingerprints taken at f < 10. In this case, the original identification method without resynchronization performs
even worse, while identification with the resynchronization is almost unaffected.

The most severe cases of distortion that we had to correct for in our test both occurred with the Canon
Powershot and are shown in Figure 4. The largest barrel distortion had T −1

a with a = 0.19765 (occured for
a fingerprint/image pair at focal length 5 mm and 12.222 mm) and the largest pincushion had T −1

a with a =
−0.17413 (fingerprint taken at focal length 33.663 mm and image at 5 mm).

The resampling needed to resynchronize the test image and the fingerprint weakens the fingerprint, which
traslates to a lower value of PCE and thus an increased missed detection rate. This loss can be quite substantial
when both the image and the fingerprint were taken at two very different focal lengths. This is apparent from
Figure 5 showing the PCE between three selected test images and camera fingerprints estimated at different
zooms.

6.2 Analysis of false alarms

In our open test above, we observed two false alarms (FA rate of 0.002) when testing images from Canon-I, both
at f = 5, against a Canon-II fingerprint estimated also at f = 5 (PCE values were 207 and 83). We also saw two
false alarms (FA rate 0.0024) when testing images from Canon-II at f = 7.667 and f = 8.298 against a Canon-I
fingerprint estimated at f = 5.583 and f = 8.134 (PCEs 88 and 76). A false-alarm rate this high contradicts the
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Figure 5. PCE after resynchronization as a function of fingerprint focal length f for three images from Canon-II (left)
and Panasonic (right). The varying levels of the PCE are also influenced by the image content.

error analysis of Section 5.2. It is caused by unremoved non-zero means of rows and columns common to both
Canons. (The row and column means form the so-called “linear pattern”.1) Even though we suppress NUAs
when estimating the fingerprints by zero-meaning the rows and columns as described in Section 2, when the
images from which we estimate the fingerprints were corrected for lens distortion, the sensor rows and columns
become “bent” in the corrected image, which prevented us from removing their means. More accurately, we
remove the means only in the central area of the fingerprint. The size of this area decreases with increased lens
distortion and the remnants of the linear pattern cause unwanted correlation that can become large enough to
cross the detection threshold when both the image and the fingerprint were estimated at short focal lengths
where the distortion is the largest.

PD(%) Panasonic Canon-I Canon-II
Panasonic 36.03 0 0
Canon-I 0 43.9 0.40
Canon-II 0 0.37 46.5
Panasonic 12.42 0 0
Canon-I 0 13.74 0.62
Canon-II 0 0.62 14.99

PD(%) Panasonic Canon-I Canon-II
Panasonic 91.62 0 0
Canon-I 0 100 0.20
Canon-II 0 0.24 100
Panasonic 90.68 0 0
Canon-I 0 100 0.31
Canon-II 0 0.41 100

Table 1. Experimental detection rates PD. Left: without resynchronization, Right: with resynchronization, Top: all
image/fingerprints, Bottom: restricted images/fingerprints with f < 10.

The removal of the linear pattern from distorted fingerprints is a challenging task but one that must be
tackled to avoid an increased false alarm rate between cameras of the same model. The cleanest solution, that
would not require modification of Algorithm 1, is to remove the linear pattern during the fingerprint estimation.
One possibility that appears rather promising is to subject the estimated fingerprint K̂ to distortion T −1

a while
covering a range of a and measuring the energy of the linear pattern

E(a) =

M
∑

i=1

µ2
i (a) +

N
∑

j=1

γ2
j (a), (15)

where µi(a) and γj(a) denote the sample mean of the ith row and jth column of T −1
a (K̂). When T −1

a becomes
near exact inverse of the distortion correction applied in the camera, we observe a peak in E(a) (see Figure 6)
as in this case we reestablish pixel-to-pixel correspondence with the sensor. Having determined a, we can now
remove the linear pattern by zero meaning the rows and columns of T −1

a (K̂) and transform the fingerprint back
using Ta, at which point we could apply Algorithm 1 as before. We refrain from further analysis of this issue in
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Figure 7. Parameter a for reversing the radial distortion correction in two Canon cameras.

this paper due to lack of space and postpone our work to a journal version of this paper that is currently under
preparation.

6.3 Blind focal length estimation

The energy of the linear pattern (15) could potentially be used to estimate the focal length at which an image
(fingerprint) was taken. This is because one can experimentally determine the relationship between the distor-
tion parameter a and focal length f for a given camera model and a can be estimated. Figure 7 shows this
relationship for both Cannon cameras. We note that a(f) ≈ 0 for f & 11.5. This also implies that if the image
and the fingerprint are both taken in this focal range, no resynchronization is necessary for successful camera
identification. The figure also confirms that the strongest distortion occurs for the shortest focal lengths.

7. CONCLUSIONS

A large number of modern consumer-end digital cameras correct their images on the fly for optical distortion
to give the customers a wide range of optical zoom in a compact and low-cost package. Since this geometrical
correction depends on the zoom, it causes a desynchronization between sensor fingerprint and an image noise
residual in camera identification methods that utilize sensor fingerprint, effectively making these methods fail.
The main contribution of this work is a method for estimating the distortion and reestablishing synchronization
of both signals, making thus the camera ID technology work again. The algorithm can be applied to the case
when an analyst has an estimate of the sensor fingerprint and one image under investigation. The task is to
determine whether the image contains the estimated (and distorted) fingerprint. Our approach makes no use



of the EXIF header data as this information may be unavailable or corrupted. Neither do we assume that the
camera that produced the images is available.

The identification algorithm consists of a grid search followed by a refining golden section search for the lens
distortion parameter on downsampled signals and then computing the PCE detection statistics after one of the
signals is geometrically transformed to synchronize with the other signal. Once resynchronized, a positive match
can be obtained. We demonstrate the reliability of this approach with three cameras, two of which are of the
exact same model to investigate the effects of possible non-unique artifacts caused by camera signal read-out
and processing. By testing hundreds of fingerprint–image pairs with a wide range of focal lengths, we were able
to achieve a detection reliability of 91% for a Panasonic camera and 99.8% for Canon, with camera fingerprints
estimated from only 10 images.

We observed a higher false alarm rate between both Canon cameras than what we designed the algorithm for.
Analysis showed that this was caused by remnants of a linear pattern (non-zero means of rows and columns),
which is not unique to the camera and thus undesirably increases the false alarm rate. We proposed a method
for removing this pattern from images corrected for lens distortion, which we plan to test in our future work.

We view this work as an initial proof of concept that is also supposed to raise the awareness of the impact of
computational photography techniques on digital forensics. A lot remains to be done. Among the future topics,
we plan to carry out a large scale test to better assess the extendability of the proposed measure. Together with
lens distortion, camera manufacturers are likely correcting for lateral chromatic aberration as well. In this case,
it will be important to resynchronize each color channel separately instead of working with grayscale versions
of fingerprints and noise residuals. It is also quite intriguing to use the sensor fingerprint as a template to
reverse-engineer in-camera processing and estimate the severity of the distortion in the uncorrected, raw image,
and through this non-intrusively evaluate the rendering quality of optics.
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Appendix

Let us assume that we have two estimates of fingerprints at two different focal lengths:

K̂(1) = K(1) + ξ(1) (16)

K̂(2) = K(2) + ξ(2) (17)

with K(l), l = 1, 2, being zero-mean deterministic signals and the noise terms ξ(l) ∼ N(0, σ2
l ), σ2

l ≈ 1
n

∥

∥ξ(l)
∥

∥

2
,

both mutually independent, all signals of length n. Due to the lens-distortion correction, K(1) and K(2) will be
approximately synchronized only around their center and thus ρ

(

K(1), K(2)
)

< 1. The PCE can be written as

PCE
(

K̂(1), K̂(2)
)

=
ρ2

(

K̂(1), K̂(2)
)

1
n−|N |

∑

s∈I−N ρ2
(

K̂
(1)
i+s1,j+s2

, K̂
(2)
i,j

) =
(n− |N |)

(

K̂(1) · K̂(2)
)2

∑

s∈I−N

(

K̂
(1)
i+s1,j+s2

· K̂(2)
i,j

)2 (18)

because the norms in the normalized correlations in the numerator and the denominator cancel.

We will assume that both fingerprints K(l) are fixed i.i.d. realizations of a Gaussian random variable with

zero mean and variance ν2
l = 1

n

∥

∥K(l)
∥

∥

2
and independent of the noise terms. Thus, K(l) +ξ(l) ∼ N(0, ν2

l +σ2
l ) and

by the Central Limit Theorem (CLT) for each s 6= 0 1√
n

K̂
(1)
i+s1,j+s2

·K̂(2)
ij ∼ N

(

0, (σ2
1 + ν2

1)(σ2
2 + ν2

2)
)

because the

variance of the product of two independent Gaussian random variables is the product of their variances. Thus,
we have for the denominator:

E

[

∑

s∈I−N

(

K̂
(1)
i+s1,j+s2

· K̂(2)
i,j

)2
]

= (n− |N |)E
[

(

K̂
(1)
i+s1,j+s2

· K̂(2)
i,j

)2
]

= (n− |N |)n(σ2
1 + ν2

1 )(σ2
2 + ν2

2 ), (19)



and, for the numerator:

E

[

(

K̂(1) · K̂(2)
)2

]

= E
[

K̂(1) · K̂(2)
]2

+ V ar
[

K̂(1) · K̂(2)
]

=
(

K(1) ·K(2)
)2

+ O(
√

n), (20)

because the variance in (20) is proportional to
√

n due to the CLT. Thus, from (19) and (20) we finally have:

PCE
(

K̂(1), K̂(2)
)

≈ (n− |N |)
(

K(1) ·K(2)
)2

(n− |N |)n(σ2
1 + ν2

1)(σ2
2 + ν2

2)
=

n2ν2
1 ν2

2

(

1
n

K
(1)·K(2)

ν1ν2

)2

n(σ2
1 + ν2

1 )(σ2
2 + ν2

2)
(21)

= nρ2
(

K(1), K(2)
)

(

1 + σ2
1/ν2

1

)−1 (

1 + σ2
2/ν2

2

)−1
. (22)

The following important observations can be made from here. First, the PCE is proportional to the number
of pixels, n, and the square correlation between deformed fingerprints. Second, the PCE increases with increasing

SNR, SNR
(

K̂(l)
)

, ν2
l /σ2

l , and, in the limit of perfect estimates, PCE = nρ2. Due to the CLT, when estimating

the fingerprint K̂(1) from L images, the SNR increases L times w.r.t. an estimate from a single image (its noise
residual W). Thus, we have the following ratio between the PCEs for large L:

PCE
(

W, K̂(2)
)

PCE
(

K̂(1), K̂(2)
) =

1 + 1/(L× SNR(W))

1 + 1/SNR(W)
≈ 1

1 + 1/SNR(W)
. (23)
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