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ABSTRACT
It has recently been shown that steganalysis of content-
adaptive steganography can be improved when the Warden
incorporates in her detector the knowledge of the selection
channel – the probabilities with which the individual cover
elements were modified during embedding. Such attacks
implicitly assume that the Warden knows at least approxi-
mately the payload size. In this paper, we study the loss of
detection accuracy when the Warden uses a selection chan-
nel that was imprecisely determined either due to lack of
information or the stego changes themselves. The loss is in-
vestigated for two types of qualitatively different detectors
– binary classifiers equipped with selection-channel-aware
rich models and optimal detectors derived using the theory
of hypothesis testing from a cover model. Two different em-
bedding paradigms are addressed – steganography based on
minimizing distortion and embedding that minimizes the
detectability of an optimal detector within a chosen cover
model. Remarkably, the experimental and theoretical evi-
dence are qualitatively in agreement across different embed-
ding methods, and both point out that inaccuracies in the
selection channel do not have a strong effect on steganaly-
sis detection errors. It pays off to use imprecise selection
channel rather than none. Our findings validate the use of
selection-channel-aware detectors in practice.

Categories and Subject Descriptors
I.4.9 [Computing Methodologies]: Image Processing and
Computer Vision—Applications
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Security, Algorithms, Theory
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1. INTRODUCTION
Steganography in digital images has seen great advances

in the recent years. The main paradigm shift occurred in
2010 with the introduction of near-optimal codes [12] that
allowed the sender to assign “costs” of changing individual
image elements (e.g., pixels) and then embed the secret mes-
sage while minimizing the sum of costs of all modified pixels.
By assigning large costs to pixels in smooth regions and low
costs in highly textured content, the embedding is forced to
execute the modifications where they would be presumably
harder to detect. The first method based on this frame-
work was HUGO [36]. Soon, many other content-adaptive
schemes with increasingly improved security operating in
both the spatial [22, 25, 33, 32] and JPEG domain [25, 19]
appeared. Recently, steganalysts began investigating the
possibility of using an approximate knowledge of the em-
bedding change probabilities to better detect adaptive em-
bedding. Indeed, since the pixel costs are driven by content,
they can be usually accurately estimated from the stego im-
age because the embedding changes themselves are rather
subtle.
The first fundamental insight was given by Schöttle et

al. [39] who showed on a simple example that it is advanta-
geous for the sender to deviate from her optimal embedding
strategy in exchange for a mismatched detector of the War-
den. Framing the interaction between the sender and the
Warden within the game theory, the authors showed that
the Nash equilibrium, attained in mixed strategies, was an
overall better choice for the sender than minimizing the KL
divergence between cover and stego objects. The same au-
thors showed in [40] that it is possible to use the knowledge
of the embedding change probabilities in naive LSB replace-
ment to improve the weighted-stego detector [27]. Experi-
mental evidence was also presented that embedding schemes
whose selection channel is more sensitive to the embedding
changes themselves are harder to attack than schemes with
a more robust selection channel.
In [8], it was shown that the security of S-UNIWARD [23]

was compromised due to a faulty selection channel in which
pixels with high and low embedding change probabilities
were tightly interleaved. The problem was tied to an im-
properly selected parameter whose role was to merely sta-
bilize the numerical computation, and it disappeared after
adjusting this parameter to produce a selection channel free
of artifacts [25].
The first general-purpose attack on content-adaptive steg-

anography appeared in [43] but was, for some reason, pre-
sented as an attack specific to WOW [22]. The authors



proposed to form the 4D co-occurrences of quantized noise
residuals in the Spatial Rich Model [15] (SRM) only from a
fraction of pixels with the lowest costs. This attack, which
was later nicknamed “thresholded SRM” (tSRM) in [9] was
further improved by forming the co-occurrences from all
pixels but letting each pixel contribute to a specific co-
occurrence bin only with the maximum of the four proba-
bilities corresponding to pixels whose residuals point to the
specific co-occurrence bin (the so-called maxSRM [9]).
All steganalysis attacks that use the selection channel in-

herently assume that the Warden is able to estimate the em-
bedding change probabilities, which usually strongly depend
on the payload size. Estimating the payload size, however,
is rather difficult especially for modern embedding schemes
whose detection requires high-dimensional rich media mod-
els, which substantially complicates the payload estimator
construction in practice (e.g., the search for support vector
regressor hyperparameters [37]). In fact, it seems hard to
substantially improve upon the trivial estimator that always
outputs the mean payload [28].
It is thus important to study the effect of payload mis-

match on the accuracy of detection when selection-channel-
aware detectors are used. The above cited prior art [43, 9]
already contains a limited experimental investigation of this
issue. In particular, classifiers equipped with the maxSRM
feature set appear to lose less detection power due to pay-
load mismatch than the tSRM features.
In this paper, we work with two qualitatively different

steganography detectors – classifiers built using machine
learning and tests designed in an optimal manner from a
cover model. We do so for the widely popular embedding by
minimizing distortion and the newly emerged model-based
steganography minimizing the power of the most powerful
detector within a chosen cover model [41]. Interestingly,
both detectors seem to point to the same evidence. First,
the loss of detection power due to imprecise knowledge of
the selection channel is rather small – it still pays off to
use selection-channel-aware detector even with an incorrect
payload. Second, the misjudged payload is much less of an
issue for detection of the model-based steganography than
for minimal-distortion steganography. Finally, the inaccu-
racy due to estimating the embedding change probabilities
from the stego image rather than the cover has a negligible
effect for the tested stego schemes.
In the next section, two different steganography detectors

that utilize the selection channel are reviewed. Then, in Sec-
tion 3 we introduce four types of Warden to better show the
effect of imprecision in the selection channel on detection
accuracy. The paper continues in Section 4, where we de-
scribe four steganographic schemes used in our experiments.
In Section 5, we explain the setup of our experiments and
how the loss (gain) of the detection power will be measured
and the results reported. All experiments and their inter-
pretation appear in Section 6. A summary of the paper is
given in Section 7.

2. STEGANALYSIS WITH THE KNOW-
LEDGE OF SELECTION CHANNEL

Currently, there exist two major trends in steganalysis of
digital images – detectors derived in some sense as optimal
using the theory of statistical hypothesis testing based on a
cover model [11, 6, 7, 46, 4, 3, 44] and detectors constructed

as classifiers trained on examples of cover and stego images
represented in a feature space [10, 34, 42, 48, 1, 18, 15,
2, 29, 24, 21, 17]. The former approach is usually rather
successful when the embedding disturbs some statistics of
images that can be well described using a model. This is
the case of Jsteg, OutGuess [38], and F5 [45], as these algo-
rithms introduce strong artifacts into the first-order statis-
tics of DCT coefficients, and basically all algorithms that
use LSB replacement [6, 47, 11, 44, 5]. The latter approach
to detection based on trained classifiers is more successful
in detecting modern steganographic algorithms that seem
to better preserve the cover statistics. To detect such algo-
rithms, one currently needs to form features as higher-order
statistics of noise residuals extracted using a diverse bank
of pixel predictors, the so-called rich media models [18, 15,
29, 2, 24, 21, 17].
Both types of detectors have been previously adapted for

detection of content-adaptive embedding to utilize the prior
knowledge of the embedding change probabilities. Since
these detection paradigms will be used in this paper, below
we explain how this is done. The exposition is kept short
while referring the reader to the corresponding publications
for more details.

2.1 Empirical detectors
While incorporating priors in the form of the probabilistic

selection channel within statistical hypothesis testing is usu-
ally straightforward (see Section 2.2), it is much less clear
how to utilize this information for empirical detectors. The
first general-purpose feature set proposed to improve the
detection of content-adaptive steganography was the thresh-
olded SRM [43]. The authors discovered that the embedding
algorithm WOW is so “overly adaptive” that it paid off to
compute the co-occurrence matrices of the SRM only from
a fraction t ≤ 1 of pixels with the smallest embedding cost.
This way, the authors avoided using the embedding change
probabilities but, in return, had to adjust the threshold t
based on the payload size for each embedding method sep-
arately. A mismatch between the estimated (assumed) and
the true payload size caused a non-negligible detection loss.
In [9], the authors described an idea similar to the tSRM

called the maxSRM. Due to space limitations, we only pro-
vide a very brief outline of the main idea. Let us assume
that zij , i = 1, . . . , N1, j = 1, . . . , N2, is a noise resid-
ual computed from a grayscale image x = (xij), xij ∈
{0, . . . , 255}N1×N2 , using one of the pixel predictors em-
ployed in the SRM, z = x−Pred(x). For example, Pred(xij)
= (xi,j−1 + xi,j+1)/2 estimates the pixel value from its two
closest horizontal neighbors. The residual is subsequently
quantized with a quantizer QT,q : R → QT,q with centroids
QT,q = {−Tq,−(T − 1)q, . . . , (T − 1)q, T q}, rij = QT,q(zij).
In SRM, the features are formed as 4D co-occurrences

Cd0d1d2d3 =
N1∑
i=1

N2∑
j=1

[ri,j+k = dk, ∀k ∈ {0, 1, 2, 3}], (1)

where [P ] is the Iverson bracket equal to 1 when the state-
ment P is true and 0 when P is false. In maxSRM, the Iver-
son bracket in (1) is simply replaced with max{βij , βi,j+1,
βi,j+2, βi,j+3}, where βij is the probability of changing pixel
xij during embedding computed from x. Note that in order
to compute βij , one needs to know the size of the embedded
payload. On the other hand, in maxSRM there is no need



to search for any parameters (e.g., the threshold t) for each
payload and embedding scheme. As long as the payload size
is given, one can readily form the feature vector. In contrast
to tSRM, the maxSRM’s detection accuracy degrades more
gracefully with a mismatch between the true embedded pay-
load and the assumed payload. (This is apparent from the
studies that appeared in [43, 9, 41].)

2.2 Model-based optimal detectors
The second type of detector is derived using the theory of

statistical hypothesis testing based on a cover model. The
detectors described in this section are derived for content-
adaptive LSB matching, which is the prevailing paradigm for
spatial-domain steganography today. We start by describing
the cover model, the embedding operation, and the ensuing
stego image model, and finish with a closed-form expression
for the deflection coefficient that describes the performance
of the asymptotic likelihood ratio test.
During acquisition using an imaging sensor, pixel val-

ues become corrupted by noise, which is well modeled as a
field of independent Gaussians with spatially-varying vari-
ance [26, 14, 20]. Even though the subsequent processing
typically applied to images inside a digital camera, such as
demosaicking, filtering, color correction, and anti-aliasing,
make the noise component quite complicated by introducing
dependencies among adjacent pixels, in order to derive the
detector in a closed form, we adopt the following simplified
multiparametric statistical model. Since the pixels’ expec-
tation can be estimated, e.g., using local pixel predictors or
denoising, after subtracting the estimated expectation from
the pixel value, the resulting noise residual will be mod-
eled as a sequence of independent quantized realizations of
Gaussian random variables with zero mean Xn ∼ N (0, σ2

n),
n = 1, . . . , N , where N = N1 × N2 is the total number of
pixels. We note that, besides the acquisition noise, the vari-
ance σ2

n also contains the modeling error and will in general
strongly depend on the local image content. Note that here
we index the image pixels with a one-dimensional index n
instead of ij as in the previous section since one can imag-
ine the two-dimensional array (xij) to be unfolded, e.g., by
columns. Due to the independence assumption, the exact
ordering is unimportant in our study, and we will be switch-
ing between the representations back and forth hopefully
without causing any misunderstanding on the reader’s side.
Without loss of generality, we will assume that the quanti-

zation step is 4 = 1. Assuming the fine quantization limit,
1� σn for all n, the probability mass function (pmf) of Xn
is given by Pσn = (pσn (k))k∈Z with

pσn (k) = P(xn = k) ∝ (2πσ2
n)−1/2 exp

(
−k2/(2σ2

n)
)
. (2)

For simplicity, note that we assume that the pixel levels
are unbounded. Also, the fine quantization assumption may
cease to hold in (nearly) saturated image regions, such as
overexposed light sources.
Virtually all steganographic algorithms in spatial domain

use LSB matching to execute the actual embedding. For-
mally, given the cover x = (x1, . . . , xN ), the stego object
y = (y1, . . . , yN ) is obtained from x using the following ran-
dom process:

P(yn = xn + 1) = P(yn = xn − 1) = βn, (3)
P(yn = xn) = 1− 2βn,

with 0 ≤ βn ≤ 1/3 being the so-called change rates. The
stego object is thus a sequence of independent mixtures of
quantized Gaussians (Y1, . . . , YN ),

Yn ∼ Qσn,βn = (qσn,βn (k))k∈Z (4)

with

qσn,βn (k) = P(Yn = k) = (1− 2βn)pσn (k)
+ βnpσn (k + 1) + βnpσn (k − 1), (5)

Assuming Alice uses optimal codes for embedding, she can
communicate up to R nats per pixel

R(β) = 1
N

N∑
n=1

H(βn), (6)

where H(x) = −2x ln x − (1 − 2x) ln(1 − 2x) is the ternary
entropy function expressed in nats. To obtain the payload
in bits per pixel (bpp), one needs to multiply R by (ln 2)−1.

2.2.1 The most powerful detector
Since the Warden will never have a perfect knowledge of

the change rates βn used by the sender, when building her
detector she will use change rates γ = (γ1, . . . , γN ) that
might not coincide with β = (β1, . . . , βN ). Assuming that
both Alice and the Warden use the same cover model and
know the noise variances σ2

n, for example by estimating them
from the given image (see Section 5.2 for more details), the
Warden faces the following simple hypothesis test for all n:

H0 : xn ∼ Pσn

H1 : xn ∼ Qσn,γn .
(7)

From the Neyman–Pearson Lemma [31], the most power-
ful test δ : ZN → {H0,H1} that maximizes the detection
power π = P(δ(x) = H1|H1) for a prescribed false-alarm
probability α = P(δ(x) = H1|H0) is the Likelihood Ratio
Test (LRT), which can be expressed using the statistical in-
dependence of pixels as

Λ(x,σ) =
N∑
n=1

Λn =
N∑
n=1

log
(
qσn,γn (xn)
pσn (xn)

)
H1
≷
H0

τ. (8)

Under the additional assumptions of a large number of
pixels (N → ∞), the Lindeberg’s version of the Central
Limit Theorem implies that1

Λ?(x,σ) =
∑N

n=1 Λn − EH0 [Λn]√∑N

n=1 V arH0 [Λn]

 

{
N (0, 1) under H0

N (%, 1) under H1
, (9)

where  denotes the convergence in distribution and

%=
∑N

n=1 Inβnγn√∑N

n=1 Inγ
2
n

(10)

1See, e.g., the ternary case in [41] for the derivation, which
uses the additional assumption of small payload, βn � 1,
which is not necessary to obtain the result but simplifies the
derivation.



is the deflection coefficient, which completely characterizes
the statistical detectability. In (10), we used In = 2 · σ−4

n

for the Fisher information of LSBM in N (0, σ2
n) w.r.t. the

change rate βn (see [41] for more details).
Because the distribution of Λ?(x,σ) under H0 does not

depend on any unknown parameters, one can set the thresh-
old τ in (8) to maximize the detection power for any pre-
scribed false-alarm probability α even when the true values
of βn are not known to the Warden.

3. FOUR TYPES OF WARDEN
In this work, we consider four different types of Warden to

investigate how the detection power decreases with increased
ignorance of the Warden regarding the selection channel.
Below, the Warden types are ordered by the amount of avail-
able information.
Empirical detectors will be constructed as binary clas-

sifiers trained on a set of cover-stego image pairs repre-
sented with the maxSRM feature vector [9] with the em-
bedding change probabilities βn determined based on the
Warden type as described below. Besides explaining how
the maxSRM feature vector is computed, the construction
of the actual empirical detectors (classifiers) also requires
specifying the training database. We postpone discussing
the training to Section 6, where we describe the experiments
and their results. Note that LR detectors do not need any
training phase and the Warden makes a decision on each
individual image.
The omniscient Warden knows exactly the actions of the

sender executed during embedding. The empirical detector
will be constructed by computing the features for the pair of
training cover (stego) images, x (y), using the probabilities
βij computed from the cover image x assuming the true em-
bedded payload size R. (To prevent any misunderstanding,
we note that we need to assume that the payload is R even
when computing the cover feature.) For detectors imple-
mented as a LRT, we simply use the change rates γn = βn.
Note that the deflection coefficient for the omniscient War-
den (10) simplifies to:

%?=
∑N

n=1 Inβ
2
n√∑N

n=1 Inβ
2
n

=

√√√√ N∑
n=1

Inβ2
n. (11)

This Warden is unrealistic because one cannot assume
that the detector has access to the cover image. We in-
clude this Warden in our study because it has the highest
detection power and serves as a useful upper bound on de-
tection.
The payload-informed Warden knows the size of the em-

bedded payload, R (6), but has no access to the cover image.
The Warden thus computes the change rates β̂ij from the
available image whether it is a cover or stego image. For the
cover image, the maxSRM feature vector will be the same
as for the omniscient Warden (and γn = βn for the LRT)
while for the stego image, the change rates will be slightly
different due to the embedding changes themselves (γn will
generally be different from but close to βn for the LRT).
The fixed-payload Warden does not know the embedded

payload and computes the change rates (βij or γn) from the
available image assuming some fixed value of the embedded
payload size R̃, which can generally be different from R.

Although the Warden could in principle estimate R using a
quantitative detector, as already mentioned in the introduc-
tion, for modern steganographic schemes whose detection
requires high-dimensional rich models, it is fairly difficult to
substantially improve upon the trivial estimator that always
guesses the medium payload [28].
The indifferent Warden assumes non-adaptive embedding.

For the empirical detector, this means that the Warden uses
the SRM features while the LRT uses γn = γ for all n.
Note that, indeed, the maxSRM features match (up to a
multiplicative constant) those of the original SRM when we
set βij = β > 0 for all i, j.
By comparing the omniscient and payload-informed War-

dens, we can study the effect of the embedding changes
themselves on the estimated selection channel. The fixed-
payload Warden is a realistic detector when the detector
does not have any information about the embedded payload.
By comparing the first three Wardens with the indifferent
Warden, we will be able to assess the gain in detection when
the Warden uses a selection-channel-aware detector.

4. TESTED STEGO SCHEMES
We selected four content-adaptive steganographic tech-

niques that appear to be the current state of the art –
WOW [22], S-UNIWARD implemented with the stabiliz-
ing constant σ = 1 as described in [25], HILL [33], and
the ternary Multivariate Gaussian (MVG) method originally
described in [16] and further improved by replacing the vari-
ance estimator as described in Section 5 of [41]. For HILL,
we used the KB high-pass filter and the 3×3 and 15×15 av-
eraging filters for the two low-pass filters because this setting
provided the best security as reported in [33]. In contrast
to [41], for simplicity, in MVG we skipped the smoothing of
the Fisher information field.
Notice that WOW, S-UNIWARD, and HILL are cost-

based schemes in the sense that the sender first identifies
the cost of changing each (nth) pixel, ρn, and embeds the
payload while minimizing the distortion

D(x,y) =
N∑
n=1

ρn[xn 6= yn], (12)

which leads to the following embedding change probabilities:

βn = e−λρn/(1 + 2e−λρn ), (13)

with λ > 0 determined to satisfy the payload constraint (6).
The costs are typically obtained by changing a single pixel
by ±1 and quantifying the impact of this change on selected
noise residuals.
In contrast, the MVG scheme first estimates the cover

model, the variances σ2
n, and then computes the change rates

βn that minimize the deflection coefficient under the omni-
scient Warden (11) and satisfy the payload constraint (6).
This constrained optimization problem is easily solved using
the method of Lagrange multipliers [16, 41]. In particular,
the change rates βn and the Lagrange multiplier λ > 0 must
satisfy N + 1 non-linear equations:

βn = 1
λIn

ln 1− 2βn
βn

, n = 1, . . . , N, (14)

R = 1
N

N∑
n=1

H(βn). (15)



To embed the message, e.g., using syndrome-trellis codes,
the sender converts the change rates to costs by invert-
ing (13): ρn = ln(1/βn − 2).

5. SETUP OF EXPERIMENTS
Our experiments will be conducted on the BOSSbase data-

base ver. 1.01 [13] containing 10,000 512×512 8-bit grayscale
images coming from eight different cameras. We will con-
sider two types of sender – the Payload Limited Sender
(PLS) and the Random Payload Sender (RPS). The PLS
always embeds a message of a fixed relative length R while
the payload size embedded by a RPS is chosen uniformly
randomly from [0.05, 0.5] bpp. Three payloads will be used
for the true embedded payload R for the PLS and the pay-
load assumed by the fixed-payload Warden, R̃: small (0.05
bpp), medium (0.2 bpp), and large (0.5 bpp).

5.1 Executing experiments with empirical de-
tectors

All empirical detectors will be built as FLD ensemble clas-
sifiers [30] with maxSRM (or SRM) features computed as
described in Section 3. The BOSSbase database embedded
with a PLS with payload R or with a random payload uni-
formly randomly distributed on [0.05, 0.5] will be denoted
with BR and BU , respectively. The classifiers will be trained
either on BR or on BU as described in the text. To as-
sess the detection performance, the set of cover–stego image
pairs from BR (BU ) will be randomly split into two parts
of the same size – one used for training the ensemble while
the other for its testing. We note that the hyperparame-
ters dsub and the number of base learners L are determined
only once by minimizing the out-of-bag error estimate of the
testing error using bootstrapping on the entire database as
described in [30]. This is repeated for ten random 5000/5000
database splits to obtain the statistical spread and assess the
statistical significance of the results.

5.2 Executing experiments with the LRT
The asymptotic LRT does not need a training phase as it

is capable of detecting steganography in each individual im-
age once the variances σ2

n are known. In all our experiments,
we estimate the variances σ2

n from the given image using the
variance estimator described in Section 5 of [41]. We note
that the specific choice of the variance estimator seems to
play a negligible role. We repeated the experiments reported
in Section 6 with six other variance estimators and obtained
almost identical results.
For the jth image, j = 1, . . . , 10, 000, the detection per-

formance is completely described by the deflection coeffi-
cient (10) or the ROC curve

π(j)(α) = Q(Q−1(α)− %(j)), (16)

where Q(x) is the complementary cumulative distribution
function (the tail probability) of the standard normal ran-
dom variable N (0, 1). The deflection coefficient %(j) is ob-
tained from (10), with the Fisher information In computed
from the jth image and γn computed based on the type of
the Warden. To obtain the overall performance of this de-
tector on the chosen image source and assess the statistical
significance of the results, we compute the average power for

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 α0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

π
(α

0
)1

HILL-FP
HILL-Indif
SUNIWARD-FP
SUNIWARD-Indif
WOW-FP
WOW-Indif
MVG-FP
MVG-Indif

Figure 1: Examples of ROC curves for the LR de-
tector for the fixed-payload Warden (α = 0.2 bpp)
and the indifferent Warden for different embedding
schemes and the RPS.

each value2 of the false alarm α for ten randomly selected
subsets of 5000 images:

π(α) = 1
5000

5000∑
j=1

π(j)(α). (17)

This quantity indeed correctly describes the expected value
of the detector power for a fixed false alarm if the LRT was
applied to images from the cover and stego sources. Ex-
amples of ROC curves for two types of warden and across
four stego schemes for the RPS are shown in Figure 1. The
asymmetrical shape is due to the large number of “easy to
steganalyze” images in BOSSbase with very large deflection
coefficients, such as images that are out of focus or have
little content.

5.3 Evaluating detection loss/gain
In order to assess the change in the detection accuracy

using a single scalar rather than an entire ROC curve, we
will use the minimal total detection error under equal priors,
which can be expressed as PE = minα 1

2 (1 − π(α) + α) for
the LR detector. For the empirical detectors, we obtain
the value of PE on the testing set from the ensemble. As
explained above, the performance of both the empirical and
LR detectors will be reported using the mean value and
standard deviation of PE over ten random database splits.

6. RESULTS
In practice, the Warden either knows the size of the em-

bedded payload or she does not. The detection can obvi-
ously be more accurate when the payload size is available
as the empirical Warden can form the training stego images
and extract the maxSRM features with the true payload size.
Likewise, the LRT can use the change rates extracted from
the cover / stego image. In this case, it only makes sense to

2The false alarm α was sampled with a fixed step size of
5× 10−4 on [0, 1].



investigate the impact of computing the change rates from
the stego image instead of the cover image.

6.1 Experiments with the PLS
In our first batch of experiments with the PLS, we thus

only inspect the detection loss of the omniscient Warden vs.
the payload-informed Warden. We will also study the gain
of the payload-informed Warden vs. the indifferent Warden
to see the advantage of using the selection-channel-aware
detector.
The empirical Warden always trains her classifier on the

set of cover/stego images (B0,BR) with the maxSRM fea-
tures computed based on the type of the Warden as de-
scribed in Section 3. In Figure 2, we contrast the detection
accuracy loss for the empirical detectors and the LRTs for
the PLS with small, medium, and large payloads. The figure
clearly shows that the impact of computing the change rates
from the stego image rather than the cover image is negligi-
ble. For the empirical detector (left), the loss of the detec-
tion accuracy between the payload-informed and omniscient
wardens is not statistically significant for either tested stego
method. Figure 3 depicts the gain of the payload-informed
Warden over the indifferent Warden for both types of de-
tector. The gain is quite substantial and almost three times
larger for the LR detector than for the empirical one. Given
how differently both detectors are built, one can hardly ex-
pect even an approximate quantitative match between them.
However, notice that the relative comparison of embedding
schemes w.r.t. each other is approximately preserved in both
figures.

6.2 Experiments with the RPS
We now turn our attention to the more interesting case

of a Warden who does not know the payload size. Here,
we will only consider the RPS. The problem of building a
detector when the embedded payload is unknown has been
investigated in [35], where the author provided experimental
evidence that for the best robustness w.r.t. the payload
size, the steganalyst should train on a uniform mixture of
payloads.
Empirical detectors will be built as binary classifiers train-

ed on (B0,BU ) with maxSRM features computed based on
the Warden type. Since we already know that the differ-
ence between the omniscient and payload-informed Wardens
is negligible, we focus on comparing the payload-informed,
fixed-payload, and indifferent Wardens. In the considered
case of the RPS, the payload-informed Warden is fictional
and can hardly occur in real life. It is included merely as an
upper performance bound.
In Figure 4, we show the loss of detection accuracy be-

tween the payload-informed Warden and the Warden with
payload fixed at the small, medium, and large payload. In
accordance with [9], both types of detectors indicate that
using the medium fixed payload (0.2 bpp) for estimating
the selection channel causes the smallest overall loss of de-
tection performance. Figure 5 shows the gain in detec-
tion power between the Warden that uses the knowledge
of the selection channel and the indifferent Warden. In both
graphs, the bars marked with 0.05, 0.2, and 0.5 correspond
to the difference P (Indif)

E − P (FP)
E for the Warden who esti-

mates the selection channel with payload size fixed to small,
medium, and large, while the column marked with TRUE
shows P (Indif)

E − P (PI)
E , which is maximal gain one could ob-

tain if the Warden always correctly guessed the true payload
size. By comparing the loss in Figure 4 with the gain in Fig-
ure 5 for the fixed-payloadWarden, it is clear that it is better
to use an imprecise selection channel rather than none.
Comparing the detection loss in Figures 2 and 4 across

stego methods, we can conclude that the loss of detection
power due to mismatched payload is far smaller for the MVG
steganography than for the three cost-based schemes, and
this is true for both the empirical and LR detectors. We
explain this observation for the LRT in the appendix by
analyzing the sensitivity of the deflection coefficient w.r.t.
the payload size (parameter λ) for the MVG.
Surprisingly, despite the fact that the empirical and LR

detectors are built very differently, the results are qualita-
tively consistent in terms of relative comparison of losses and
gains across the stego methods. Finally, and with a great
caution, we note that if it is at all meaningful to relate these
two detectors, it seems that the way the knowledge of the
selection channel is incorporated in the empirical detector
is highly suboptimal as the LR seems to benefit from the
awareness of the selection channel much more.

7. CONCLUSION
Recently, it has been shown that the detection of content-

adaptive steganography can be improved by incorporating
in the detector the knowledge of the actions of the sender,
which are in turn determined by the content itself. Because
steganographic changes themselves are almost always subtle,
the Warden can estimate the embedding change probabili-
ties rather accurately as long as the size of the embedded
payload is approximately known. Any difference between
the assumed and embedded payload size will inevitably lead
to a loss of detection power. As discovered in this paper, this
loss appears to be rather small and it is advantageous for
the Warden to use even imprecisely determined embedding
change probabilities than not use them at all.
We establish this for four modern spatial-domain stegano-

graphic schemes for classifiers built using machine learning
and for likelihood ratio detectors designed in an optimal
manner from a cover model. Since both detectors are built
from entirely different principles, one cannot expect a quan-
titative match between them. Nevertheless, both detectors
exhibit qualitatively the same behavior and point to the
same evidence: 1) the loss of detector power due to impre-
cise knowledge of the selection channel is rather small, 2) the
misjudged payload size is much less of an issue for detection
of model-based steganography than for minimal-distortion
steganography, 3) the inaccuracy due to estimating the em-
bedding change probabilities from the stego image rather
than the cover has a completely negligible effect.
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Figure 2: Difference in PE when computing the change rates from the stego image (payload-informed Warden,
PI) rather than the cover image (omniscient Warden) for four embedding methods and three payloads of the
PLS. Left: empirical, Right: LR detector.
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Figure 3: The gain in detection accuracy when using the knowledge of the selection channel (payload-informed
Warden) vs. not using it (indifferent Warden) for three payloads of the PLS.
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the fixed-payload and payload-informed Wardens for the RPS. Left: empirical, Right: LR detector.
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Figure 5: Gain in detection accuracy when using the knowledge of the selection channel w.r.t. the detector
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APPENDIX
Deflection coefficient as a function of payload
for MVG stego
In MVG, the payload size is controlled by the Lagrange mul-
tiplier λ (see Eqs. (14)–(15)). In this appendix, we show that
the deflection coefficient %?(λ) (10) for the MVG does not
strongly depend on the payload size (on λ). In particular,
we show that the ratio r(λ, λ′) = %(λ′)/%?(λ) when the War-
den uses change rates βn(λ′) computed by solving (14) using
the Lagrange multiplier λ′ and for the omniscient Warden,
%? (11), who uses βn(λ), λ 6= λ′:

r(λ, λ′) =
∑N

n=1 Inβn(λ)βn(λ′)√∑N

n=1 Inβ
2
n(λ)

√∑N

n=1 Inβ
2
n(λ′)

, (18)

is close to 1 for majority of images from BOSSbase. To this
end, we first prove a useful lemma regarding the proper-
ties of the solution to the non-linear equation (14) for the
change rate βn. By e in the lemma we understand the Euler
constant.

Lemma 1. Let a > 0 be such that a/ ln(a − 2) > 2 + e,
which is equivalent with a & 9.52. Then, the non-linear
equation (14)

β = 1
a

ln(1/β − 2). (19)

has a unique solution β = limk→∞ β
(k), where β(k) is given

by the following recursive formula:

β(0) = 1
a
,

β(k+1) = 1
a

ln(1/β(k) − 2), k ≥ 0. (20)

Moreover, the subsequences β(2l) and β(2l+1) are monotone
increasing and decreasing, respectively, and

β = ln a
a

+ δ, |δ| ≤ (4 + c) ln a
a2 , (21)

where c = 2(1− 1
5 ln 10)−1 ≈ 3.71.

Proof. The convergence and the monotonicity of the
subsequences can be established easily using induction. Note
that β(0) < β(1) and β(2)−β(0) = 1

a
ln
[(

a
ln(a−2) − 2

)
/e
]
>

0 when a/ ln(a − 2) > 2 + e. Assuming β(k) ≷ β(k−2), we
have using (20)

β(k+1) − β(k−1) = 1
a

ln 1/β(k) − 2
1/β(k−2) − 2

≶ 0, (22)

which establishes the monotonicity of both sequences from
the Lemma. Similarly, it can be shown that β(k) ≷ β(k+1) ⇒
β(k+1) ≶ β(k+2). Due to the monotonicity and boundedness
of both sequences, both β(2l) and β(2l+1), l = 0, 1, . . ., have
finite limits, β(even) and β(odd), which must coincide because

0 ≤ β(odd) − β(even) = 1
a

ln 1/β(odd) − 2
1/β(even) − 2

≤ 0. (23)

Due to space limitations, only an outline of the proof of
(21) is given. By repeatedly applying the inequality

−x
1− x ≤ ln(1− x) ≤ −x, for any x > 0. (24)

routine manipulations can be used to show that

0 < β − β(2) < β(1) − β(2) = ln ln a+ δ2, (25)

β(2) = ln a
a
− ln ln a

a
+ δ1, (26)

with |δ2| ≤ 4 ln a/a2 and |δ1| ≤ c ln a/a2, which estab-
lishes (21).

We now express the ratio r(λ, λ′) (18) using (21). The value
of r obviously depends on the profile of the Fisher informa-
tion In, n = 1, . . . , N , which strongly depends on content.
Without loss on generality, let us assume that In are sorted
from the smallest to the largest and that λ < λ′. For a
given image and λ, let n(λ) be the smallest integer such
that for all n ≥ n, λIn/ ln(λIn − 2) > 2 + e, the assumption
of the above Lemma. Note that with λ < λ′, we auto-
matically have λ′In/ ln(λ′In − 2) > 2 + e as well. Among
the images from BOSSbase 1.01, this condition is satisfied



for payload 0.05 bpp, 0.2 bpp, and 0.5 bpp, on average for
99.99%, 99.1%, and 89.2% of all pixels. We can thus split
each of the three sums in (18) into two terms – one over
pixels for which λIn < 9.52 (n = 1, . . . , n− 1) and for which
λIn ≥ 9.52 (n = n, . . . , N). Since all change rates are at
most βn(λ) ≤ 1/3, we have for any λ, λ′

n−1∑
n=1

Inβn(λ)βn(λ′) ≤ 1
9

n−1∑
n=1

In = ω. (27)

Thus, (18) can be written as

r(λ, λ′) = ω + u · v√
ω + ‖u‖

√
ω + ‖v‖

, (28)

where u,v ∈ RN−n are defined by (n = 1, . . . , N − n):

un =
ln(λIn+n) + εn+n

λ
√
In+n

, (29)

vn =
ln(λIn+n) + ε′n+n

λ′
√
In+n

(30)

with εn, ε′n bounded from the Lemma

|εn| ≤ (4 + c) ln(λIn)
λIn

(31)

|ε′n| ≤ (4 + c) ln(λIn)
λIn

+ ln(λ′/λ). (32)

Using Taylor expansion w.r.t. ω in (28):
u · v
‖u‖ ‖v‖

(
1 +O(ω(‖u‖−2 + ‖v‖−2))

)
≤ r(λ, λ′) ≤ u · v

‖u‖ ‖v‖ + ω/(‖u‖ ‖v‖). (33)

The vectors u and v are “almost” collinear because the
dominant term in un and vn is ln(λIn+n) as both |εn| and
|ε′n| are small by (31)-(32). Here, we need to know that for
λ, λ′ corresponding to payloads 0.05 bpp, and 0.2 bpp (and
for 0.2 bpp and 0.5 bpp), λ′/λ ≈ 5 − 20 with a median
around 10, while the maximal values of λIn reach 105 − 106

in the vast majority of BOSSbase images.
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