
Quantitative Steganalysis of LSB Embedding
in JPEG Domain

Jan Kodovský
Binghamton University

Department of ECE
Binghamton, NY 13902-6000

jan.kodovsky@binghamton.edu

Jessica Fridrich
Binghamton University

Department of ECE
Binghamton, NY 13902-6000

fridrich@binghamton.edu

ABSTRACT
We construct new quantitative steganalyzers for stegano-
graphic techniques that hide data using LSB embedding in
quantized DCT coefficients of a JPEG file. Two approaches
are explored – change-rate estimation using the maximum
likelihood principle with a precover model and a heuristic
approach based on minimizing a penalty functional obtained
from a combined analysis of the embedding operation and
properties of natural images. The techniques are applied
to Jsteg and its modified version called symmetric Jsteg.
Experiments are used to compare the new methods with
current state of the art.

Categories and Subject Descriptors
I.4.9 [Computing Methodologies]: Image Processing and
Computer Vision—Applications

General Terms
Security, Algorithms, Theory

Keywords
Jsteg, Symmetric Jsteg, Quantitative Steganalysis, Maxi-
mum Likelihood, Precover, Zero Message Hypothesis

1. INTRODUCTION
Many steganographic programs that hide messages inside

digital media files employ some version of the Least Signif-
icant Bit (LSB) embedding – the LSBs of individual media
elements are replaced with message bits. This intuitively
obvious data-hiding paradigm gained on popularity because
it can be very easily implemented and provides high em-
bedding capacity without introducing perceptible artifacts.
While steganalysis of LSB embedding in images represented
in the spatial domain is nowadays a mature area of research
as witnessed by the well-founded structural steganalysis [12]
and other approaches [13], we feel that comparatively less
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attention has been paid to the transform domain and its
most ubiquitous form – the JPEG format. This is despite
the ever-increasing interest of defense government agencies
and forensic analysts to reliably detect even short messages.

The first algorithm designed to hide message bits in LSBs
of quantized DCT coefficients was Jsteg [20]. Most attacks
on Jsteg capitalize on the fact that its embedding disrupts
the symmetry of the histogram of DCT coefficients [24, 23,
17, 16]. It is also possible to steganalyze Jsteg using ap-
proaches originally developed for LSB embedding in the spa-
tial domain by applying such methods to the 2D array of
quantized DCT coefficients [21, 1]. Currently, the most ac-
curate quantitative steganalyzer of Jsteg uses regression in
a space of features to which images are mapped [19]. Some
spatial-domain LSB detectors are maximum likelihood es-
timators constructed from appropriate models of cover im-
ages [4, 8]. However, as noted in [11], their performance is
usually weak due to lack of sufficiently accurate cover mod-
els. An appealing and quite successful option is to form
a cover model by assuming that the cover is being gener-
ated from a hypothetical precover source [11]. This idea put
existing structural methods on a firmer theoretical ground
and outlined possible avenues for their improvement by al-
lowing deviations from restrictive model assumptions they
were based on.

In this paper, we build upon previously-proposed concepts
and techniques and describe two different classes of quanti-
tative steganalyzers and apply them to LSB embedding in
JPEG domain. The goal is to improve the accuracy of exist-
ing attacks. This paper is a conference version of a journal
submission [15], which is focused solely on Jsteg. Here, we
extend the analysis to another embedding algorithm that we
call symmetric Jsteg (sym-Jsteg). Inclusion of this algorithm
allows us to better explain the strengths and weaknesses of
various approaches and explore their limitations.

Algorithms that will be subjected to steganalysis are de-
scribed in Section 2. Then, in Section 3, we introduce two
different quantitative attacks: a maximum likelihood esti-
mator with precover and a heuristic estimator based on a
zero message hypothesis. Specific examples of attacks sorted
by the cover feature model are described in Section 4. Exper-
imental evaluation and comparison to prior art is included
in Section 5. The paper is closed by providing a summary
and outlining possible future directions in Section 6.

2. JSTEG AND SYMMETRIC JSTEG
In this section, we describe two versions of the LSB embed-

ding mechanism in quantized DCT coefficients of a JPEG



file. The first algorithm is Jsteg, developed by Upham. Jsteg
first decompresses the JPEG bit stream to individual quan-
tized DCT coefficients and then replaces their LSBs with
message bits. In color cover images, the message bits are
embedded in both luminance and chrominance components.
By design, Jsteg does not embed in coefficients from the
LSB pair (0, 1) because majority of DCT coefficients are ze-
ros and when embedding in them, too many ones would be
introduced by embedding, which would lead to quite per-
ceptible artifacts. The first version of Jsteg embedded mes-
sage bits sequentially, which turned out to be accurately
detectable by the histogram attack [22]. An improved ver-
sion of Jsteg incorporates random straddling and embeds
data along a pseudo-random path determined by a shared
stego key. We will refer to this randomized version of the
algorithm as Jsteg.
By prohibiting the embedder from modifying the LSB pair

(0, 1), Jsteg embedding disrupts the symmetry of the his-
togram and permits construction of accurate structural at-
tacks. A simple modification of Jsteg that preserves the his-
togram symmetry is obtained by redefining the LSB pairs
for positive coefficients to (1, 2), (3, 4), etc. This way, all
non-zero DCT coefficients can be used for embedding. This
modified embedding operation no longer flips LSBs and is
more reminiscent of LSB matching as it can change more
significant bits. Besides preserving the histogram symmetry,
the embedding capacity of this algorithm is also increased,
which means that the same absolute payload can now be
embedded with a stronger matrix embedding code, which
further improves the security of this algorithm. This mod-
ification of Jsteg will be called symmetric Jsteg and abbre-
viated as “sym-Jsteg.” There is no doubt that sym-Jsteg is
still a rather poor algorithm whose security is far below more
advanced algorithms, such as nsF5 [7]. The inclusion of the
sym-Jsteg algorithm will give us the ability to better explain
the proposed steganalysis attacks, their construction, as well
as limitations.
The embedding capacity of sym-Jsteg (Jsteg) is the num-

ber of all non-zero (non-zero and non-one) DCT coefficients,
which we will denote as n0 (n01). Since the ratio n0/n01

varies across images, when the relative payload α (or change
rate β) is fixed for one algorithm, it will vary for the other
algorithm. Since we desire to evaluate quantitative stegan-
alyzers, which are change-rate estimators, we fix β for both
algorithms, knowing that by doing this we cannot fairly com-
pare the results across the algorithms. Measuring the pay-
load using change rate indeed makes sense since any quanti-
tative steganalyzer can only estimate the number of embed-
ding changes rather than the absolute number of embedded
bits. When no matrix embedding is applied, the change rate
is directly related to the relative payload, β = α/2.

3. PROPOSED ATTACKS
In this section, we introduce two methods for estimating

the change rate. The first one is a Maximum Likelihood
(ML) estimator derived from a precover model, while the
other approach uses a heuristically-defined penalty function
constructed from some zero message hypothesis.
Throughout this paper, cover images will be represented

using a feature vector x ∈ R
d. We comment on the choice of

x shortly. Furthermore, it will be assumed that x is drawn
from some prior cover distribution Px(x). For a fixed β
and x, the impact of embedding will be modeled with the

conditional probability P (xβ |x, β), where xβ is the feature
vector of the stego image affected with change rate β. More
precisely, xβ is a random variable over the pseudo-random
selection of positions of embedding changes in x.

3.1 Maximum Likelihood Steganalyzer
Given the feature of the stego image y and assuming the

cover image and the change rate β are independent of each
other,1

P (y, β) =

ˆ

Rd

P (x,y, β)dx =

ˆ

Rd

P (y|x, β)P (x, β)dx

= P (β)

ˆ

Rd

P (y|x, β)Px(x)dx,

which leads to the following ML estimator of β:

β̂ = argmax
β≥0

P (y|β) = argmax
β≥0

ˆ

Rd

P (y|x, β)Px(x)dx. (1)

It is apparent now that the feature x needs to be chosen
with two things in mind. First, x should change predictably
with embedding so that P (xβ |x, β) can be derived. Second,
we need to be able to adopt a reasonably simple model of
covers Px(x). While obtaining the posteriors P (xβ |x, β) is
usually straightforward, modeling the cover prior Px(x) can
be in general rather difficult. We can and should capital-
ize on embedding invariants to narrow down the prior. For
example, because Jsteg preserves the counts of DCT coeffi-
cients in LSB bins (2i, 2i+1), we can set Px(x) = 0 for covers
whose counts violate at least one embedding invariant. As
in [11], the precover model is derived by postulating that, at
least for the purpose of ML estimation of β, the covers are
being generated from a precover source, whose properties are
determined by the side-information in the form of the ob-
served stego image with its embedding invariants. Specific
examples of this approach are given in Section 4.

3.2 Steganalysis Using Zero Message Hypoth-
esis

AlthoughML change-rate estimators are theoretically well-
founded, the complexity of obtaining the precover model and
the embedding probabilities P (xβ |x, β) may become quite
prohibitive as one tries to utilize higher-order statistics of
cover elements. This will become apparent in Section 4.3,
where we discuss the precover model that reflects inter-block
dependencies among DCT coefficients. Moreover, to prevent
a significant loss of statistical samples, which might lead to
increased estimator variance, we are often forced to adopt a
simplified precover model that is not supported by experi-
ments. This leads to model mismatch and suboptimality.

Being aware of these difficulties, as an alternative we ex-
plore the following simple heuristic approach to constructing
quantitative steganalyzers. It can easily incorporate even
very complex dependencies among DCT coefficients as long
as they can be expressed using an appropriate penalty func-
tion z(x) ≥ 0 that satisfies

z(xβ) ≈ 0 when β = 0

z(xβ) > 0 when β > 0.

1While this assumption can be challenged as the sender may
adjust the payload size to the cover, we adopt it here anyway
because it simplifies the analysis.



We adopt an additional simplifying assumption commonly
made in steganalysis [5, 6, 18, 9] that the impact of embed-
ding is equal to its expectation (which essentially means that
the within-image error is ignored):

y = E[xβ ] = Emb(x, β). (2)

Provided the mapping Emb is invertible, an estimate of
the change rate can be obtained by minimizing the penalty
Emb−1(y, β) evokes:

β̂ = argmin
β≥0

z(Emb−1(y, β)). (3)

The functional z(x) can be a quantitative description of
a Zero Message Hypothesis (ZMH) that captures some key
property of covers violated by embedding. The minimization
in (3) can be carried out either analytically or numerically
by implementing a one-dimensional search over β.
Even though this framework is heuristic, when compared

to the ML-based methods, its modularity, low computa-
tional complexity, and ability to easily incorporate higher-
order statistical properties of covers make it worth investi-
gating. It can also be used to convert some targeted attacks
to quantitative ones [15]. Most importantly, as reported
in the experimental Section 5, this approach leads to some
of the most accurate change-rate estimators for Jsteg today.
This approach bears similarity to the least-squares steganal-
ysis [18, 12] and this connection can be used to design the
penalty functions. In the next section, we work out both ap-
proaches for several feature vectors and apply them to both
Jsteg and sym-Jsteg.

4. STEGANALYSIS OF LSB EMBEDDING
IN JPEG IMAGES

The accuracy of the proposed estimators is closely tied
to the choice of the feature vector. It needs to be cho-
sen while keeping in mind the embedding mechanism of the
steganographic algorithm under attack. In this section, we
work with three different feature vectors: the feature vector
proposed by Zhang and Ping [24], a truncated histogram
of DCT coefficients, and a truncated inter-block adjacency
matrix.
To avoid repeating the same argument multiple times, all

binomial distributions will be approximated with the Gaus-
sian distribution. This is justified due to the fact that typ-
ical JPEG images contain a large number of DCT coeffi-
cients. Binomial distribution with n samples and probabil-
ity p will be denoted Bi(p, n). We will use ϕ(x;µ, σ2) =

(2πσ2)−1/2 exp(−(x − µ)2/(2σ2)) for the pdf of a Gaussian
distribution N(µ, σ2).

4.1 Features of Zhang and Ping
Denoting with hi the number of all quantized DCT coeffi-

cients in the JPEG image equal to i (the ith histogram bin),
we consider the following three-dimensional feature vector
originally used in [24]:

x = [x1, x2, x3] ≡ [f0, f1 − h1, h1], (4)

where

f0 =
∑

k>0

h2k +
∑

k<0

h2k+1, (5)

f1 =
∑

k≥0

h2k+1 +
∑

k<0

h2k. (6)

Note that while f0 decreases with Jsteg embedding, f1 in-
creases, and f0 ≈ f1 for cover images. We describe the at-
tacks for Jsteg only because sym-Jsteg cannot be attacked
using this feature vector due to the fact that embedding with
sym-Jsteg preserves it.

4.1.1 ML Attack
Denoting the stego feature xβ =

[

xβ
1 , x

β
2 , x

β
3

]

, due to the

properties of LSB embedding in Jsteg, xβ
1 is obtained by

drawing from x1 with probability 1 − β and from x2 with
probability β. Thus, xβ

1 ∼ Bi(1 − β, x1) + Bi(β, x2), which
will be approximated as x1 ∼ N(µ1, σ

2
1),

µ1 = (1− 2β)x1 + βC, (7)

σ2
1 = β(1− β)C, (8)

with C = x1 + x2. Note that the values of C and x3 do not
change during embedding and C + x3 = n0. Because the
probability P (xβ |x, β) can be expressed as

P (xβ |x, β) = P (xβ
3 |x

β
2 , x

β
1 ,x, β) ·P (xβ

2 |x
β
1 ,x, β) ·P (xβ

1 |x, β),

due to the embedding invariants

P (xβ
3 |x

β
2 , x

β
1 ,x) = δ(xβ

3 = x3),

P (xβ
2 |x

β
1 ,x) = δ(xβ

2 = C − xβ
1 ),

we can write

P (xβ |x, β) = ϕ
(

xβ
1 ;µ1, σ

2
1

)

(9)

for all xβ that satisfy xβ
3 = x3 and xβ

2 = C − xβ
1 , and

P (xβ |x, β) = 0 otherwise. Note that we reduced the di-
mensionality of the distribution by incorporating embedding

invariants. By introducing the symbol “
ei
=”meaning that the

equality holds only when all embedding invariants are pre-
served and the probability density is equal to zero otherwise,
(9) can be rewritten as

P (xβ |x, β)
ei
= ϕ

(

xβ
1 ;µ1, σ

2
1

)

, (10)

without any additional comments on the values of xβ
2 and

xβ
3 .
The prior Px(x) will be obtained from a hypothetical

source called the precover. The cover property f0 ≈ f1 indi-
cates that a reasonable precover model should be emitting
DCT coefficients from f0 = x1 or f1 = x2 + x3 indepen-
dently and equiprobably, leading to x1 ∼ N(µ2, σ

2
2), with

µ2 = 1
2
(C + x3) and σ2

2 = 1
4
(C + x3). Thus,

Px(x)
ei
= ϕ

(

x1;µ2, σ
2
2

)

. (11)

The normality of x1 can be verified by inspecting the ratio
(f0 − µ2)/σ2 for natural images. Experiments indicate that
x1 follows the precover model only when it is computed from
histogram bins hk with |k| ≥ 3 (see the journal version of
this paper [15]). To avoid a significant loss of data and being
aware of the model mismatch, we nevertheless compute x1

from all bins.



The ML estimator is obtained by substituting (10) and (11)
into (1). The formula can be simplified because the involved
integral can be evaluated analytically. We refrain from in-
cluding further details of this change-rate estimator because
its performance turned out to be essentially identical to the
original estimator of Zhang and Ping (shortly ZP estimator)
given by2

β̂ =
f1 − f0
2h1

. (12)

Despite the lack of performance gain, the exposition is valu-
able because it is simple enough to explain the methodology
and allowed us to introduce useful notation. Interestingly,
we note that by adopting an additional simplifying assump-
tion that the stego feature xβ

1 is equal to its expectation,

xβ
1 = (1− 2β)x1 + βC, (13)

the integration in (1) degenerates to a multiplication and
the ML estimator reduces to the ZP estimator (12).
We do not elaborate on ZMH attacks using this feature

vector as it is straightforward to show that the ZMH ap-
proach to Jsteg (Section 3.2) with the following penalty func-
tion:

z(x) = (f0 − f1)
2 ≡ (x1 − x2 − x3)

2 (14)

reduces to the ZP estimator as well.

4.2 Image Histogram
In this section, we use the histogram as a feature in both

proposed frameworks. First, we analyze Jsteg. Here, the
histogram will be truncated to the range [−2L, . . . , 2R + 1]
for some positive R and L:

x , [h−2L, . . . , h2R+1]. (15)

4.2.1 ML Attack (Jsteg)
Since the embedding changes in individual LSB pairs are

independent, P (xβ |x, β) can be factorized:

P (xβ |x, β) = P
(

xβ
0 |x0, β

)

· P
(

xβ
1 |x1, β

)

· (16)

·
∏

k∈I

P
(

xβ
2k, x

β
2k+1|x2k, x2k+1, β

)

,

where I = {−L, . . . , R}\{0}. From embedding invariants:

xβ
k = xk for k ∈ {0, 1}, (17)

xβ
2k + xβ

2k+1 = x2k + x2k+1 , C2k for k ∈ I, (18)

(16) can be simplified to

P (xβ |x, β)
ei
=

∏

k∈I

P
(

xβ
2k|x2k, x2k+1, β

)

.

Using the same reasoning as in Section 4.1.1, approximating
the binomial distribution of xβ

2k with a Gaussian,

P (xβ
2k|x2k, x2k+1, β) = ϕ(xβ

2k;µ2k, σ
2
2k) with

µ2k = (1− 2β)x2k + βC2k,

σ2
2k = β(1− β)C2k,

2The authors estimated the relative payload under the tacit
assumption that no matrix embedding is used. In this case,
the expected value of the payload is 2β, which explains the
additional 2 in the denominator of (12).

results in

P (xβ |x, β)
ei
=

∏

k∈I

ϕ(xβ
2k;µ2k, σ

2
2k). (19)

To derive the prior Px(x) from a precover model, we as-
sume that the unquantized DCT coefficients are i.i.d. re-
alizations of a random variable ξ that follows a zero-mean
generalized Cauchy distribution:

g(x) =
p− 1

2s

(∣

∣

∣

x

s

∣

∣

∣+ 1
)−p

. (20)

This model gave us better results than generalized Gaussian
which corresponds to the results of [23]. The positive param-
eters p and s were obtained from the stego image using an
ML estimator, given the embedding invariants (17) and (18)
as integrals of g(x) over the corresponding regions. Here, we

intentionally excluded zeros (the invariant
´ 0.5

−0.5
g(x)dx = h0

was ignored) because the quality of the fit at zero is irrele-
vant for the estimator and would only lead to a bias in the
other LSB pairs.

The precover is formed by assuming that the histogram
bin x2k is obtained by making C2k independent draws with
probability g2k , P (ξ2k ∈ [2k − 0.5, 2k + 0.5] | ξ2k ∈ [2k −
0.5, 2k + 1.5]),

g2k =

[
ˆ 2k+1.5

2k−0.5

g(x)dx

]−1

·

ˆ 2k+0.5

2k−0.5

g(x)dx.

We approximate the binomial distribution ξ2k ∼ Bi(g2k, C2k)
with a Gaussian, N(µ̄2k, σ̄

2
2k), with

µ̄2k = C2kg2k, (21)

σ̄2
2k = C2kg2k(1− g2k). (22)

As shown in the journal version of this paper [15], the pre-
cover model is valid for LSB pairs [x2k, x2k+1] farther away
from zero (|k| ≥ 2). To avoid loss of statistical data, we
nevertheless adopt the model for all bins. Thus,

Px(x)
ei
=

∏

k∈I

ϕ(x2k; µ̄2k, σ̄
2
2k). (23)

After substituting (19) and (23) into (1), the maximum
can be found numerically. The computational complexity of
this estimator is low because all the involved integrals can
be evaluated analytically.

Note the difference between the proposed procedure and
the attack of Yu et al. [23], where authors use the generalized
Cauchy fit as well. In [23], the estimator is realized using
the chi-square test, whereas here we use ML equation (1)
that is to be solved numerically.

4.2.2 ML Attack (sym-Jsteg)
An essentially identical ML estimator can be constructed

for sym-Jsteg, except it has a different set of embedding
invariants:

xβ
0 = x0

xβ
2k + xβ

2k+1 = x2k + x2k+1 for k ∈ {−L, . . . ,−1}

xβ
2k−1 + xβ

2k = x2k−1 + x2k for k ∈ {1, . . . , R}.

The generalized Cauchy fit uses integrals over the corre-
sponding bins, which are now positioned symmetrically
around zero in contrast with Jsteg. The remainder of the
estimator stays the same.



For sym-Jsteg, the histogram was truncated to the range
[−2L, . . . , 2R],

x , [h−2L, . . . , h2R]. (24)

4.2.3 ZMH Attack (Jsteg)
Because Jsteg embedding violates histogram symmetry,

the ZMH framework can exploit the symmetries, xk ≈ x−k,
using the following penalty function:

zsym(x) =
∑

k>0

wk(xk − x−k)
2, (25)

where the weights wk ≥ 0 are chosen to minimize the vari-
ance of the change-rate estimator. The summation in (25)

goes to B , min{2L, 2R + 1} as we consider only the trun-
cated histogram [h−2L, . . . , h2R+1]. Since our next steps are
essentially identical to the derivation of optimal weights for
least-squares steganalysis [12, 10], we include here only a
brief description of the key elements. In particular, the esti-
mator variance is minimized only for stego images with zero
payload (covers) under the (precover) assumption that xk

follows a binomial distribution with size xk +x−k and prob-
ability 1/2, or xk ∼ N(µ̂k, σ̂

2
k), where µ̂k = (xk + x−k)/2

and σ̂2
k = (xk + x−k)/4. The weights wk that minimize the

variance of zsym(x) over cover images are

wk =
1

xk + x−k
. (26)

We note that the weights (26) are optimal only for cover
images (for zero payload) and at least close to optimal for
small payloads with no optimality guarantee for larger pay-
loads because in general xβ

k is a poor estimate of xk. Nev-
ertheless, being aware of these facts and keeping in mind
that the derived weights (26) can be further improved, noth-
ing prevents us from using them in our framework with the
penalty function

zsym(x) =

B
∑

k=1

(xk − x−k)
2

xk + x−k
. (27)

4.2.4 ZHM Attack (sym-Jsteg)
The sym-Jsteg algorithm preserves the histogram sym-

metry and thus cannot be attacked using the penalty func-
tion (27). However, it is conceivable to attack sym-Jsteg
using a penalty function that measures a deviation between
the histogram and its generalized Cauchy fit obtained from
embedding invariants (see the details of the fitting in Sec-
tion 4.2.1). The assumption is that the best fit will be ob-
tained by Emb−1(y, β) for β close to the real change rate.
Formally, the penalty function is written as

zfit(x) =
∑

k

wk(xk − x̂k)
2,

where x̂k is the histogram value obtained from the general-
ized Cauchy fit.
Even though the weights wk could be adjusted, the con-

nection to least-squares steganalysis is now illusory, since
x̂k is the generalized Cauchy fit and the precover cannot
be formulated in a straightforward way. We experimentally
verified that the choice of weights wk = 1/ (xk + x̂k) does
not improve the accuracy of the estimator, and therefore
used simply wk = 1, i.e., the penalty function

zfit(x) =
∑

k

(xk − x̂k)
2. (28)

We could theoretically implement the same attack for
Jsteg, with the generalized Cauchy distribution fitting pro-
cedure adapted from Section 4.2.1. In Section 5, we subject
this approach to tests as well.

4.3 Inter-Block Adjacency Matrix
More accurate estimators can likely be built by realiz-

ing that DCT coefficients are not i.i.d. but exhibit addi-
tional dependencies. We capture inter-block dependencies
among DCT coefficients using an adjacency matrix. First,
we outline a possible approach to attack Jsteg within the
ML framework. We analyze the difficulties of this approach
and then work out in detail the ZMH attack. The ZMH
attack utilizes the violation of symmetries in the inter-block
adjacency matrix. We limit the exposition to Jsteg because
sym-Jsteg preserves the symmetry of the adjacency matrix.

4.3.1 ML attack (Jsteg)
Formally, for an image withN×M pixels, let us denote the

array of DCT coefficients as Du,v(k, l), where (k, l), k, l ∈
{0, . . . , 7}, is a DCTmode in block (u, v), u ∈ {0, . . . , dM/8e},
v ∈ {0, . . . , dN/8e}. The feature vector is the adjacency ma-
trix A = {aij}:

aij =
∣

∣

∣{(u, v, k, l)|Du,v(k, l) = i,Du,v+1(k, l) = j}
∣

∣

∣. (29)

Due to the structure of LSB embedding and since Jsteg
does not embed into zeros and ones, A naturally decomposes
into disjoint groups of k coefficient pairs, k ∈ {1, 2, 4} (see
Figure 1) called k-nodes. Note that Jsteg embedding can
move pairs freely within each node but not among the nodes.
The Jsteg embedding transition probabilities for all three k-
node types are shown in Figure 2.

The next step is to derive the model for P (Aβ |A, β) and
adopt a model for Px(A). Following Figures 1 and 2, the
probability P (Aβ |A, β) can be factorized into embedding
transition probabilities over individual k-nodes. The prob-
ability for 1-nodes is always equal to 1. The situation for
2-nodes is similar to LSB pairs in a one-dimensional his-
togram. From the embedding transition probabilities shown
in Figure 2 (left), a stego 4-node will follow a multinomial
distribution that can be approximated by a multivariate
Gaussian distribution. Furthermore, because the sum of oc-
currences of all four pairs in each 4-node is an embedding
invariant, the dimension of the multivariate Gaussian distri-
bution is reduced by one, resulting in a three-dimensional
Gaussian distribution with an appropriate mean and covari-
ance matrix. This way, it is possible to analytically express
P (Aβ |A, β) as a product of low-dimensional distributions.

The complications that make this approach to change-rate
estimation problematic arise when one attempts to model
Px(A). Similarly to the one-dimensional case, the knowl-
edge of embedding invariants can be reflected in Px(A)
through the precover. After factorizing Px(A) into the prob-
abilities over individual k-nodes, the problem reduces to
finding a good parametric model for the (unquantized) cover
matrix A, given the integrals over the regions correspond-
ing to the individual k-nodes. However, this is rather dif-
ficult because we need to reflect the dependencies between
DCT coefficients into the model, otherwise we fundamen-
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Figure 2: Embedding transition probabilities for all three k-node types. Left: 4-node [c1, c2, c3, c4], Middle:
2-node [b1, b2], Right: 1-node [a].
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Figure 1: Graphical illustration of matrix A = {aij}
defined by (29). Shaded regions represent 1-nodes,
2-nodes, and 4-nodes.

tally cannot obtain a more accurate detector than in the
one-dimensional case. The matrix A (follow Figure (1)) will
exhibit three ridges – one along each axis caused by the fact
that coefficients with small absolute value are more frequent
than larger ones, and one along the main diagonal, reflecting
inter-block dependence of coefficients. Capturing this com-
plicated structure requires using more complex models and
estimating more parameters, which increases the complexity
of the estimator substantially because this modeling process
has to be executed for each analyzed stego image.
Let g(A) be the statistical model for unquantized coeffi-

cient pairs on covers. The precover model assigns the pairs
in every k-node proportionally to the integrals of g(A) over
their corresponding regions. All 2-nodes and 4-nodes will fol-
low a binomial and multinomial distributions, respectively,
while 1-nodes will be fully determined by g(A). In prin-
ciple, we can again utilize Gaussian approximations with

dimensionality reduced by one thanks to the embedding
invariants.

Finally, the model for P (Aβ |A, β) and Px(A) can be sub-
stituted into the ML estimator (1), carrying out the max-
imization numerically. Unfortunately, unlike in the one-
dimensional case, in every step of the maximization pro-
cedure we need to numerically evaluate three-dimensional
integrals for all 4-nodes, which further increases the com-
plexity.

To summarize our insight, the complexity of the ML pro-
cedure rapidly increases due to the difficulties with model-
ing Px(A), estimating its parameters from the embedding
invariants, and solving (1). We note that similar difficulties
materialize when considering this approach to attack sym-
Jsteg.

4.3.2 ZMH attack (Jsteg)
In the ZMH framework, we only need to identify a prop-

erty of a typical cover matrix A that is disturbed by em-
bedding, which is much easier than obtaining the precover
model in the ML framework. The penalty function used in
this section builds upon the fact that Jsteg violates certain
symmetries of A.

First, we quantify the effect of embedding and find the
inverse embedding function Emb−1(Aβ , β). The embedding
operation can be studied separately for different types of
k-nodes (follow Figure 2):

• 1-nodes:

aβ = a,

• 2-nodes:

(

bβ1
bβ2

)

=

(

γ β
β γ

)

·

(

b1
b2

)

,

• 4-nodes:
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
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·


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
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







.

Above, we used γ = 1 − β. Provided 0 ≤ β < 1/2, all
three embedding functions are linear mappings with a non-



singular matrix and thus can be easily inverted, which gives
us the inverse mapping Emb−1(Aβ , β).
To find an appropriate functional z(A), we inspect the

diagonals denoted D1 and D2 in Figure 1. The cover matrix
A is symmetrical about both diagonals: ai,j ≈ aj,i (the
order of DCT coefficients does not matter) and ai,j ≈ a−j,−i

(the sign does not matter either).
Because of the natural shape of the distribution of DCT

coefficients, there are two major ridges in A that correspond
to the column and row passing through the origin. Note that
both ridges are symmetric about both D1 and D2.
Since the symmetry about D2 is disturbed by embedding

(note the asymmetrical placement of k-nodes w.r.t. D2 in
Figure 1), it will be employed for structural steganalysis
through the ZMH framework using the penalty functional
expressed again as a weighted sum of square precover devi-
ations:

zadj(A) =
B
∑

i,j=−B

(āi,j − ā−i,−j)
2

āi,j + ā−i,−j
. (30)

In (30), B = min{2L, 2R + 1} determines the size of the
largest square submatrix of A centered at a00 and āi,j =
ai,j + aj,i. The functional (30) is a two-dimensional anal-
ogy to the previously introduced optimally weighted one-
dimensional penalty function (27). Instead of the histogram
symmetry, here we exploit the symmetry of the adjacency
matrix along the diagonal D2. The optimality of weights
in (30) relies on the following precover assumption: ai,j ∼
Bi(1/2, ai,j + a−j,−i), which is to be simplified as ai,j ∼
N(µi,j , σ

2
i,j) with

µi,j =
1

2
(ai,j + a−j,−i),

σ2
i,j =

1

4
(ai,j + a−j,−i).

This assumption is analyzed in [15]. Because the symmetry
ai,j ≈ aj,i is preserved under embedding, adding ai,j and aj,i

to form a new variable āi,j increases the statistical sample
and improves the performance.

5. EXPERIMENTAL RESULTS
In this section, we experimentally evaluate all quantitative

steganalyzers proposed in this paper and compare their per-
formance with current state-of-the-art estimators, including
the recently proposed adaptations of spatial-domain meth-
ods [21] as well as the Support Vector Regression (SVR)
feature-based approach [19]. The accuracy of the estima-
tors will be evaluated for Jsteg and sym-Jsteg separately for
change rates ranging from 0 to 0.2. In practice, an image
with a negative change-rate estimate should be interpreted
as a cover. However, rounding negative estimates to zero
would deform the distribution of β̂ for small payloads and
the results would become less informative. Therefore, the
minimization of the penalty function in the ZMH framework
is always performed in the interval [−1/2, 1/2].
Because a quantitative steganalysis technique can only es-

timate the change rate rather than the message length, we
used simulations of Jsteg and sym-Jsteg by directly visiting
DCT coefficients (along a pseudo-random path) and flipping
a desired portion of them. Consequently, the estimation
error due to random correlations of the message with the
cover elements (e.g., see [2]) is not present in our results.

We present an overall performance comparison by simulat-
ing embedding on every test image once and analyzing the
compound error over the database. More detailed analysis
of the within-image and between-image error for Jsteg can
be found in [15].

All experiments were performed on a database of images
obtained from a mother database of 6, 500 JPEG images
acquired by 22 different digital cameras at full resolution in a
raw format and then converted to grayscale. The size of the
images ranged from 1.5 to 6.0 megapixels with a median size
of 3.4 megapixels. All images were resized and compressed
with the JPEG quality factor 75. The resizing was carried
out using bilinear interpolation so that the smaller side after
resizing was 512 pixels (aspect ratio preserved).

The obtained image dataset was further randomly divided
into two equal parts, each consisting of 3, 250 images. The
first part was used for training of the SVR-based estimator.
All remaining methods were then tested on the second part,
regardless of the fact of whether or not they required the
first half for training. This way, all methods were evaluated
on the same set of images, ensuring thus a fair comparison.

5.1 Performance Measures
The stego images were created by pseudo-randomly chang-

ing a fraction β of all non-zero non-one DCT coefficients
(Jsteg) or a fraction β of all non-zero DCT coefficients (sym-
Jsteg). The accuracy of all estimators is reported using the
following measures:

• Median absolute error

mediani

{∣

∣

∣β̂i − β
∣

∣

∣

}

,

• Median bias

mediani

{

β̂i − β
}

,

• Interquartile range (IQR)

iqri

{

β̂i

}

.

5.2 Overall Performance (Jsteg)
For Jsteg, the following quantitative steganalyzers were

analyzed: the estimator of Zhang and Ping (12), the histo-
gram-based ML approach described in Section 4.2.1, the
Weighted nonsteganographic Borders attack (WB) intro-
duced in [21],3 the ZMH-based attacks using different fea-
tures and penalty functions zsym(x), zfit(x), and zadj(A),
and the SVR quantitative steganalyzer introduced in [19].

According to our experiments, the accuracy of estimators
that rely on histogram (adjacency matrix) symmetry – the
ZP estimator, ZMH using zsym(x), and ZMH using zadj(A))
– decreases unless the DC terms are excluded from comput-
ing the histogram. This is because the distribution of DC
terms is not symmetric around zero and thus violates the
cover assumption of histogram symmetry.

Table 1 conveniently lists all quantitative steganalyzers
involved in the test, together with our choices of parameters
L, R and B = min{2L, 2R + 1}. The results are shown in

3Even though we also tested the Jpairs attack [21], the re-
sults are not included in Figure 3 because this method ex-
hibited a markedly worse accuracy compared to the other
methods and by including the results in the graphs, their
visual clarity would be negatively affected.



Method Description

ZP (J) - Estimator of Zhang and Ping – formula (12).

ML (J) - First-order ML approach described in Section 4.2.1. L = 3, R = 2.

WB (J) - Weighted Nonsteganographic Borders Attack [21]. We used author’s code written in R.

ZMH-Sym (J) - First-order ZMH attack using penalty function zsym(x) (27). L = R = 4.

ZMH-Fit (J) - First-order ZMH attack using penalty function zfit(x) (28). L = 3, R = 2.

ZMH-Adj (J) - Second-order ZMH attack using penalty function zadj(A) (30). B = 3.

SVR (J) - Support vector regression [19] with 548 Cartesian-calibrated Pevný features [14].

ML (S) - First-order ML approach for sym-Jsteg described in Section 4.2.2. L = R = 3.

ZMH-Fit (S) - First-order ZMH attack for sym-Jsteg using penalty function zfit(x) (28). L = R = 3.

SVR (S) - Support vector regression [19] with 548 Cartesian-calibrated Pevný features [14].

Table 1: List of all quantitative steganalyzers involved in experiments. The first group of methods appended
by (J) was used to attack Jsteg, the second group (S) to attack sym-Jsteg.

Figure 3 (left column). The following conclusions can be
drawn:

1. The best performance was achieved using the SVR-

based attack ( ) and the ZMH approach with zadj(A)

( ). Both methods have a very similar accuracy in
terms of all three performance measures. The advan-
tage of the proposed ZMH framework over the SVR is
that it does not need an expensive training phase – it
works solely on an image-by-image basis.

2. Among all histogram-based attacks to Jsteg, the ZMH

method using zsym(x) ( ) performs the best. This is
because of the strong histogram symmetry violation of
Jsteg that is effectively captured by the penalty func-
tion zsym(x).

3. Even though both the ML method ( ) and the ZMH

approach with zfit(x) ( ) use the same generalized
Cauchy fit for the cover model, the ML approach de-
livers a better performance. This indicates that the
theoretically well-founded ML method can employ this
knowledge better than the heuristic ZMH approach.
Unfortunately, the ML approach becomes computa-
tionally intractable when considering higher-order
statistics.

4. The WB attack ( ) has the worst performance in
steganalysis of Jsteg in agreement with the previously
published results [19].

5.3 Overall Performance (sym-Jsteg)
For sym-Jsteg, we tested the ML approach from Section

4.2.2, the ZMH attack with zfit(x) introduced in Section 4.2.4,
and the SVR approach. None of the other methods used in
the previous section can be used for steganalysis of sym-
Jsteg, since sym-Jsteg preserves the symmetry of both the
histogram and the adjacency matrix. Figure 3 (right col-
umn) shows the results. In summary,

1. The feature-based SVR method ( ) is the best sym-
Jsteg change-rate estimator. The high accuracy of the
attack indicates that sym-Jsteg is an easily detectable

steganographic method, even though it disables most
of the ML and ZMH attacks.

2. Similarly to the conclusions drawn from attacks on

Jsteg, the ML method ( ) outperforms the ZMH at-

tack with zfit(x) ( ) even though both approaches
are based on the same cover model estimates.

3. Both first-order attacks, i.e., the ML method ( ) and

the ZMH attack with the penalty function zfit(x) ( )
perform significantly worse than for Jsteg. This is be-
cause of the less informative embedding invariants and
consequently worse estimates of the cover image his-
tograms.4

Finally, we note that the journal version of this paper [15]
contains detailed analysis of between-image and within-image
errors for two selected attacks on Jsteg.

6. CONCLUSION
We describe several new approaches to quantitative ste-

ganalysis of LSB embedders in JPEG domain – the Jsteg al-
gorithm and its symmetrized version sym-Jsteg. Sym-Jsteg
redefines positive LSB pairs from (2k, 2k+1) to (2k, 2k−1),
which allows it to embed into ones as opposed to Jsteg.

The new attacks can be broadly divided into two classes.
The first is the theoretically well-founded maximum like-
lihood approach, in which the cover model is derived for
each stego image from a hypothetical precover source formed
from embedding invariants. Its complexity, however, quickly
increases with increasing complexity of the cover model.
Thus, as a simple alternative we proposed the second class
of methods that uses a zero message hypothesis (ZMH) to
form a non-negative penalty function that attains the min-
imum value on covers and increases with embedding. This
latter approach, which bears some similarity to optimally
weighted least squares steganalysis [12], is computationally

4The asymmetrical position of LSB pairs in Jsteg leads to
overlapping integrals of the cover model g(x) defined by (20).
The quality of the fit is further improved by the embedding

invariant
´ 3/2

1/2
g(x)dx. None of this holds for sym-Jsteg, re-

sulting in less accurate estimates.
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Figure 3: Median absolute error (top), interquartile range (middle), and median bias (bottom) for all attacks
on Jsteg (left column) and sym-Jsteg (right column) listed in Table 1.



inexpensive and modular, and, in contrast to the maximum
likelihood approach, it allows simple incorporation of even
complicated higher-order properties of covers. Moreover, the
ZMH approach can be used also to convert existing targeted
(but not quantitative) attacks to quantitative ones [15].
All quantitative steganalyzers were experimentally evalu-

ated on a database of 3,250 images and compared to existing
attacks. Because Jsteg embedding violates symmetry of the
histogram of DCT coefficients and the inter-block adjacency
matrix, the impact of embedding can be well captured us-
ing properly chosen penalty functions. The most accurate
ZMH estimator for Jsteg was based on symmetry of the ad-
jacency matrix. Its accuracy was comparable to the current
state-of-the-art method constructed using Support Vector
Regression (SVR) with a 548-dimensional feature vector.
The newly proposed method, however, offers a much simpler
implementation without the need for a potentially expensive
training phase.
None of the attacks that rely on symmetry-breaking can

be adapted to sym-Jsteg because it preserves these sym-
metries. The simple modification of the embedding algo-
rithm makes sym-Jsteg much harder to attack using struc-
tural steganalysis. None of the newly proposed attacks was
able to match the accuracy of the feature-based support-
vector regressor constructed from the above-mentioned 548-
dimensional feature set.
Among possible future directions, we mention the possi-

bility to further improve the accuracy of the ZMH-based
change-rate estimator for Jsteg by utilizing both intra-block
and inter-block dependencies between DCT coefficients by
modeling the relationship between DCT coefficients with
Markov chains as in [3]. Furthermore, the visually observ-
able impact of sym-Jsteg on histogram suggests a reasonable
hope of finding better penalty functions that would bring the
performance of the ZMH method closer to the SVR-based
steganalyzer.
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