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ABSTRACT

Most practical steganographic algorithms for empirical cov-

ers embed messages by minimizing a sum of per-pixel dis-

tortions. Current near-optimal codes for this minimization

problem [7] are limited to a binary embedding operation. In

this paper, we extend this work to embedding operations of

larger cardinality. The need for embedding changes of larger

amplitude and the merit of this construction are confirmed

experimentally by implementing an adaptive embedding al-

gorithm for digital images and comparing its security to other

schemes.

1. INTRODUCTION

In steganography, a secret message is embedded in a cover

object x = (x1, . . . , xn) ∈ X = {I}n by slightly modify-

ing its individual elements to produce the stego object y =
(y1, . . . , yn) ∈ Y = I1 × I2 × · · · × In, Ii ⊂ I, where

Ii is the range of the embedding operation at element i and

xi ∈ Ii. For example, for the Least Significant Bit (LSB)

replacement method, Ii = {xi, x̄i}, where x̄i is xi after flip-

ping its LSB. The embedding operation is binary if |Ii| = 2
or ternary if |Ii| = 3 for all i. For concreteness, we will call

x image and xi its ith pixel but other interpretations are cer-

tainly possible. For example, xi may represent an RGB triple

in a color image, a DCT coefficient, etc.

Steganographic schemes for complex cover sources, such

as digital images, are usually constructed to minimize some

distortion measure D between x and y [9] that is assumed to

be related to statistical detectability of embedding changes. In

this paper, we will consider the following distortion function

D(x,y) =

n
∑

i=1

ρi(x, yi), (1)
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where ρi : X × I → R ∪ {∞} are cost functions satisfying

ρi(x, yi) = ∞ whenever yi /∈ Ii and ρi(x, xi) < ∞. The

cost functions can reflect higher-order dependencies of cover

image pixels (because the dependence on x is not constrained)

but the additivity of (1) cannot capture dependencies among

embedding changes. The most common choice of ρi for bi-

nary embedding operations is ρi(x, yi) = ̺i · [xi 6= yi] with

scalar costs ̺i, where [S] is the Iverson bracket defined as 1
when the logical statement S is true and 0 otherwise. Note

that when ̺i = 1, D is the number of embedding changes. In

the MMx algorithm [14], ̺i is dependent on the quantization

error of the ith DCT coefficient.

Since Crandal [3] pointed out the connection between

minimization of D and syndrome coding, many practical

algorithms for the binary embedding operation have been

proposed, such as those based on Hamming codes [19, 14],

BCH codes [17, 20], random codes [13], and their combi-

nation [21]. Special codes, called wet paper codes, were

proposed for embedding with wet pixels [4, 11] (pixels pro-

hibited to be modified for which Ii = {xi}). The recently

proposed Syndrome-Trellis Codes (STCs) [7, 8] unify the

approach, achieve near-optimal performance for various dis-

tortion costs ̺i, and perform well even with a large number

of wet pixels.

Although it is straightforward to extend STCs to non-

binary alphabets and thus apply them to q-ary embedding

operations, their complexity rapidly increases (the number

of states in the trellis increases from 2h to qh for constraint

height h), limiting thus their performance in practice. The

main contribution of this paper is extending the STCs to ar-

bitrary q-ary embedding operations using a simple layered

construction without any significant increase in complexity.

By moving away from binary embedding operations by in-

creasing the size of Ii, the embedding modifications may

become larger and a larger payload can be embedded. We

demonstrate experimentally that by restricting the larger-

amplitude embedding changes adaptively to the content, the

multi-layered construction embeds larger payloads with lower

statistical detectability, countering thus the established belief

that the increase in payload does not outweigh the increase in

statistical detectability [9].

Even though the relationship between distortion and



steganographic security is far from clear, it makes sense

to embed messages by minimizing a heuristically chosen dis-

tortion function. At least, this is how today’s least detectable

image steganographic schemes work [14, 20, 16]. This paper

provides a coding scheme how to embed with minimal distor-

tion once the steganographer agreed on the distortion function

and the embedding operation. The important question of how

to choose both of these elements to minimize detectability is

not addressed and is left as a future direction.

Section 2 restates some known relative payload–relative

distortion bounds. Section 3 reviews the binary embedding

operation and syndrome-trellis codes [7] for implementation.

The main part, the multi-layered construction, is described

and analyzed in Section 4. Application to spatial domain

steganography is described in Section 5. The paper is con-

cluded in Section 6.

All vectors are typed in bold. Random variables and their

realizations are denoted using capital and lower case letters,

respectively. Furthermore, log(x) = log2(x) and ln(x) de-

notes the natural logarithm. We use h(x) = −x log x − (1 −
x) log(1 − x) for the binary entropy function.

2. PRELIMINARIES

2.1. Problem formulation

We assume the cover image x to be fixed and known only

to the sender. The results of this paper will be general and

independent of any particular choice of x. For this reason,

we simply write D(y) , D(x,y) =
∑n

i=1 ρi(yi), while all

quantities derived from Y or D(y) should be seen as being

conditioned by x. The distortion function and its parame-

ters are known only to the sender and not to the receiver.

We assume that the embedding algorithm replaces the orig-

inal cover x with y ∈ Y obtained as a realization of a ran-

dom variable Y defined over Y and distributed according to

π, π(y) , P (Y = y). If the receiver knew x, the sender

could send up to H(π) bits on average while introducing the

average distortion Eπ[D], where

H(π) = −
∑

y∈Y

π(y) log π(y), Eπ [D] =
∑

y∈Y

π(y)D(y).

By the construction of the method, the knowledge of x to

the receiver has no effect on the bounds between the above

quantities as long as x is known to the sender.

Having defined the distortion function, the sender is inter-

ested in the following optimization problems:

• Payload-limited sender (PLS): embed a fixed average

payload of m bits while minimizing the average distor-

tion,

minimize
π

Eπ [D] subject to H(π) = m. (2)

• Distortion-limited sender (DLS): maximizes the av-

erage payload while introducing a fixed average distor-

tion Dǫ,

maximize
π

H(π) subject to Eπ [D] = Dǫ. (3)

Although the PLS is the most common, the DLS is more suit-

able for steganography as long as D is related to statistical

detectability.

2.2. Performance bounds and comparison metrics

The problems described above bear relationship to the prob-

lem of source coding with a fidelity criterion as described by

Shannon [18]. Problems (2) and (3) are dual to each other,

meaning that the optimal distribution for the first problem is,

for some value of Dǫ, also optimal for the second one. Fol-

lowing the maximum entropy principle [2, Th. 12.1.1], the

optimal solution has the form of a Gibbs distribution [10]

π(y) =
exp(−λD(y))

Z(λ)

(a)
=

n
∏

i=1

exp(−λρi(yi))

Zi(λ)
,

n
∏

i=1

πi(yi),

(4)

where the parameter λ ∈ [0,∞) has to be obtained from

the corresponding constraints (2) and (3) by solving an

algebraic equation, 1 and Z(λ) =
∑

y∈Y exp(−λD(y)),
Zi(λ) =

∑

yi∈Ii
exp(−λρi(yi)) are the corresponding par-

tition functions. Step (a) follows from the additivity of D,

which also leads to mutual independence of individual stego

pixels yi given x. Finally, the impact of embedding can be

simulated by changing each pixel i with probability πi.

An established way of evaluating practical coding algo-

rithms in steganography is to compare the embedding effi-

ciency e(α) = αn/Eπ[D] for a fixed expected relative pay-

load α = m/n with the upper bound derived from (4). When

the number of changes is minimized, e is the average number

of bits hidden per one change. For general ρi, the interpreta-

tion of this metric becomes less clear. A different and more

easily interpretable metric is to compare the payload, m, of

an embedding algorithm w.r.t. the payload, mMAX, of the

optimal DLS for a fixed Dǫ,

l(Dǫ) =
mMAX − m

mMAX
, (5)

which we call the coding loss.

3. BINARY EMBEDDING OPERATION

We start by describing the special case of a binary embedding

operation and review a practical coding construction for this

problem. In Section 4, we generalize this approach to opera-

tions with a larger cardinality. Since the operation is binary,

1A simple binary search will do the job because both H(π) and Eπ[D]
are monotone w.r.t. λ.



we assume that Ii = {xi, yi}. In what follows, the only value

the receiver needs to know is the number of message bits m
he wants to receive. This information can be communicated

in the same stego image using a different embedding scheme.

According to (4), the coding algorithm for (2) or (3) is

optimal if and only if it outputs pixel yi with probability

πi(yi) =
exp(−λρi(yi))

exp(−λρi(xi)) + exp(−λρi(yi))

=
exp(−λ̺i)

1 + exp(−λ̺i)
, (6)

where ̺i = ρi(yi) − ρi(xi).
2 For a fixed value of λ, the val-

ues ̺i, i = 1, . . . , n, form sufficient statistic for π. Because

D(y) =
∑n

i=1 ρi(xi) + D′(y), (2) is equivalent to the PLS

for the same payload m and distortion

D′(y) =

n
∑

i=1

̺i · [xi 6= yi]. (7)

A solution to the PLS with binary embedding operation

can be used to derive the following “flipping lemma” that we

will heavily use in Section 4.

The flipping lemma. Given a set of probabilities {pi}
n
i=1,

the sender wants to communicate m =
∑n

i=1 h(pi) bits by

sending bit strings y = {yi}
n
i=1 such that P (yi = 0) = pi.

This can be achieved by a PLS with a binary embedding oper-

ation on I = Ii = {0, 1} for all i by embedding the payload

in cover xi = [pi < 1/2] with non-negative per-pixel costs

̺i = ln(p̃i/(1 − p̃i)), p̃i = max{pi, 1 − pi}.

Proof: Without loss of generality, let λ = 1. Since

the inverse of f(z) = ln(z/(1 − z)) on [0, 1] is f−1(z) =
exp(z)/(1+exp(z)), by (6) the cost ̺i causes xi to change to

yi = 1 − xi with probability P (yi 6= xi|xi) = f−1(−̺i) =
1 − p̃i. Thus, P (yi = 0|xi = 1) = f−1(−̺i) = pi and

P (yi = 0|xi = 0) = 1 − f−1(−̺i) = pi as required.

3.1. Practical coding algorithms

For a binary embedding operation, both types of senders can

be realized in practice using syndrome coding when the mes-

sage m is communicated as a syndrome of a linear code m =
HP(y) with parity-check matrix H ∈ {0, 1}m×n, where P :
X → {0, 1} is a parity function shared between the sender

and the receiver, e.g., P(x) = x mod 2. The PLS problem

(2) then becomes

y = arg min
HP(y)=m

D(y). (8)

With m/n = const., this construction is asymptotically

(w.r.t. n) optimal with high probability when the elements

of H are chosen randomly. Such codes are however highly

impractical due to the exponential complexity of solving (8).

2A common practice in steganography is to define ρi(xi) = 0 which

ensures D(x) = 0. We do not require this here and thus ̺i can be arbitrary.
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Fig. 1. Average number of wet elements out of n = 106 that

need to be changed to find a solution to (8) using STCs with

h = 11 versus relative payload α.

A practical algorithm for solving (2) based on syndrome-

trellis codes (STCs) was proposed in [8]. It uses a pseudo-

randomly constructed, banded matrix H with a band of height

h. For such matrices, the Viterbi algorithm finds the optimal

solution to (8) with complexity exponential w.r.t. the con-

straint height h. For small values of h ∈ {7, . . . , 13}, STCs

achieve a coding loss between 5% to 10% for various val-

ues of {̺i}
n
i=1 and arbitrary relative payloads α ∈ [0, 1] [7].

Since the whole cover image can be processed at once, wet

pixels can be handled as well. Although the algorithm de-

scribed in [8] uses the costs ρi(xi) = 0, ρi(yi) ≥ 0, it in fact

works without a modification with arbitrary costs ̺i > −∞.

STCs can also be used for solving the distortion-limited

sender (3) for given costs {̺i|i = 1, . . . , n} and bound Dǫ.

An optimal algorithm for this problem would send mMAX =
H(π) bits on average.3 Although the number of communi-

cated bits is a random variable in this problem (recall that now

Dǫ is fixed), we fix the number of bits to m = mMAX(1− l′)
and let the Viterbi algorithm find the optimal solution as in

problem (2). The parameter l′ is the coding loss we expect

the algorithm will achieve and is determined experimentally

for a given constraint height h.

STCs were originally designed to handle payloads α ≤
1/2. This assumption can be relaxed depending on the

amount of wet pixels. Since wet pixels are not allowed to be

changed, the maximum number of bits we can communicate

3The value of mMAX can be found by a binary search for λ satisfying

(3).



is n −
∑n

i=1[xi is wet] (we define τ =
∑n

i=1[xi is wet]/n as

the relative wetness). For this reason, the relative payload is

commonly defined as α = m/(n−
∑n

i=1[xi is wet]) ∈ [0, 1].
When both τ and α are large, the Viterbi algorithm may need

to change some wet elements due to the banded structure of

H. This may be acceptable if this number is small, say 5 out

of 106. Figure 1 shows the average number of wet elements

out of n = 106 required to be changed in order to solve (8) for

STCs with h = 11. The exact value of ̺i is irrelevant in this

experiment as long as it is finite. This experiment suggests

that STCs can be used with arbitrary τ as long as α ≤ 0.7.

4. MULTI-LAYERED CONSTRUCTION

In this section, we introduce a multi-layered construction

which has been largely motivated by [22] and can be con-

sidered as a generalization of this work. The main idea is

to decompose the problems (2) and (3) with a non-binary

embedding operation into a sequence of similar problems

for a binary embedding operation and then use the results of

Section 3.

Let |Ii| = 2L for some integer L ≥ 0 and let P1, . . . ,PL

be parity functions uniquely describing all 2L elements in Ii,

i.e., (xi 6= yi) ⇒ ∃j,Pj(xi) 6= Pj(yi) for all xi, yi ∈ Ii and

all i ∈ {1, . . . , n}. For example, Pj(x) can be defined as the

jth LSB of x. The individual sets Ii can be enlarged to satisfy

the size constraint by setting the costs of added elements to

∞.

The optimal algorithm for (2) and (3) sends the stego sym-

bols by sampling from the optimal distribution (4) with some

λ. Let Yi be the random variable defined over Ii representing

the ith stego symbol. Due to the assigned parities, Yi can be

represented as Yi = (Y 1
i , . . . , Y L

i ) with Y j
i corresponding

to the jth parity function. We construct the embedding algo-

rithm by induction over L, the number of layers. By the chain

rule, for each i the entropy H(Yi) can be decomposed into

H(Yi) = H(Y 1
i ) + H(Y 2

i , . . . , Y L
i |Y 1

i ). (9)

This tells us that H(Y 1
i ) bits should be embedded by chang-

ing the first parity of the ith pixel. In fact, the parities should

be distributed according to the marginal distribution P (Y 1
i ).

Using the flipping lemma, this task is equivalent to a PLS,

which can be realized in practice using STCs as reviewed

in Section 3.1. To summarize, in the first step we embed

m1 =
∑n

i=1 H(Y 1
i ) bits on average.

After the first layer is embedded, we obtain the parities

P1(yi) for all stego pixels. This allows us to calculate the

conditional probability P (Y 2
i , . . . , Y L

i |Y 1
i = P1(yi)) and use

the chain rule again, for example w.r.t Y 2
i . In the second layer,

we embed m2 =
∑n

i=1 H(Y 2
i |Y

1
i = P1(yi)) bits on average.

In total, we have L such steps fixing one parity value at a time

knowing the result of the previous parities. Finally, we send

the values yi corresponding to the obtained parities.

If all individual layers are implemented optimally, we

send m = m1 + · · ·+ mL bits on average. By the chain rule,

this is exactly H(Yi) bits in every pixel, which proves the

optimality of this construction. In theory, the order in which

the parities are being fixed can be arbitrary. As is shown in

the example below, the order is important for practical real-

izations using STCs. In all our experiments, we start with the

most significant bits (MSBs) and end with the LSBs.

In practice, the number of bits hidden in every layer, mj ,

must be communicated to the receiver. The number mj is

used as a seed for a pseudo-random permutation of all bits

in the jth layer. If, due to large payload and wetness, STCs

cannot embed a given message, we try a different permutation

by embedding a slightly different number of bits.

Example (±1 embedding): For simplicity, let xi = 2,

Ii = {1, 2, 3}, ρi(1) = ρi(3) = 1, and ρi(2) = 0 for

i ∈ {1, . . . , n} and large n. For such ternary embedding,

we use two LSBs as their parities. Suppose we want to solve

the problem (2) with α = 0.9217, which leads to λ = 2.08,

P (Yi = 1) = P (Yi = 3) = 0.1, and P (Yi = 2) = 0.8.

To make |Ii| a power of two, we also include the symbol 0
and define ρi(0) = ∞ which implies P (Yi = 0) = 0. Let

yi = (y2
i , y1

i ) be a binary representation of yi ∈ {0, . . . , 3},

where y1
i is the LSB of yi.

Starting from the LSBs as in [22], we obtain P (Y 1
i =

0) = 0.8. If the LSB needs to be changed, then P (Y 2
i =

0|Y 1
i = 1) = 0.5 whereas P (Y 2

i = 0|Y 1
i = 0) = 0. In prac-

tice, the first layer can be realized by any syndrome coding

scheme minimizing the number of changes and embedding

m1 = n · h(0.2) bits. The second layer can be implemented

with wet paper codes [12], since we need to either embed one

bit or leave the pixel unchanged (relative payload is 1).

If the weights of symbols 1 and 3 were slightly changed,

however, we would have to use STCs in the second layer,

which causes a problem due to the large relative payload (α =
1) combined with large wetness (τ = 0.8) (see Figure 1). The

opposite decomposition starting with the MSB y2
i will reveal

that P (Y 2
i = 0) = 0.1, P (Y 1

i = 0|Y 2
i = 0) = 0, and

P (Y 1
i = 0|Y 2

i = 1) = 0.8/0.9. Both layers can now be

easily implemented by STCs since here the wetness is not as

severe (τ = 0.1).

5. PRACTICAL EMBEDDING CONSTRUCTION

We have implemented the above multi-layered construc-

tion based on STCs and present here a practical embedding

scheme that was largely motivated by [16] and [6], which con-

tain the justification and motivation of the design elements

that appear below.

Let x ∈ {0, . . . , 255}n1×n2 be an n1 × n2 grayscale

cover image, n = n1n2, represented in the spatial domain.

Define the co-occurrence matrix computed from horizontal

pixel differences D→
i,j(x) = xi,j+1 − xi,j , i = 1, . . . , n1,
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Fig. 2. Comparison of LSB matching with optimal binary and ternary coding with embedding algorithms based on the additive

distortion measure (10) using embedding operations of three different cardinalities.

j = 1, . . . , n2 − 1:

A→
p,q,r(x) =

n1
∑

i=1

n2−3
∑

j=1

[(D→
i,j , D

→
i,j+1, D

→
i,j+2)(x) = (p, q, r)]

n1(n2 − 3)
,

where [(D→
i,j , D

→
i,j+1, D

→
i,j+2)(x) = (p, q, r)] = [(D→

i,j(x) =
p)&(D→

i,j+1(x) = q)&(D→
i,j+2(x) = r)]. Clearly, A→

p,q,r(x) ∈
[0, 1] is the normalized count of neighboring quadruples of

pixels {xi,j , xi,j+1, xi,j+2, xi,j+3} with differences xi,j+1 −
xi,j = p, xi,j+2 − xi,j+1 = q, and xi,j+3 − xi,j+2 = r
in the entire image. The superscript arrow “→” denotes

the fact that the differences are computed by subtracting the

left pixel from the right one. Similarly, we define matri-

ces Aր
p,q,r(x), A↑

p,q,r(x), and Aտ
p,q,r(x). Let yi,jx∼i,j be

an image obtained from x by replacing the (i, j)th pixel

with value yi,j . Finally, we define the distortion measure

D(y) =
∑n1

i=1

∑n2

j=1 ρi,j(yi,j) as

ρi,j(yi,j) =
∑

p,q,r∈{−255,...,255}
s∈{→,ր,↑,տ}

wp,q,r |A
s
p,q,r(x)−As

p,q,r(yi,jx∼i,j)|,

(10)

where wp,q,r = 1/(1+
√

p2 + q2 + r2) are heuristically cho-

sen weights.

All tests were carried out on the BOWS2 database [1] con-

taining approximately 10800 grayscale images with a fixed

size of 512 × 512 pixels coming from rescaled and cropped

natural images of various sizes. Steganalysis was imple-

mented using the second-order SPAM feature set with T = 3
[15]. The image database was evenly divided into a training

and a testing set of cover and stego images, respectively. A

soft-margin support-vector machine was trained using the

Gaussian kernel. The kernel width and the penalty parameter

were determined using five-fold cross validation on the grid

(C, γ) ∈
{

(10k, 2j−d)|k ∈ {−3, . . . , 4}, j ∈ {−3, . . . , 3}
}

,

where d is the binary logarithm of the number of features.

We report the results using a measure frequently used in

steganalysis – the minimum average classification error

PE = (PFA + PMD)/2, where PFA and PMD are the false-

alarm and missed-detection probabilities.

Figure 2 contains the comparison of embedding algo-

rithms implementing the PLS and DLS with the costs (10).

All algorithms are contrasted with LSB matching simulated

on the binary and ternary bounds. To compare the effect

of practical codes, we first simulated the embedding algo-

rithm as if the best codes were available and then compared

these results with algorithms implemented using STCs with

h = 10. Both types of senders are implemented with bi-

nary, ternary (Ii = {xi − 1, . . . , xi + 1}), and pentary

(Ii = {xi − 2, . . . , xi + 2}) embedding operations. Before

embedding, the binary embedding operation was initialized to

Ii = {xi, yi} with yi randomly chosen from {xi−1, xi +1}.

The reported payload for the DLS with a fixed Dǫ was calcu-

lated as an average over the whole database after embedding.

The relative horizontal distance between the correspond-

ing dashed and solid lines in Figure 2 is bounded by the

coding loss. Most of the proposed algorithms are unde-

tectable for relative payloads α ≤ 0.2 bits per pixel (bpp).

For payloads α ≤ 0.5, the DLS is more secure. For larger

payloads, the distortion measure seems to fail to capture

the statistical detectability correctly and thus the algorithms

are more detectable than when implemented in the payload-

limited regime. These results suggests that larger embedding

changes are useful for steganography when placed adaptively.

6. CONCLUSION

This paper describes near-optimal codes for minimal-distortion

steganography implemented in the following manner. Before



embedding in a given cover, the sender first specifies for each

cover element xi the set of values yi ∈ Ii to which xi can

change and the associated cost of making this modification,

ρi(yi). The problem is to communicate a payload of a certain

size with minimal expected embedding distortion obtained as

a sum of individual pixel costs ρi (alternatively, embed the

largest possible payload for a given bound on the expected

distortion). The proposed approach works for an arbitrary

cost assignment and arbitrary sets Ii, which can even be

different for every i. The method is a generalization of pre-

viously proposed syndrome-trellis codes and other special

cases, including matrix embedding and wet paper codes.

The merit of the proposed method is demonstrated exper-

imentally by implementing it for binary, ternary, and pentary

embedding operations in spatial domain and showing an im-

provement in statistical detectability measured by a blind ste-

ganalyzer. This construction is not limited to embedding with

larger amplitudes but can be used, e.g., for embedding in color

images, where the LSBs of all three colors can be seen as 3-

bit symbols on which the cost functions are defined. Applica-

tions outside the scope of digital images are possible as long

as the costs can be meaningfully defined.

Matlab and C++ implementation of multi-layered STCs is

available at http://dde.binghamton.edu/download/syndrome/.
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